| Age | Commit message (Collapse) | Author |
|
Main change is splitting apart the Sail->IR compilation stage and the
C code generation and optimization phase. Rather than variously
calling the intermediate language either bytecode (when it's not
really) or simply IR, we give it a name: Jib (a type of Sail). Most of
the types are still prefixed by c/C, and I don't think it's worth
changing this.
The various parts of the C backend are now in the src/jib/ subdirectory
src/jib/anf.ml - Sail->ANF translation
src/jib/jib_util.ml - various Jib AST processing and helper functions (formerly bytecode_util)
src/jib/jib_compile.ml - Sail->Jib translation (using Sail->ANF)
src/jib/c_backend.ml - Jib->C code generator and optimizations
Further, bytecode.ott is now jib.ott and generates jib.ml (which still
lives in src/ for now)
The optimizations in c_backend.ml should eventually be moved in a
separate jib_optimization file.
The Sail->Jib compilation can be parameterised by two functions - one
is a custom ANF->ANF optimization pass that can be specified on a per
Jib backend basis, and the other is the rule for translating Sail
types in Jib types. This can be more or less precise depending on how
precise we want to be about bit-widths etc, i.e. we only care about <64
and >64 for C, but for SMT generation we would want to be as precise
as possible.
Additional improvements:
The Jib IR is now agnostic about whether arguments are allocated on
the heap vs the stack and this is handled by the C code generator.
jib.ott now has some more comments explaining various parts of the Jib
AST.
A Set module and comparison function for ctyps is defined, and some
functions now return ctyp sets rather than lists to avoid repeated
work.
|
|
If we want to use our low-level intermediate representation to generate
SMT, then we want to be more precise than just splitting integers into
64-bits and larger. This commit changes CT_int and CT_int64 into CT_lint
for large integers and CT_fint n for (signed) fixed precision integers
that fit within n bits. This follows the convention for bitvectors where
we have CT_fbits for fixed-length bitvectors and CT_lbits for large
arbitrary precision bitvectors.
|
|
Should hopefully fix memory leak in RISC-V.
Also adds an optimization pass that removes copying structs and allows
some structs to simply alias each other and avoid copying their
contents. This requires knowing certain things about the lifetimes of
the structs involved, as can't free the struct if another variable is
referencing it - therefore we conservatively only apply this
optimization for variables that are lifted outside function
definitions, and should therefore never get freed until the model
exits - however this may cause issues outside ARMv8, as there may be
cases where a struct can exist within a variant type (which are not
yet subject to this lifting optimisation), that would break these
assumptions - therefore this optimisation is only enabled with the
-Oexperimental flag.
|
|
- Propagate types more accurately to improve optimization on ANF
representation.
- Add a generic optimization pass to remove redundant variables that
simply alias other variables.
- Modify Sail interactive mode, so it can compile a specification with
the :compile command, view generated intermediate representation via
the :ir <function> command, and step-through the IR with :exec <exp>
(although this is very incomplete)
- Introduce a third bitvector representation, between fast
fixed-precision bitvectors, and variable length large
bitvectors. The bitvector types are now from most efficient to least
* CT_fbits for fixed precision, 64-bit or less bitvectors
* CT_sbits for 64-bit or less, variable length bitvectors
* CT_lbits for arbitrary variable length bitvectors
- Support for generating C code using CT_sbits is currently
incomplete, it just exists in the intermediate representation right
now.
- Include ctyp in AV_C_fragment, so we don't have to recompute it
|
|
Make the C l-expression type in Sail more generic and expressive, and
refactor the generation of conversions into a seperate
codegen_conversion function, which can handle more complex cases than
the previous more ad-hoc method.
|
|
types
|
|
|
|
|
|
Registers can now be marked as configuration registers, for example:
register configuration CFG_RVBAR = 0x1300000
They work like ordinary registers except they can only be set by
functions with the 'configuration' effect and have no effect when
read. They also have an initialiser, like a let-binding. Internally
there is a new reg_dec constructor DEC_config. They are intended to
represent configuration parameters for the model, which can change
between runs, but don't change during execution. Currently they'll
only work when compiled to C. Internally registers can now have custom
effects for reads and writes rather than just rreg and wreg, so the
type signatures of Env.add_register and Env.get_register have changed,
as well as the Register lvar, so in the type checker we now write:
Env.add_register id read_effect write_effect typ
rather than
Env.add_register id typ
For the corresponding change to ASL parser there's a function
is_config in asl_to_sail.ml which controls what becomes a
configuration register for ARM. Some things we have to keep as
let-bindings because Sail can't handle them changing at runtime -
e.g. the length of vectors in other top-level definitions. Luckily
__SetConfig doesn't (yet) try to change those options.
Together these changes allow us to translate the ASL __SetConfig
function, which means we should get command-line option compatibility
with ArchEx for running the ARM conformance tests.
|
|
Previously the ANF->IR translation cared too much about how things
were allocated in C, so it had to constantly check whether things
needed to be allocated on the stack or heap, and generate different
cequences of IR instructions depending on either. This change removes
the ialloc IR instruction, and changes iinit and idecl so that the
code generator now generates different C for the same IR instructions
based on the variable types involved.
The next change in this vein would be to merge icopy and iconvert at
the IR level so that conversions between uint64_t and large-bitvectors
are inserted by the code generator. This would be good because it
would make the ANF->IR translation more robust to changes in the types
of variables caused by flow-typing, and optimization passes could
convert large bitvectors to uint64_t as local changes.
|
|
|
|
optimizations.
Move the utility functions for graph generation and pretty printing of
intermediate representation instructions into a separate file,
bytecode_util.ml, by analogy with ast_util.ml.
Add an optimization pass that searches for specific patterns of struct
updates and removes uncessary copying of the structs involved. With
this optimisation pass the time taken for u-boot to run approx
57,000,000 instructions goes down from about 11-12 minutes to 8
minutes (about 120,000 IPS).
|
|
Also fixes to C backend for compiling MIPS spec to C
- Fix an issue with const correctness in internal_vector_update
functions generated by C backend
- Add builtins for MIPS to sail.h
- Fix an issue where reg_deref didn't work when called on pointers to
large bitvectors, i.e. vectors containing references to large
bitfields as in the MIPS TLB code
- Various bug fixes and changes for running U-boot on ARM model,
including for interpreter and OCaml compilation.
- Fix memory leak issues and incorrect shadowing for foreach loops
- Update C header file. Fixes memory leak in memory read/write
builtins.
- Add aux constructor to ANF representation to hold environment
information.
- Fix undefined behavior caused by optimisation left shifting uint64_t
vectors 64 or more times. Unfortunately there's more issues because
the same happens for X >> 64 right shifts. It would make sense for
this to be zero, because that would guarantee the property that ((X
>> n) >> m) == (X >> (n + m)) but we probably need to do (X >> (n -
1) >> 1) in the optimisation to ensure that we don't cause
UB. Shifting by 63 and then by 1 is well-defined, but shifting by 64
in one go isn't according to the C standard. This issue with
right-shifts only occurs for zero-length vectors, so it's not a huge
deal, but it's still annoying.
- Add versions of print_bits and print_int that print to
stderr. Follows OCaml convention of print/prerr. Should make things
more explicit. Different backends had different ideas about where
print should output to, not every backend needs to have this
(e.g. theorem prover backends don't need to print) but having both
stderr and stdout seperate and clear is useful for executable models
(UART needs to be stdout, debug messages should be stderr).
|
|
|
|
Can now compile RISCV. Requires some library tweaks before it'll pass any tests,
Also adds hyperlinks to wip latex output
|
|
Also work on making C backend compile RISC-V
|
|
Rather than just using strings to represent literals, now use value
types from sail_lib.lem to represent them. This allows for expressions
to be evaluated at compile time, which will be useful for future
optimisations involving constant folding and propagation, and allows
the intermediate bytecode to be interpreted using the same lem
builtins that the shallow embedding uses.
To get this to work I had to tweak the build process slightly to allow
ml files to import lem files from gen_lib/. Hopefully this doesn't
break anything!
|
|
With these optimisations on, now get about 10x performance over OCaml.
|
|
Just need to implement builtins, fix-up a few re-write passes, and
integrate some kind of elf-loading and it should work.
|
|
|
|
|
|
|
|
|
|
Describes precisely the intermediate representation used in the C
backend in an ott grammar, and also removes several C-isms where raw C
code was inserted into the IR, so in theory this IR could be
interpreted by a small VM/interpreter or compiled to LLVM bytecode
etc. Currently the I_raw constructor for inserting C code is just used
for inserting GCC attributes, so it can safely be ignored.
Also augment and refactor the instruction type with an aux constructor
so location information can be propagated down to this level.
|