|
Main change is splitting apart the Sail->IR compilation stage and the
C code generation and optimization phase. Rather than variously
calling the intermediate language either bytecode (when it's not
really) or simply IR, we give it a name: Jib (a type of Sail). Most of
the types are still prefixed by c/C, and I don't think it's worth
changing this.
The various parts of the C backend are now in the src/jib/ subdirectory
src/jib/anf.ml - Sail->ANF translation
src/jib/jib_util.ml - various Jib AST processing and helper functions (formerly bytecode_util)
src/jib/jib_compile.ml - Sail->Jib translation (using Sail->ANF)
src/jib/c_backend.ml - Jib->C code generator and optimizations
Further, bytecode.ott is now jib.ott and generates jib.ml (which still
lives in src/ for now)
The optimizations in c_backend.ml should eventually be moved in a
separate jib_optimization file.
The Sail->Jib compilation can be parameterised by two functions - one
is a custom ANF->ANF optimization pass that can be specified on a per
Jib backend basis, and the other is the rule for translating Sail
types in Jib types. This can be more or less precise depending on how
precise we want to be about bit-widths etc, i.e. we only care about <64
and >64 for C, but for SMT generation we would want to be as precise
as possible.
Additional improvements:
The Jib IR is now agnostic about whether arguments are allocated on
the heap vs the stack and this is handled by the C code generator.
jib.ott now has some more comments explaining various parts of the Jib
AST.
A Set module and comparison function for ctyps is defined, and some
functions now return ctyp sets rather than lists to avoid repeated
work.
|
|
- Propagate types more accurately to improve optimization on ANF
representation.
- Add a generic optimization pass to remove redundant variables that
simply alias other variables.
- Modify Sail interactive mode, so it can compile a specification with
the :compile command, view generated intermediate representation via
the :ir <function> command, and step-through the IR with :exec <exp>
(although this is very incomplete)
- Introduce a third bitvector representation, between fast
fixed-precision bitvectors, and variable length large
bitvectors. The bitvector types are now from most efficient to least
* CT_fbits for fixed precision, 64-bit or less bitvectors
* CT_sbits for 64-bit or less, variable length bitvectors
* CT_lbits for arbitrary variable length bitvectors
- Support for generating C code using CT_sbits is currently
incomplete, it just exists in the intermediate representation right
now.
- Include ctyp in AV_C_fragment, so we don't have to recompute it
|