summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAlasdair Armstrong2019-07-31 15:45:54 +0100
committerAlasdair Armstrong2019-07-31 15:46:27 +0100
commit9a6a3d12a6c32c2c4a331f5084af982b1ca77b1e (patch)
tree0ae9662cca058c73b7006261afb5e7b50433983c
parenta2b4e75bda81f8a13d136a6d5b06de0747604a2b (diff)
Revert "Need to separate out the 0.10 lem library from upcoming 0.11"
This reverts commit 3fb4cf236c0d4b15831576faa45c763853632568.
-rw-r--r--src/gen_lib/0.11/sail2_deep_shallow_convert.lem623
-rw-r--r--src/gen_lib/0.11/sail2_instr_kinds.lem306
-rw-r--r--src/gen_lib/0.11/sail2_operators.lem207
-rw-r--r--src/gen_lib/0.11/sail2_operators_bitlists.lem308
-rw-r--r--src/gen_lib/0.11/sail2_operators_mwords.lem334
-rw-r--r--src/gen_lib/0.11/sail2_prompt.lem139
-rw-r--r--src/gen_lib/0.11/sail2_prompt_monad.lem336
-rw-r--r--src/gen_lib/0.11/sail2_state.lem105
-rw-r--r--src/gen_lib/0.11/sail2_state_lifting.lem57
-rw-r--r--src/gen_lib/0.11/sail2_state_monad.lem278
-rw-r--r--src/gen_lib/0.11/sail2_string.lem448
-rw-r--r--src/gen_lib/0.11/sail2_values.lem999
-rw-r--r--src/gen_lib/0.11/sail_impl_base.lem1518
-rw-r--r--src/gen_lib/sail2_deep_shallow_convert.lem68
-rw-r--r--src/lem_interp/0.11/instruction_extractor.lem163
-rw-r--r--src/lem_interp/0.11/interp.lem3407
-rw-r--r--src/lem_interp/0.11/interp_inter_imp.lem1338
-rw-r--r--src/lem_interp/0.11/interp_interface.lem326
-rw-r--r--src/lem_interp/0.11/interp_lib.lem1111
-rw-r--r--src/lem_interp/0.11/interp_utilities.lem212
-rw-r--r--src/lem_interp/0.11/sail2_impl_base.lem1103
-rw-r--r--src/lem_interp/0.11/sail2_instr_kinds.lem376
-rw-r--r--src/lem_interp/interp_inter_imp.lem63
-rw-r--r--src/lem_interp/sail2_instr_kinds.lem175
24 files changed, 165 insertions, 13835 deletions
diff --git a/src/gen_lib/0.11/sail2_deep_shallow_convert.lem b/src/gen_lib/0.11/sail2_deep_shallow_convert.lem
deleted file mode 100644
index 2e3543b4..00000000
--- a/src/gen_lib/0.11/sail2_deep_shallow_convert.lem
+++ /dev/null
@@ -1,623 +0,0 @@
-open import Pervasives_extra
-open import Sail2_impl_base
-open import Sail2_interp
-open import Sail2_interp_ast
-open import Sail2_values
-
-
-class (ToFromInterpValue 'a)
- val toInterpValue : 'a -> Interp_ast.value
- val fromInterpValue : Interp_ast.value -> 'a
-end
-
-let toInterValueBool = function
- | true -> Interp_ast.V_lit (L_aux (L_one) Unknown)
- | false -> Interp_ast.V_lit (L_aux (L_zero) Unknown)
-end
-let rec fromInterpValueBool v = match v with
- | Interp_ast.V_lit (L_aux (L_one) _) -> true
- | Interp_ast.V_lit (L_aux (L_true) _) -> true
- | Interp_ast.V_lit (L_aux (L_zero) _) -> false
- | Interp_ast.V_lit (L_aux (L_false) _) -> false
- | Interp_ast.V_tuple [v] -> fromInterpValueBool v
- | v -> failwith ("fromInterpValue bool: unexpected value. " ^
- Interp.debug_print_value v)
-end
-instance (ToFromInterpValue bool)
- let toInterpValue = toInterValueBool
- let fromInterpValue = fromInterpValueBool
-end
-
-
-let toInterpValueUnit () = Interp_ast.V_lit (L_aux (L_unit) Unknown)
-let rec fromInterpValueUnit v = match v with
- | Interp_ast.V_lit (L_aux (L_unit) _) -> ()
- | Interp_ast.V_tuple [v] -> fromInterpValueUnit v
- | v -> failwith ("fromInterpValue unit: unexpected value. " ^
- Interp.debug_print_value v)
-end
-instance (ToFromInterpValue unit)
- let toInterpValue = toInterpValueUnit
- let fromInterpValue = fromInterpValueUnit
-end
-
-
-let toInterpValueInteger i = V_lit (L_aux (L_num i) Unknown)
-let rec fromInterpValueInteger v = match v with
- | Interp_ast.V_lit (L_aux (L_num i) _) -> i
- | Interp_ast.V_tuple [v] -> fromInterpValueInteger v
- | v -> failwith ("fromInterpValue integer: unexpected value. " ^
- Interp.debug_print_value v)
-end
-instance (ToFromInterpValue integer)
- let toInterpValue = toInterpValueInteger
- let fromInterpValue = fromInterpValueInteger
-end
-
-
-let toInterpValueString s = V_lit (L_aux (L_string s) Unknown)
-let rec fromInterpValueString v = match v with
- | Interp_ast.V_lit (L_aux (L_string s) _) -> s
- | Interp_ast.V_tuple [v] -> fromInterpValueString v
- | v -> failwith ("fromInterpValue integer: unexpected value. " ^
- Interp.debug_print_value v)
-end
-instance (ToFromInterpValue string)
- let toInterpValue = toInterpValueString
- let fromInterpValue = fromInterpValueString
-end
-
-
-let toInterpValueBitU = function
- | B1 -> Interp_ast.V_lit (L_aux (L_one) Unknown)
- | B0 -> Interp_ast.V_lit (L_aux (L_zero) Unknown)
- | BU -> Interp_ast.V_lit (L_aux (L_undef) Unknown)
-end
-let rec fromInterpValueBitU v = match v with
- | Interp_ast.V_lit (L_aux (L_one) _) -> B1
- | Interp_ast.V_lit (L_aux (L_zero) _) -> B0
- | Interp_ast.V_lit (L_aux (L_undef) _) -> BU
- | Interp_ast.V_lit (L_aux (L_true) _) -> B1
- | Interp_ast.V_lit (L_aux (L_false) _) -> B0
- | Interp_ast.V_tuple [v] -> fromInterpValueBitU v
- | v -> failwith ("fromInterpValue bitU: unexpected value. " ^
- Interp.debug_print_value v)
-end
-instance (ToFromInterpValue bitU)
- let toInterpValue = toInterpValueBitU
- let fromInterpValue = fromInterpValueBitU
-end
-
-
-let tuple2ToInterpValue (a,b) =
- V_tuple [toInterpValue a;toInterpValue b]
-let rec tuple2FromInterpValue v = match v with
- | V_tuple [a;b] -> (fromInterpValue a,fromInterpValue b)
- | V_tuple [v] -> tuple2FromInterpValue v
- | v -> failwith ("fromInterpValue a*b: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance forall 'a 'b. ToFromInterpValue 'a, ToFromInterpValue 'b => (ToFromInterpValue ('a * 'b))
- let toInterpValue = tuple2ToInterpValue
- let fromInterpValue = tuple2FromInterpValue
-end
-
-
-let tuple3ToInterpValue (a,b,c) =
- V_tuple [toInterpValue a;toInterpValue b;toInterpValue c]
-let rec tuple3FromInterpValue v = match v with
- | V_tuple [a;b;c] -> (fromInterpValue a,fromInterpValue b,fromInterpValue c)
- | V_tuple [v] -> tuple3FromInterpValue v
- | v -> failwith ("fromInterpValue a*b*c: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance forall 'a 'b 'c. ToFromInterpValue 'a, ToFromInterpValue 'b, ToFromInterpValue 'c =>
- (ToFromInterpValue ('a * 'b * 'c))
- let toInterpValue = tuple3ToInterpValue
- let fromInterpValue = tuple3FromInterpValue
-end
-
-
-let tuple4ToInterpValue (a,b,c,d) =
- V_tuple [toInterpValue a;toInterpValue b;toInterpValue c;toInterpValue d]
-let rec tuple4FromInterpValue v = match v with
- | V_tuple [a;b;c;d] -> (fromInterpValue a,fromInterpValue b,
- fromInterpValue c,fromInterpValue d)
- | V_tuple [v] -> tuple4FromInterpValue v
- | v -> failwith ("fromInterpValue a*b*c*d: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance forall 'a 'b 'c 'd. ToFromInterpValue 'a, ToFromInterpValue 'b,
- ToFromInterpValue 'c, ToFromInterpValue 'd =>
- (ToFromInterpValue ('a * 'b * 'c * 'd))
- let toInterpValue = tuple4ToInterpValue
- let fromInterpValue = tuple4FromInterpValue
-end
-
-
-let tuple5ToInterpValue (a,b,c,d,e) =
- V_tuple [toInterpValue a;toInterpValue b;toInterpValue c;toInterpValue d;toInterpValue e]
-let rec tuple5FromInterpValue v = match v with
- | V_tuple [a;b;c;d;e] ->
- (fromInterpValue a,fromInterpValue b,fromInterpValue c,
- fromInterpValue d,fromInterpValue e)
- | V_tuple [v] -> tuple5FromInterpValue v
- | v -> failwith ("fromInterpValue a*b*c*d*e: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance forall 'a 'b 'c 'd 'e.
- ToFromInterpValue 'a, ToFromInterpValue 'b,
- ToFromInterpValue 'c, ToFromInterpValue 'd,
- ToFromInterpValue 'e =>
- (ToFromInterpValue ('a * 'b * 'c * 'd * 'e))
- let toInterpValue = tuple5ToInterpValue
- let fromInterpValue = tuple5FromInterpValue
-end
-
-
-let tuple6ToInterpValue (a,b,c,d,e,f) =
- V_tuple [toInterpValue a;toInterpValue b;toInterpValue c;toInterpValue d;
- toInterpValue e;toInterpValue f]
-let rec tuple6FromInterpValue v = match v with
- | V_tuple [a;b;c;d;e;f] ->
- (fromInterpValue a,fromInterpValue b,fromInterpValue c,
- fromInterpValue d,fromInterpValue e,fromInterpValue f)
- | V_tuple [v] -> tuple6FromInterpValue v
- | v -> failwith ("fromInterpValue a*b*c*d*e*f: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance forall 'a 'b 'c 'd 'e 'f.
- ToFromInterpValue 'a, ToFromInterpValue 'b,
- ToFromInterpValue 'c, ToFromInterpValue 'd,
- ToFromInterpValue 'e, ToFromInterpValue 'f =>
- (ToFromInterpValue ('a * 'b * 'c * 'd * 'e * 'f))
- let toInterpValue = tuple6ToInterpValue
- let fromInterpValue = tuple6FromInterpValue
-end
-
-
-let tuple7ToInterpValue (a,b,c,d,e,f,g) =
- V_tuple [toInterpValue a;toInterpValue b;toInterpValue c;toInterpValue d;
- toInterpValue e;toInterpValue f;toInterpValue g]
-let rec tuple7FromInterpValue v = match v with
- | V_tuple [a;b;c;d;e;f;g] ->
- (fromInterpValue a,fromInterpValue b,fromInterpValue c,
- fromInterpValue d,fromInterpValue e,fromInterpValue f,
- fromInterpValue g)
- | V_tuple [v] -> tuple7FromInterpValue v
- | v -> failwith ("fromInterpValue a*b*c*d*e*f*g: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance forall 'a 'b 'c 'd 'e 'f 'g.
- ToFromInterpValue 'a, ToFromInterpValue 'b,
- ToFromInterpValue 'c, ToFromInterpValue 'd,
- ToFromInterpValue 'e, ToFromInterpValue 'f,
- ToFromInterpValue 'g =>
- (ToFromInterpValue ('a * 'b * 'c * 'd * 'e * 'f * 'g))
- let toInterpValue = tuple7ToInterpValue
- let fromInterpValue = tuple7FromInterpValue
-end
-
-
-let tuple8ToInterpValue (a,b,c,d,e,f,g,h) =
- V_tuple [toInterpValue a;toInterpValue b;toInterpValue c;toInterpValue d;
- toInterpValue e;toInterpValue f;toInterpValue g;toInterpValue h]
-let rec tuple8FromInterpValue v = match v with
- | V_tuple [a;b;c;d;e;f;g;h] ->
- (fromInterpValue a,fromInterpValue b,fromInterpValue c,
- fromInterpValue d,fromInterpValue e,fromInterpValue f,
- fromInterpValue g,fromInterpValue h)
- | V_tuple [v] -> tuple8FromInterpValue v
- | v -> failwith ("fromInterpValue a*b*c*d*e*f*g*h: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance forall 'a 'b 'c 'd 'e 'f 'g 'h.
- ToFromInterpValue 'a, ToFromInterpValue 'b,
- ToFromInterpValue 'c, ToFromInterpValue 'd,
- ToFromInterpValue 'e, ToFromInterpValue 'f,
- ToFromInterpValue 'g, ToFromInterpValue 'h =>
- (ToFromInterpValue ('a * 'b * 'c * 'd * 'e * 'f * 'g * 'h))
- let toInterpValue = tuple8ToInterpValue
- let fromInterpValue = tuple8FromInterpValue
-end
-
-
-let tuple9ToInterpValue (a,b,c,d,e,f,g,h,i) =
- V_tuple [toInterpValue a;toInterpValue b;toInterpValue c;toInterpValue d;
- toInterpValue e;toInterpValue f;toInterpValue g;toInterpValue h;
- toInterpValue i]
-let rec tuple9FromInterpValue v = match v with
- | V_tuple [a;b;c;d;e;f;g;h;i] ->
- (fromInterpValue a,fromInterpValue b,fromInterpValue c,
- fromInterpValue d,fromInterpValue e,fromInterpValue f,
- fromInterpValue g,fromInterpValue h,fromInterpValue i)
- | V_tuple [v] -> tuple9FromInterpValue v
- | v -> failwith ("fromInterpValue a*b*c*d*e*f*g*h*i: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance forall 'a 'b 'c 'd 'e 'f 'g 'h 'i.
- ToFromInterpValue 'a, ToFromInterpValue 'b,
- ToFromInterpValue 'c, ToFromInterpValue 'd,
- ToFromInterpValue 'e, ToFromInterpValue 'f,
- ToFromInterpValue 'g, ToFromInterpValue 'h,
- ToFromInterpValue 'i =>
- (ToFromInterpValue ('a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i))
- let toInterpValue = tuple9ToInterpValue
- let fromInterpValue = tuple9FromInterpValue
-end
-
-
-let tuple10ToInterpValue (a,b,c,d,e,f,g,h,i,j) =
- V_tuple [toInterpValue a;toInterpValue b;toInterpValue c;toInterpValue d;
- toInterpValue e;toInterpValue f;toInterpValue g;toInterpValue h;
- toInterpValue i;toInterpValue j;]
-let rec tuple10FromInterpValue v = match v with
- | V_tuple [a;b;c;d;e;f;g;h;i;j] ->
- (fromInterpValue a,fromInterpValue b,fromInterpValue c,
- fromInterpValue d,fromInterpValue e,fromInterpValue f,
- fromInterpValue g,fromInterpValue h,fromInterpValue i,
- fromInterpValue j)
- | V_tuple [v] -> tuple10FromInterpValue v
- | v -> failwith ("fromInterpValue a*b*c*d*e*f*g*h*i*j: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance forall 'a 'b 'c 'd 'e 'f 'g 'h 'i 'j.
- ToFromInterpValue 'a, ToFromInterpValue 'b,
- ToFromInterpValue 'c, ToFromInterpValue 'd,
- ToFromInterpValue 'e, ToFromInterpValue 'f,
- ToFromInterpValue 'g, ToFromInterpValue 'h,
- ToFromInterpValue 'i, ToFromInterpValue 'j =>
- (ToFromInterpValue ('a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j))
- let toInterpValue = tuple10ToInterpValue
- let fromInterpValue = tuple10FromInterpValue
-end
-
-
-let tuple11ToInterpValue (a,b,c,d,e,f,g,h,i,j,k) =
- V_tuple [toInterpValue a;toInterpValue b;toInterpValue c;toInterpValue d;
- toInterpValue e;toInterpValue f;toInterpValue g;toInterpValue h;
- toInterpValue i;toInterpValue j;toInterpValue k;]
-let rec tuple11FromInterpValue v = match v with
- | V_tuple [a;b;c;d;e;f;g;h;i;j;k] ->
- (fromInterpValue a,fromInterpValue b,fromInterpValue c,
- fromInterpValue d,fromInterpValue e,fromInterpValue f,
- fromInterpValue g,fromInterpValue h,fromInterpValue i,
- fromInterpValue j,fromInterpValue k)
- | V_tuple [v] -> tuple11FromInterpValue v
- | v -> failwith ("fromInterpValue a*b*c*d*e*f*g*h*i*j*k: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance forall 'a 'b 'c 'd 'e 'f 'g 'h 'i 'j 'k.
- ToFromInterpValue 'a, ToFromInterpValue 'b,
- ToFromInterpValue 'c, ToFromInterpValue 'd,
- ToFromInterpValue 'e, ToFromInterpValue 'f,
- ToFromInterpValue 'g, ToFromInterpValue 'h,
- ToFromInterpValue 'i, ToFromInterpValue 'j,
- ToFromInterpValue 'k =>
- (ToFromInterpValue ('a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j * 'k))
- let toInterpValue = tuple11ToInterpValue
- let fromInterpValue = tuple11FromInterpValue
-end
-
-
-let tuple12ToInterpValue (a,b,c,d,e,f,g,h,i,j,k,l) =
- V_tuple [toInterpValue a;toInterpValue b;toInterpValue c;toInterpValue d;
- toInterpValue e;toInterpValue f;toInterpValue g;toInterpValue h;
- toInterpValue i;toInterpValue j;toInterpValue k;toInterpValue l;]
-let rec tuple12FromInterpValue v = match v with
- | V_tuple [a;b;c;d;e;f;g;h;i;j;k;l] ->
- (fromInterpValue a,fromInterpValue b,fromInterpValue c,
- fromInterpValue d,fromInterpValue e,fromInterpValue f,
- fromInterpValue g,fromInterpValue h,fromInterpValue i,
- fromInterpValue j,fromInterpValue k,fromInterpValue l)
- | V_tuple [v] -> tuple12FromInterpValue v
- | v -> failwith ("fromInterpValue a*b*c*d*e*f*g*h*i*j*k*l: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance forall 'a 'b 'c 'd 'e 'f 'g 'h 'i 'j 'k 'l.
- ToFromInterpValue 'a, ToFromInterpValue 'b,
- ToFromInterpValue 'c, ToFromInterpValue 'd,
- ToFromInterpValue 'e, ToFromInterpValue 'f,
- ToFromInterpValue 'g, ToFromInterpValue 'h,
- ToFromInterpValue 'i, ToFromInterpValue 'j,
- ToFromInterpValue 'k, ToFromInterpValue 'l =>
- (ToFromInterpValue ('a * 'b * 'c * 'd * 'e * 'f * 'g * 'h * 'i * 'j * 'k * 'l))
- let toInterpValue = tuple12ToInterpValue
- let fromInterpValue = tuple12FromInterpValue
-end
-
-
-let listToInterpValue l = V_list (List.map toInterpValue l)
-let rec listFromInterpValue v = match v with
- | V_list l -> List.map fromInterpValue l
- | V_tuple [v] -> listFromInterpValue v
- | v -> failwith ("fromInterpValue list 'a: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance forall 'a. ToFromInterpValue 'a => (ToFromInterpValue (list 'a))
- let toInterpValue = listToInterpValue
- let fromInterpValue = listFromInterpValue
-end
-
-
-let vectorToInterpValue (Vector vs start direction) =
- V_vector (natFromInteger start) (if direction then IInc else IDec) (List.map toInterpValue vs)
-let rec vectorFromInterpValue v = match v with
- | V_vector start direction vs ->
- Vector (List.map fromInterpValue vs) (integerFromNat start)
- (match direction with | IInc -> true | IDec -> false end)
- | V_vector_sparse start length direction valuemap defaultval ->
- make_indexed_vector
- (List.map (fun (i,v) -> (integerFromNat i,fromInterpValue v)) valuemap)
- (fromInterpValue defaultval)
- (integerFromNat start) (integerFromNat length)
- (match direction with | IInc -> true | IDec -> false end)
- | V_tuple [v] -> vectorFromInterpValue v
- | v -> failwith ("fromInterpValue vector 'a: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance forall 'a. ToFromInterpValue 'a => (ToFromInterpValue (vector 'a))
- let toInterpValue = vectorToInterpValue
- let fromInterpValue = vectorFromInterpValue
-end
-
-(* Here the type information is not accurate: instead of T_id "option" it should
- be T_app (T_id "option") (...), but temporarily we'll do it like this. The
- same thing has to be fixed in pretty_print.ml when we're generating the
- type-class instances. *)
-let maybeToInterpValue = function
- | Nothing -> V_ctor (Id_aux (Id "None") Unknown) (T_id "option") C_Union (V_lit (L_aux L_unit Unknown))
- | Just a -> V_ctor (Id_aux (Id "Some") Unknown) (T_id "option") C_Union (toInterpValue a)
- end
-let rec maybeFromInterpValue v = match v with
- | V_ctor (Id_aux (Id "None") _) _ _ _ -> Nothing
- | V_ctor (Id_aux (Id "Some") _) _ _ v -> Just (fromInterpValue v)
- | V_tuple [v] -> maybeFromInterpValue v
- | v -> failwith ("fromInterpValue maybe 'a: unexpected value. " ^
- Interp.debug_print_value v)
- end
-
-instance forall 'a. ToFromInterpValue 'a => (ToFromInterpValue (maybe 'a))
- let toInterpValue = maybeToInterpValue
- let fromInterpValue = maybeFromInterpValue
-end
-
-
-let read_kindToInterpValue = function
- | Read_plain -> V_ctor (Id_aux (Id "Read_plain") Unknown) (T_id "read_kind") (C_Enum 0) (toInterpValue ())
- | Read_reserve -> V_ctor (Id_aux (Id "Read_reserve") Unknown) (T_id "read_kind") (C_Enum 1) (toInterpValue ())
- | Read_acquire -> V_ctor (Id_aux (Id "Read_acquire") Unknown) (T_id "read_kind") (C_Enum 2) (toInterpValue ())
- | Read_exclusive -> V_ctor (Id_aux (Id "Read_exclusive") Unknown) (T_id "read_kind") (C_Enum 3) (toInterpValue ())
- | Read_exclusive_acquire -> V_ctor (Id_aux (Id "Read_exclusive_acquire") Unknown) (T_id "read_kind") (C_Enum 4) (toInterpValue ())
- | Read_stream -> V_ctor (Id_aux (Id "Read_stream") Unknown) (T_id "read_kind") (C_Enum 5) (toInterpValue ())
- | Read_RISCV_acquire -> V_ctor (Id_aux (Id "Read_RISCV_acquire") Unknown) (T_id "read_kind") (C_Enum 6) (toInterpValue ())
- | Read_RISCV_strong_acquire -> V_ctor (Id_aux (Id "Read_RISCV_strong_acquire") Unknown) (T_id "read_kind") (C_Enum 7) (toInterpValue ())
- | Read_RISCV_reserved -> V_ctor (Id_aux (Id "Read_RISCV_reserved") Unknown) (T_id "read_kind") (C_Enum 8) (toInterpValue ())
- | Read_RISCV_reserved_acquire -> V_ctor (Id_aux (Id "Read_RISCV_reserved_acquire") Unknown) (T_id "read_kind") (C_Enum 9) (toInterpValue ())
- | Read_RISCV_reserved_strong_acquire -> V_ctor (Id_aux (Id "Read_RISCV_reserved_strong_acquire") Unknown) (T_id "read_kind") (C_Enum 10) (toInterpValue ())
- | Read_X86_locked -> V_ctor (Id_aux (Id "Read_X86_locked") Unknown) (T_id "read_kind") (C_Enum 11) (toInterpValue ())
- end
-let rec read_kindFromInterpValue v = match v with
- | V_ctor (Id_aux (Id "Read_plain") _) _ _ v -> Read_plain
- | V_ctor (Id_aux (Id "Read_reserve") _) _ _ v -> Read_reserve
- | V_ctor (Id_aux (Id "Read_acquire") _) _ _ v -> Read_acquire
- | V_ctor (Id_aux (Id "Read_exclusive") _) _ _ v -> Read_exclusive
- | V_ctor (Id_aux (Id "Read_exclusive_acquire") _) _ _ v -> Read_exclusive_acquire
- | V_ctor (Id_aux (Id "Read_stream") _) _ _ v -> Read_stream
- | V_ctor (Id_aux (Id "Read_RISCV_acquire") _) _ _ v -> Read_RISCV_acquire
- | V_ctor (Id_aux (Id "Read_RISCV_strong_acquire") _) _ _ v -> Read_RISCV_strong_acquire
- | V_ctor (Id_aux (Id "Read_RISCV_reserved") _) _ _ v -> Read_RISCV_reserved
- | V_ctor (Id_aux (Id "Read_RISCV_reserved_acquire") _) _ _ v -> Read_RISCV_reserved_acquire
- | V_ctor (Id_aux (Id "Read_RISCV_reserved_strong_acquire") _) _ _ v -> Read_RISCV_reserved_strong_acquire
- | V_ctor (Id_aux (Id "Read_X86_locked") _) _ _ v -> Read_X86_locked
- | V_tuple [v] -> read_kindFromInterpValue v
- | v -> failwith ("fromInterpValue read_kind: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance (ToFromInterpValue read_kind)
- let toInterpValue = read_kindToInterpValue
- let fromInterpValue = read_kindFromInterpValue
-end
-
-
-let write_kindToInterpValue = function
- | Write_plain -> V_ctor (Id_aux (Id "Write_plain") Unknown) (T_id "write_kind") (C_Enum 0) (toInterpValue ())
- | Write_conditional -> V_ctor (Id_aux (Id "Write_conditional") Unknown) (T_id "write_kind") (C_Enum 1) (toInterpValue ())
- | Write_release -> V_ctor (Id_aux (Id "Write_release") Unknown) (T_id "write_kind") (C_Enum 2) (toInterpValue ())
- | Write_exclusive -> V_ctor (Id_aux (Id "Write_exclusive") Unknown) (T_id "write_kind") (C_Enum 3) (toInterpValue ())
- | Write_exclusive_release -> V_ctor (Id_aux (Id "Write_exclusive_release") Unknown) (T_id "write_kind") (C_Enum 4) (toInterpValue ())
- | Write_RISCV_release -> V_ctor (Id_aux (Id "Write_RISCV_release") Unknown) (T_id "write_kind") (C_Enum 5) (toInterpValue ())
- | Write_RISCV_strong_release -> V_ctor (Id_aux (Id "Write_RISCV_strong_release") Unknown) (T_id "write_kind") (C_Enum 6) (toInterpValue ())
- | Write_RISCV_conditional -> V_ctor (Id_aux (Id "Write_RISCV_conditional") Unknown) (T_id "write_kind") (C_Enum 7) (toInterpValue ())
- | Write_RISCV_conditional_release -> V_ctor (Id_aux (Id "Write_RISCV_conditional_release") Unknown) (T_id "write_kind") (C_Enum 8) (toInterpValue ())
- | Write_RISCV_conditional_strong_release -> V_ctor (Id_aux (Id "Write_RISCV_conditional_strong_release") Unknown) (T_id "write_kind") (C_Enum 9) (toInterpValue ())
- | Write_X86_locked -> V_ctor (Id_aux (Id "Write_X86_locked") Unknown) (T_id "write_kind") (C_Enum 10) (toInterpValue ())
- end
-let rec write_kindFromInterpValue v = match v with
- | V_ctor (Id_aux (Id "Write_plain") _) _ _ v -> Write_plain
- | V_ctor (Id_aux (Id "Write_conditional") _) _ _ v -> Write_conditional
- | V_ctor (Id_aux (Id "Write_release") _) _ _ v -> Write_release
- | V_ctor (Id_aux (Id "Write_exclusive") _) _ _ v -> Write_exclusive
- | V_ctor (Id_aux (Id "Write_exclusive_release") _) _ _ v -> Write_exclusive_release
- | V_ctor (Id_aux (Id "Write_RISCV_release") _) _ _ v -> Write_RISCV_release
- | V_ctor (Id_aux (Id "Write_RISCV_strong_release") _) _ _ v -> Write_RISCV_strong_release
- | V_ctor (Id_aux (Id "Write_RISCV_conditional") _) _ _ v -> Write_RISCV_conditional
- | V_ctor (Id_aux (Id "Write_RISCV_conditional_release") _) _ _ v -> Write_RISCV_conditional_release
- | V_ctor (Id_aux (Id "Write_RISCV_conditional_strong_release") _) _ _ v -> Write_RISCV_conditional_strong_release
- | V_ctor (Id_aux (Id "Write_X86_locked") _) _ _ v -> Write_X86_locked
- | V_tuple [v] -> write_kindFromInterpValue v
- | v -> failwith ("fromInterpValue write_kind: unexpected value " ^
- Interp.debug_print_value v)
- end
-instance (ToFromInterpValue write_kind)
- let toInterpValue = write_kindToInterpValue
- let fromInterpValue = write_kindFromInterpValue
-end
-
-
-let a64_barrier_domainToInterpValue = function
- | A64_FullShare ->
- V_ctor (Id_aux (Id "A64_FullShare") Unknown) (T_id "a64_barrier_domain") (C_Enum 0) (toInterpValue ())
- | A64_InnerShare ->
- V_ctor (Id_aux (Id "A64_InnerShare") Unknown) (T_id "a64_barrier_domain") (C_Enum 1) (toInterpValue ())
- | A64_OuterShare ->
- V_ctor (Id_aux (Id "A64_OuterShare") Unknown) (T_id "a64_barrier_domain") (C_Enum 2) (toInterpValue ())
- | A64_NonShare ->
- V_ctor (Id_aux (Id "A64_NonShare") Unknown) (T_id "a64_barrier_domain") (C_Enum 3) (toInterpValue ())
-end
-let rec a64_barrier_domainFromInterpValue v = match v with
- | V_ctor (Id_aux (Id "A64_FullShare") _) _ _ v -> A64_FullShare
- | V_ctor (Id_aux (Id "A64_InnerShare") _) _ _ v -> A64_InnerShare
- | V_ctor (Id_aux (Id "A64_OuterShare") _) _ _ v -> A64_OuterShare
- | V_ctor (Id_aux (Id "A64_NonShare") _) _ _ v -> A64_NonShare
- | V_tuple [v] -> a64_barrier_domainFromInterpValue v
- | v -> failwith ("fromInterpValue a64_barrier_domain: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance (ToFromInterpValue a64_barrier_domain)
- let toInterpValue = a64_barrier_domainToInterpValue
- let fromInterpValue = a64_barrier_domainFromInterpValue
-end
-
-let a64_barrier_typeToInterpValue = function
- | A64_barrier_all ->
- V_ctor (Id_aux (Id "A64_barrier_all") Unknown) (T_id "a64_barrier_type") (C_Enum 0) (toInterpValue ())
- | A64_barrier_LD ->
- V_ctor (Id_aux (Id "A64_barrier_LD") Unknown) (T_id "a64_barrier_type") (C_Enum 1) (toInterpValue ())
- | A64_barrier_ST ->
- V_ctor (Id_aux (Id "A64_barrier_ST") Unknown) (T_id "a64_barrier_type") (C_Enum 2) (toInterpValue ())
-end
-let rec a64_barrier_typeFromInterpValue v = match v with
- | V_ctor (Id_aux (Id "A64_barrier_all") _) _ _ v -> A64_barrier_all
- | V_ctor (Id_aux (Id "A64_barrier_LD") _) _ _ v -> A64_barrier_LD
- | V_ctor (Id_aux (Id "A64_barrier_ST") _) _ _ v -> A64_barrier_ST
- | V_tuple [v] -> a64_barrier_typeFromInterpValue v
- | v -> failwith ("fromInterpValue a64_barrier_type: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance (ToFromInterpValue a64_barrier_type)
- let toInterpValue = a64_barrier_typeToInterpValue
- let fromInterpValue = a64_barrier_typeFromInterpValue
-end
-
-
-let barrier_kindToInterpValue = function
- | Barrier_Sync -> V_ctor (Id_aux (Id "Barrier_Sync") Unknown) (T_id "barrier_kind") (C_Enum 0) (toInterpValue ())
- | Barrier_LwSync -> V_ctor (Id_aux (Id "Barrier_LwSync") Unknown) (T_id "barrier_kind") (C_Enum 1) (toInterpValue ())
- | Barrier_Eieio -> V_ctor (Id_aux (Id "Barrier_Eieio") Unknown) (T_id "barrier_kind") (C_Enum 2) (toInterpValue ())
- | Barrier_Isync -> V_ctor (Id_aux (Id "Barrier_Isync") Unknown) (T_id "barrier_kind") (C_Enum 3) (toInterpValue ())
- | Barrier_DMB (dom,typ) ->
- V_ctor (Id_aux (Id "Barrier_DMB") Unknown) (T_id "barrier_kind") C_Union (toInterpValue (dom, typ))
- | Barrier_DSB (dom,typ) ->
- V_ctor (Id_aux (Id "Barrier_DSB") Unknown) (T_id "barrier_kind") C_Union (toInterpValue (dom, typ))
- | Barrier_ISB -> V_ctor (Id_aux (Id "Barrier_ISB") Unknown) (T_id "barrier_kind") (C_Enum 10) (toInterpValue ())
- | Barrier_TM_COMMIT -> V_ctor (Id_aux (Id "Barrier_TM_COMMIT") Unknown) (T_id "barrier_kind") (C_Enum 11) (toInterpValue ())
- | Barrier_MIPS_SYNC -> V_ctor (Id_aux (Id "Barrier_MIPS_SYNC") Unknown) (T_id "barrier_kind") (C_Enum 12) (toInterpValue ())
- | Barrier_RISCV_rw_rw -> V_ctor (Id_aux (Id "Barrier_RISCV_rw_rw") Unknown) (T_id "barrier_kind") (C_Enum 13) (toInterpValue ())
- | Barrier_RISCV_r_rw -> V_ctor (Id_aux (Id "Barrier_RISCV_r_rw") Unknown) (T_id "barrier_kind") (C_Enum 14) (toInterpValue ())
- | Barrier_RISCV_r_r -> V_ctor (Id_aux (Id "Barrier_RISCV_r_r") Unknown) (T_id "barrier_kind") (C_Enum 15) (toInterpValue ())
- | Barrier_RISCV_rw_w -> V_ctor (Id_aux (Id "Barrier_RISCV_rw_w") Unknown) (T_id "barrier_kind") (C_Enum 16) (toInterpValue ())
- | Barrier_RISCV_w_w -> V_ctor (Id_aux (Id "Barrier_RISCV_w_w") Unknown) (T_id "barrier_kind") (C_Enum 17) (toInterpValue ())
- | Barrier_RISCV_i -> V_ctor (Id_aux (Id "Barrier_RISCV_i") Unknown) (T_id "barrier_kind") (C_Enum 18) (toInterpValue ())
- | Barrier_x86_MFENCE -> V_ctor (Id_aux (Id "Barrier_x86_MFENCE") Unknown) (T_id "barrier_kind") (C_Enum 19) (toInterpValue ())
- end
-let rec barrier_kindFromInterpValue v = match v with
- | V_ctor (Id_aux (Id "Barrier_Sync") _) _ _ v -> Barrier_Sync
- | V_ctor (Id_aux (Id "Barrier_LwSync") _) _ _ v -> Barrier_LwSync
- | V_ctor (Id_aux (Id "Barrier_Eieio") _) _ _ v -> Barrier_Eieio
- | V_ctor (Id_aux (Id "Barrier_Isync") _) _ _ v -> Barrier_Isync
- | V_ctor (Id_aux (Id "Barrier_DMB") _) _ _ v ->
- let (dom, typ) = fromInterpValue v in
- Barrier_DMB (dom,typ)
- | V_ctor (Id_aux (Id "Barrier_DSB") _) _ _ v ->
- let (dom, typ) = fromInterpValue v in
- Barrier_DSB (dom,typ)
- | V_ctor (Id_aux (Id "Barrier_ISB") _) _ _ v -> Barrier_ISB
- | V_ctor (Id_aux (Id "Barrier_TM_COMMIT") _) _ _ v -> Barrier_TM_COMMIT
- | V_ctor (Id_aux (Id "Barrier_MIPS_SYNC") _) _ _ v -> Barrier_MIPS_SYNC
- | V_ctor (Id_aux (Id "Barrier_RISCV_rw_rw") _) _ _ v -> Barrier_RISCV_rw_rw
- | V_ctor (Id_aux (Id "Barrier_RISCV_r_rw") _) _ _ v -> Barrier_RISCV_r_rw
- | V_ctor (Id_aux (Id "Barrier_RISCV_r_r") _) _ _ v -> Barrier_RISCV_r_r
- | V_ctor (Id_aux (Id "Barrier_RISCV_rw_w") _) _ _ v -> Barrier_RISCV_rw_w
- | V_ctor (Id_aux (Id "Barrier_RISCV_w_w") _) _ _ v -> Barrier_RISCV_w_w
- | V_ctor (Id_aux (Id "Barrier_RISCV_i") _) _ _ v -> Barrier_RISCV_i
- | V_ctor (Id_aux (Id "Barrier_x86_MFENCE") _) _ _ v -> Barrier_x86_MFENCE
- | V_tuple [v] -> barrier_kindFromInterpValue v
- | v -> failwith ("fromInterpValue barrier_kind: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance (ToFromInterpValue barrier_kind)
- let toInterpValue = barrier_kindToInterpValue
- let fromInterpValue = barrier_kindFromInterpValue
-end
-
-
-let trans_kindToInterpValue = function
- | Transaction_start -> V_ctor (Id_aux (Id "Transaction_start") Unknown) (T_id "trans_kind") (C_Enum 0) (toInterpValue ())
- | Transaction_commit -> V_ctor (Id_aux (Id "Transaction_commit") Unknown) (T_id "trans_kind") (C_Enum 1) (toInterpValue ())
- | Transaction_abort -> V_ctor (Id_aux (Id "Transaction_abort") Unknown) (T_id "trans_kind") (C_Enum 2) (toInterpValue ())
- end
-let rec trans_kindFromInterpValue v = match v with
- | V_ctor (Id_aux (Id "Transaction_start") _) _ _ v -> Transaction_start
- | V_ctor (Id_aux (Id "Transaction_commit") _) _ _ v -> Transaction_commit
- | V_ctor (Id_aux (Id "Transaction_abort") _) _ _ v -> Transaction_abort
- | V_tuple [v] -> trans_kindFromInterpValue v
- | v -> failwith ("fromInterpValue trans_kind: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance (ToFromInterpValue trans_kind)
- let toInterpValue = trans_kindToInterpValue
- let fromInterpValue = trans_kindFromInterpValue
-end
-
-
-let instruction_kindToInterpValue = function
- | IK_barrier v -> V_ctor (Id_aux (Id "IK_barrier") Unknown) (T_id "instruction_kind") C_Union (toInterpValue v)
- | IK_mem_read v -> V_ctor (Id_aux (Id "IK_mem_read") Unknown) (T_id "instruction_kind") C_Union (toInterpValue v)
- | IK_mem_write v -> V_ctor (Id_aux (Id "IK_mem_write") Unknown) (T_id "instruction_kind") C_Union (toInterpValue v)
- | IK_mem_rmw v -> V_ctor (Id_aux (Id "IK_mem_rmw") Unknown) (T_id "instruction_kind") C_Union (toInterpValue v)
- | IK_branch -> V_ctor (Id_aux (Id "IK_branch") Unknown) (T_id "instruction_kind") C_Union (toInterpValue ())
- | IK_trans v -> V_ctor (Id_aux (Id "IK_trans") Unknown) (T_id "instruction_kind") C_Union (toInterpValue v)
- | IK_simple -> V_ctor (Id_aux (Id "IK_simple") Unknown) (T_id "instruction_kind") C_Union (toInterpValue ())
- end
-let rec instruction_kindFromInterpValue v = match v with
- | V_ctor (Id_aux (Id "IK_barrier") _) _ _ v -> IK_barrier (fromInterpValue v)
- | V_ctor (Id_aux (Id "IK_mem_read") _) _ _ v -> IK_mem_read (fromInterpValue v)
- | V_ctor (Id_aux (Id "IK_mem_write") _) _ _ v -> IK_mem_write (fromInterpValue v)
- | V_ctor (Id_aux (Id "IK_mem_rmw") _) _ _ v -> IK_mem_rmw (fromInterpValue v)
- | V_ctor (Id_aux (Id "IK_branch") _) _ _ v -> IK_branch
- | V_ctor (Id_aux (Id "IK_trans") _) _ _ v -> IK_trans (fromInterpValue v)
- | V_ctor (Id_aux (Id "IK_simple") _) _ _ v -> IK_simple
- | V_tuple [v] -> instruction_kindFromInterpValue v
- | v -> failwith ("fromInterpValue instruction_kind: unexpected value. " ^
- Interp.debug_print_value v)
- end
-instance (ToFromInterpValue instruction_kind)
- let toInterpValue = instruction_kindToInterpValue
- let fromInterpValue = instruction_kindFromInterpValue
-end
-
-let regfpToInterpValue = function
- | RFull v -> Interp_ast.V_ctor (Interp_ast.Id_aux (Interp_ast.Id "RFull") Interp_ast.Unknown) (Interp_ast.T_id "regfp") Interp_ast.C_Union (toInterpValue v)
- | RSlice v -> Interp_ast.V_ctor (Interp_ast.Id_aux (Interp_ast.Id "RSlice") Interp_ast.Unknown) (Interp_ast.T_id "regfp") Interp_ast.C_Union (toInterpValue v)
- | RSliceBit v -> Interp_ast.V_ctor (Interp_ast.Id_aux (Interp_ast.Id "RSliceBit") Interp_ast.Unknown) (Interp_ast.T_id "regfp") Interp_ast.C_Union (toInterpValue v)
- | RField v -> Interp_ast.V_ctor (Interp_ast.Id_aux (Interp_ast.Id "RField") Interp_ast.Unknown) (Interp_ast.T_id "regfp") Interp_ast.C_Union (toInterpValue v)
- end
-
-let rec regfpFromInterpValue v = match v with
- | Interp_ast.V_ctor (Interp_ast.Id_aux (Interp_ast.Id "RFull") _) _ _ v -> RFull (fromInterpValue v)
- | Interp_ast.V_ctor (Interp_ast.Id_aux (Interp_ast.Id "RSlice") _) _ _ v -> RSlice (fromInterpValue v)
- | Interp_ast.V_ctor (Interp_ast.Id_aux (Interp_ast.Id "RSliceBit") _) _ _ v -> RSliceBit (fromInterpValue v)
- | Interp_ast.V_ctor (Interp_ast.Id_aux (Interp_ast.Id "RField") _) _ _ v -> RField (fromInterpValue v)
- | Interp_ast.V_tuple [v] -> regfpFromInterpValue v
- | v -> failwith ("fromInterpValue regfp: unexpected value. " ^ Interp.debug_print_value v)
- end
-
-instance (ToFromInterpValue regfp)
- let toInterpValue = regfpToInterpValue
- let fromInterpValue = regfpFromInterpValue
-end
-
-
-
-
diff --git a/src/gen_lib/0.11/sail2_instr_kinds.lem b/src/gen_lib/0.11/sail2_instr_kinds.lem
deleted file mode 100644
index 3d238676..00000000
--- a/src/gen_lib/0.11/sail2_instr_kinds.lem
+++ /dev/null
@@ -1,306 +0,0 @@
-(*========================================================================*)
-(* Sail *)
-(* *)
-(* Copyright (c) 2013-2017 *)
-(* Kathyrn Gray *)
-(* Shaked Flur *)
-(* Stephen Kell *)
-(* Gabriel Kerneis *)
-(* Robert Norton-Wright *)
-(* Christopher Pulte *)
-(* Peter Sewell *)
-(* Alasdair Armstrong *)
-(* Brian Campbell *)
-(* Thomas Bauereiss *)
-(* Anthony Fox *)
-(* Jon French *)
-(* Dominic Mulligan *)
-(* Stephen Kell *)
-(* Mark Wassell *)
-(* *)
-(* All rights reserved. *)
-(* *)
-(* This software was developed by the University of Cambridge Computer *)
-(* Laboratory as part of the Rigorous Engineering of Mainstream Systems *)
-(* (REMS) project, funded by EPSRC grant EP/K008528/1. *)
-(* *)
-(* Redistribution and use in source and binary forms, with or without *)
-(* modification, are permitted provided that the following conditions *)
-(* are met: *)
-(* 1. Redistributions of source code must retain the above copyright *)
-(* notice, this list of conditions and the following disclaimer. *)
-(* 2. Redistributions in binary form must reproduce the above copyright *)
-(* notice, this list of conditions and the following disclaimer in *)
-(* the documentation and/or other materials provided with the *)
-(* distribution. *)
-(* *)
-(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
-(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
-(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
-(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
-(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
-(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
-(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
-(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
-(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
-(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
-(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
-(* SUCH DAMAGE. *)
-(*========================================================================*)
-
-open import Pervasives_extra
-
-
-class ( EnumerationType 'a )
- val toNat : 'a -> nat
-end
-
-
-val enumeration_typeCompare : forall 'a. EnumerationType 'a => 'a -> 'a -> ordering
-let ~{ocaml} enumeration_typeCompare e1 e2 =
- compare (toNat e1) (toNat e2)
-let inline {ocaml} enumeration_typeCompare = defaultCompare
-
-
-default_instance forall 'a. EnumerationType 'a => (Ord 'a)
- let compare = enumeration_typeCompare
- let (<) r1 r2 = (enumeration_typeCompare r1 r2) = LT
- let (<=) r1 r2 = (enumeration_typeCompare r1 r2) <> GT
- let (>) r1 r2 = (enumeration_typeCompare r1 r2) = GT
- let (>=) r1 r2 = (enumeration_typeCompare r1 r2) <> LT
-end
-
-
-(* Data structures for building up instructions *)
-
-(* careful: changes in the read/write/barrier kinds have to be
- reflected in deep_shallow_convert *)
-type read_kind =
- (* common reads *)
- | Read_plain
- (* Power reads *)
- | Read_reserve
- (* AArch64 reads *)
- | Read_acquire | Read_exclusive | Read_exclusive_acquire | Read_stream
- (* RISC-V reads *)
- | Read_RISCV_acquire | Read_RISCV_strong_acquire
- | Read_RISCV_reserved | Read_RISCV_reserved_acquire
- | Read_RISCV_reserved_strong_acquire
- (* x86 reads *)
- | Read_X86_locked (* the read part of a lock'd instruction (rmw) *)
-
-instance (Show read_kind)
- let show = function
- | Read_plain -> "Read_plain"
- | Read_reserve -> "Read_reserve"
- | Read_acquire -> "Read_acquire"
- | Read_exclusive -> "Read_exclusive"
- | Read_exclusive_acquire -> "Read_exclusive_acquire"
- | Read_stream -> "Read_stream"
- | Read_RISCV_acquire -> "Read_RISCV_acquire"
- | Read_RISCV_strong_acquire -> "Read_RISCV_strong_acquire"
- | Read_RISCV_reserved -> "Read_RISCV_reserved"
- | Read_RISCV_reserved_acquire -> "Read_RISCV_reserved_acquire"
- | Read_RISCV_reserved_strong_acquire -> "Read_RISCV_reserved_strong_acquire"
- | Read_X86_locked -> "Read_X86_locked"
- end
-end
-
-type write_kind =
- (* common writes *)
- | Write_plain
- (* Power writes *)
- | Write_conditional
- (* AArch64 writes *)
- | Write_release | Write_exclusive | Write_exclusive_release
- (* RISC-V *)
- | Write_RISCV_release | Write_RISCV_strong_release
- | Write_RISCV_conditional | Write_RISCV_conditional_release
- | Write_RISCV_conditional_strong_release
- (* x86 writes *)
- | Write_X86_locked (* the write part of a lock'd instruction (rmw) *)
-
-instance (Show write_kind)
- let show = function
- | Write_plain -> "Write_plain"
- | Write_conditional -> "Write_conditional"
- | Write_release -> "Write_release"
- | Write_exclusive -> "Write_exclusive"
- | Write_exclusive_release -> "Write_exclusive_release"
- | Write_RISCV_release -> "Write_RISCV_release"
- | Write_RISCV_strong_release -> "Write_RISCV_strong_release"
- | Write_RISCV_conditional -> "Write_RISCV_conditional"
- | Write_RISCV_conditional_release -> "Write_RISCV_conditional_release"
- | Write_RISCV_conditional_strong_release -> "Write_RISCV_conditional_strong_release"
- | Write_X86_locked -> "Write_X86_locked"
- end
-end
-
-type barrier_kind =
- (* Power barriers *)
- Barrier_Sync | Barrier_LwSync | Barrier_Eieio | Barrier_Isync
- (* AArch64 barriers *)
- | Barrier_DMB | Barrier_DMB_ST | Barrier_DMB_LD | Barrier_DSB
- | Barrier_DSB_ST | Barrier_DSB_LD | Barrier_ISB
- | Barrier_TM_COMMIT
- (* MIPS barriers *)
- | Barrier_MIPS_SYNC
- (* RISC-V barriers *)
- | Barrier_RISCV_rw_rw
- | Barrier_RISCV_r_rw
- | Barrier_RISCV_r_r
- | Barrier_RISCV_rw_w
- | Barrier_RISCV_w_w
- | Barrier_RISCV_w_rw
- | Barrier_RISCV_rw_r
- | Barrier_RISCV_r_w
- | Barrier_RISCV_w_r
- | Barrier_RISCV_i
- (* X86 *)
- | Barrier_x86_MFENCE
-
-
-instance (Show barrier_kind)
- let show = function
- | Barrier_Sync -> "Barrier_Sync"
- | Barrier_LwSync -> "Barrier_LwSync"
- | Barrier_Eieio -> "Barrier_Eieio"
- | Barrier_Isync -> "Barrier_Isync"
- | Barrier_DMB -> "Barrier_DMB"
- | Barrier_DMB_ST -> "Barrier_DMB_ST"
- | Barrier_DMB_LD -> "Barrier_DMB_LD"
- | Barrier_DSB -> "Barrier_DSB"
- | Barrier_DSB_ST -> "Barrier_DSB_ST"
- | Barrier_DSB_LD -> "Barrier_DSB_LD"
- | Barrier_ISB -> "Barrier_ISB"
- | Barrier_TM_COMMIT -> "Barrier_TM_COMMIT"
- | Barrier_MIPS_SYNC -> "Barrier_MIPS_SYNC"
- | Barrier_RISCV_rw_rw -> "Barrier_RISCV_rw_rw"
- | Barrier_RISCV_r_rw -> "Barrier_RISCV_r_rw"
- | Barrier_RISCV_r_r -> "Barrier_RISCV_r_r"
- | Barrier_RISCV_rw_w -> "Barrier_RISCV_rw_w"
- | Barrier_RISCV_w_w -> "Barrier_RISCV_w_w"
- | Barrier_RISCV_w_rw -> "Barrier_RISCV_w_rw"
- | Barrier_RISCV_rw_r -> "Barrier_RISCV_rw_r"
- | Barrier_RISCV_r_w -> "Barrier_RISCV_r_w"
- | Barrier_RISCV_w_r -> "Barrier_RISCV_w_r"
- | Barrier_RISCV_i -> "Barrier_RISCV_i"
- | Barrier_x86_MFENCE -> "Barrier_x86_MFENCE"
- end
-end
-
-type trans_kind =
- (* AArch64 *)
- | Transaction_start | Transaction_commit | Transaction_abort
-
-instance (Show trans_kind)
- let show = function
- | Transaction_start -> "Transaction_start"
- | Transaction_commit -> "Transaction_commit"
- | Transaction_abort -> "Transaction_abort"
- end
-end
-
-type instruction_kind =
- | IK_barrier of barrier_kind
- | IK_mem_read of read_kind
- | IK_mem_write of write_kind
- | IK_mem_rmw of (read_kind * write_kind)
- | IK_branch of unit(* this includes conditional-branch (multiple nias, none of which is NIA_indirect_address),
- indirect/computed-branch (single nia of kind NIA_indirect_address)
- and branch/jump (single nia of kind NIA_concrete_address) *)
- | IK_trans of trans_kind
- | IK_simple of unit
-
-
-instance (Show instruction_kind)
- let show = function
- | IK_barrier barrier_kind -> "IK_barrier " ^ (show barrier_kind)
- | IK_mem_read read_kind -> "IK_mem_read " ^ (show read_kind)
- | IK_mem_write write_kind -> "IK_mem_write " ^ (show write_kind)
- | IK_mem_rmw (r, w) -> "IK_mem_rmw " ^ (show r) ^ " " ^ (show w)
- | IK_branch () -> "IK_branch"
- | IK_trans trans_kind -> "IK_trans " ^ (show trans_kind)
- | IK_simple () -> "IK_simple"
- end
-end
-
-
-let read_is_exclusive = function
- | Read_plain -> false
- | Read_reserve -> true
- | Read_acquire -> false
- | Read_exclusive -> true
- | Read_exclusive_acquire -> true
- | Read_stream -> false
- | Read_RISCV_acquire -> false
- | Read_RISCV_strong_acquire -> false
- | Read_RISCV_reserved -> true
- | Read_RISCV_reserved_acquire -> true
- | Read_RISCV_reserved_strong_acquire -> true
- | Read_X86_locked -> true
-end
-
-
-
-instance (EnumerationType read_kind)
- let toNat = function
- | Read_plain -> 0
- | Read_reserve -> 1
- | Read_acquire -> 2
- | Read_exclusive -> 3
- | Read_exclusive_acquire -> 4
- | Read_stream -> 5
- | Read_RISCV_acquire -> 6
- | Read_RISCV_strong_acquire -> 7
- | Read_RISCV_reserved -> 8
- | Read_RISCV_reserved_acquire -> 9
- | Read_RISCV_reserved_strong_acquire -> 10
- | Read_X86_locked -> 11
- end
-end
-
-instance (EnumerationType write_kind)
- let toNat = function
- | Write_plain -> 0
- | Write_conditional -> 1
- | Write_release -> 2
- | Write_exclusive -> 3
- | Write_exclusive_release -> 4
- | Write_RISCV_release -> 5
- | Write_RISCV_strong_release -> 6
- | Write_RISCV_conditional -> 7
- | Write_RISCV_conditional_release -> 8
- | Write_RISCV_conditional_strong_release -> 9
- | Write_X86_locked -> 10
- end
-end
-
-instance (EnumerationType barrier_kind)
- let toNat = function
- | Barrier_Sync -> 0
- | Barrier_LwSync -> 1
- | Barrier_Eieio ->2
- | Barrier_Isync -> 3
- | Barrier_DMB -> 4
- | Barrier_DMB_ST -> 5
- | Barrier_DMB_LD -> 6
- | Barrier_DSB -> 7
- | Barrier_DSB_ST -> 8
- | Barrier_DSB_LD -> 9
- | Barrier_ISB -> 10
- | Barrier_TM_COMMIT -> 11
- | Barrier_MIPS_SYNC -> 12
- | Barrier_RISCV_rw_rw -> 13
- | Barrier_RISCV_r_rw -> 14
- | Barrier_RISCV_r_r -> 15
- | Barrier_RISCV_rw_w -> 16
- | Barrier_RISCV_w_w -> 17
- | Barrier_RISCV_w_rw -> 18
- | Barrier_RISCV_rw_r -> 19
- | Barrier_RISCV_r_w -> 20
- | Barrier_RISCV_w_r -> 21
- | Barrier_RISCV_i -> 22
- | Barrier_x86_MFENCE -> 23
- end
-end
diff --git a/src/gen_lib/0.11/sail2_operators.lem b/src/gen_lib/0.11/sail2_operators.lem
deleted file mode 100644
index 43a9812e..00000000
--- a/src/gen_lib/0.11/sail2_operators.lem
+++ /dev/null
@@ -1,207 +0,0 @@
-open import Pervasives_extra
-open import Machine_word
-open import Sail2_values
-
-(*** Bit vector operations *)
-
-val concat_bv : forall 'a 'b. Bitvector 'a, Bitvector 'b => 'a -> 'b -> list bitU
-let concat_bv l r = (bits_of l ++ bits_of r)
-
-val cons_bv : forall 'a. Bitvector 'a => bitU -> 'a -> list bitU
-let cons_bv b v = b :: bits_of v
-
-val cast_unit_bv : bitU -> list bitU
-let cast_unit_bv b = [b]
-
-val bv_of_bit : integer -> bitU -> list bitU
-let bv_of_bit len b = extz_bits len [b]
-
-let most_significant v = match bits_of v with
- | b :: _ -> b
- | _ -> B0 (* Treat empty bitvector as all zeros *)
- end
-
-let get_max_representable_in sign (n : integer) : integer =
- if (n = 64) then match sign with | true -> max_64 | false -> max_64u end
- else if (n=32) then match sign with | true -> max_32 | false -> max_32u end
- else if (n=8) then max_8
- else if (n=5) then max_5
- else match sign with | true -> integerPow 2 ((natFromInteger n) -1)
- | false -> integerPow 2 (natFromInteger n)
- end
-
-let get_min_representable_in _ (n : integer) : integer =
- if n = 64 then min_64
- else if n = 32 then min_32
- else if n = 8 then min_8
- else if n = 5 then min_5
- else 0 - (integerPow 2 (natFromInteger n))
-
-val arith_op_bv_int : forall 'a 'b. Bitvector 'a =>
- (integer -> integer -> integer) -> bool -> 'a -> integer -> 'a
-let arith_op_bv_int op sign l r =
- let r' = of_int (length l) r in
- arith_op_bv op sign l r'
-
-val arith_op_int_bv : forall 'a 'b. Bitvector 'a =>
- (integer -> integer -> integer) -> bool -> integer -> 'a -> 'a
-let arith_op_int_bv op sign l r =
- let l' = of_int (length r) l in
- arith_op_bv op sign l' r
-
-let arith_op_bv_bool op sign l r = arith_op_bv_int op sign l (if r then 1 else 0)
-let arith_op_bv_bit op sign l r = Maybe.map (arith_op_bv_bool op sign l) (bool_of_bitU r)
-
-(* TODO (or just omit and define it per spec if needed)
-val arith_op_overflow_bv : forall 'a. Bitvector 'a =>
- (integer -> integer -> integer) -> bool -> integer -> 'a -> 'a -> (list bitU * bitU * bitU)
-let arith_op_overflow_bv op sign size l r =
- let len = length l in
- let act_size = len * size in
- match (int_of_bv sign l, int_of_bv sign r, int_of_bv false l, int_of_bv false r) with
- | (Just l_sign, Just r_sign, Just l_unsign, Just r_unsign) ->
- let n = op l_sign r_sign in
- let n_unsign = op l_unsign r_unsign in
- let correct_size = of_int act_size n in
- let one_more_size_u = bits_of_int (act_size + 1) n_unsign in
- let overflow =
- if n <= get_max_representable_in sign len &&
- n >= get_min_representable_in sign len
- then B0 else B1 in
- let c_out = most_significant one_more_size_u in
- (correct_size,overflow,c_out)
- | (_, _, _, _) ->
- (repeat [BU] act_size, BU, BU)
- end
-
-let add_overflow_bv = arith_op_overflow_bv integerAdd false 1
-let adds_overflow_bv = arith_op_overflow_bv integerAdd true 1
-let sub_overflow_bv = arith_op_overflow_bv integerMinus false 1
-let subs_overflow_bv = arith_op_overflow_bv integerMinus true 1
-let mult_overflow_bv = arith_op_overflow_bv integerMult false 2
-let mults_overflow_bv = arith_op_overflow_bv integerMult true 2
-
-val arith_op_overflow_bv_bit : forall 'a. Bitvector 'a =>
- (integer -> integer -> integer) -> bool -> integer -> 'a -> bitU -> (list bitU * bitU * bitU)
-let arith_op_overflow_bv_bit op sign size l r_bit =
- let act_size = length l * size in
- match (int_of_bv sign l, int_of_bv false l, r_bit = BU) with
- | (Just l', Just l_u, false) ->
- let (n, nu, changed) = match r_bit with
- | B1 -> (op l' 1, op l_u 1, true)
- | B0 -> (l', l_u, false)
- | BU -> (* unreachable due to check above *)
- failwith "arith_op_overflow_bv_bit applied to undefined bit"
- end in
- let correct_size = of_int act_size n in
- let one_larger = bits_of_int (act_size + 1) nu in
- let overflow =
- if changed
- then
- if n <= get_max_representable_in sign act_size && n >= get_min_representable_in sign act_size
- then B0 else B1
- else B0 in
- (correct_size, overflow, most_significant one_larger)
- | (_, _, _) ->
- (repeat [BU] act_size, BU, BU)
- end
-
-let add_overflow_bv_bit = arith_op_overflow_bv_bit integerAdd false 1
-let adds_overflow_bv_bit = arith_op_overflow_bv_bit integerAdd true 1
-let sub_overflow_bv_bit = arith_op_overflow_bv_bit integerMinus false 1
-let subs_overflow_bv_bit = arith_op_overflow_bv_bit integerMinus true 1*)
-
-type shift = LL_shift | RR_shift | RR_shift_arith | LL_rot | RR_rot
-
-let invert_shift = function
- | LL_shift -> RR_shift
- | RR_shift -> LL_shift
- | RR_shift_arith -> LL_shift
- | LL_rot -> RR_rot
- | RR_rot -> LL_rot
-end
-
-val shift_op_bv : forall 'a. Bitvector 'a => shift -> 'a -> integer -> list bitU
-let shift_op_bv op v n =
- let v = bits_of v in
- if n = 0 then v else
- let (op, n) = if n > 0 then (op, n) else (invert_shift op, ~n) in
- match op with
- | LL_shift ->
- subrange_list true v n (length v - 1) ++ repeat [B0] n
- | RR_shift ->
- repeat [B0] n ++ subrange_list true v 0 (length v - n - 1)
- | RR_shift_arith ->
- repeat [most_significant v] n ++ subrange_list true v 0 (length v - n - 1)
- | LL_rot ->
- subrange_list true v n (length v - 1) ++ subrange_list true v 0 (n - 1)
- | RR_rot ->
- subrange_list false v 0 (n - 1) ++ subrange_list false v n (length v - 1)
- end
-
-let shiftl_bv = shift_op_bv LL_shift (*"<<"*)
-let shiftr_bv = shift_op_bv RR_shift (*">>"*)
-let arith_shiftr_bv = shift_op_bv RR_shift_arith
-let rotl_bv = shift_op_bv LL_rot (*"<<<"*)
-let rotr_bv = shift_op_bv LL_rot (*">>>"*)
-
-let shiftl_mword w n = Machine_word.shiftLeft w (nat_of_int n)
-let shiftr_mword w n = Machine_word.shiftRight w (nat_of_int n)
-let arith_shiftr_mword w n = Machine_word.arithShiftRight w (nat_of_int n)
-let rotl_mword w n = Machine_word.rotateLeft (nat_of_int n) w
-let rotr_mword w n = Machine_word.rotateRight (nat_of_int n) w
-
-let rec arith_op_no0 (op : integer -> integer -> integer) l r =
- if r = 0
- then Nothing
- else Just (op l r)
-
-val arith_op_bv_no0 : forall 'a 'b. Bitvector 'a, Bitvector 'b =>
- (integer -> integer -> integer) -> bool -> integer -> 'a -> 'a -> maybe 'b
-let arith_op_bv_no0 op sign size l r =
- Maybe.bind (int_of_bv sign l) (fun l' ->
- Maybe.bind (int_of_bv sign r) (fun r' ->
- if r' = 0 then Nothing else Just (of_int (length l * size) (op l' r'))))
-
-let mod_bv = arith_op_bv_no0 tmod_int false 1
-let quot_bv = arith_op_bv_no0 tdiv_int false 1
-let quots_bv = arith_op_bv_no0 tdiv_int true 1
-
-let mod_mword = Machine_word.modulo
-let quot_mword = Machine_word.unsignedDivide
-let quots_mword = Machine_word.signedDivide
-
-let arith_op_bv_int_no0 op sign size l r =
- arith_op_bv_no0 op sign size l (of_int (length l) r)
-
-let quot_bv_int = arith_op_bv_int_no0 tdiv_int false 1
-let mod_bv_int = arith_op_bv_int_no0 tmod_int false 1
-
-let mod_mword_int l r = Machine_word.modulo l (wordFromInteger r)
-let quot_mword_int l r = Machine_word.unsignedDivide l (wordFromInteger r)
-let quots_mword_int l r = Machine_word.signedDivide l (wordFromInteger r)
-
-let replicate_bits_bv v count = repeat (bits_of v) count
-let duplicate_bit_bv bit len = replicate_bits_bv [bit] len
-
-val eq_bv : forall 'a. Bitvector 'a => 'a -> 'a -> bool
-let eq_bv l r = (bits_of l = bits_of r)
-
-let inline eq_mword l r = (l = r)
-
-val neq_bv : forall 'a. Bitvector 'a => 'a -> 'a -> bool
-let neq_bv l r = not (eq_bv l r)
-
-let inline neq_mword l r = (l <> r)
-
-val get_slice_int_bv : forall 'a. Bitvector 'a => integer -> integer -> integer -> 'a
-let get_slice_int_bv len n lo =
- let hi = lo + len - 1 in
- let bs = bools_of_int (hi + 1) n in
- of_bools (subrange_list false bs hi lo)
-
-val set_slice_int_bv : forall 'a. Bitvector 'a => integer -> integer -> integer -> 'a -> integer
-let set_slice_int_bv len n lo v =
- let hi = lo + len - 1 in
- let bs = bits_of_int (hi + 1) n in
- maybe_failwith (signed_of_bits (update_subrange_list false bs hi lo (bits_of v)))
diff --git a/src/gen_lib/0.11/sail2_operators_bitlists.lem b/src/gen_lib/0.11/sail2_operators_bitlists.lem
deleted file mode 100644
index c9892e4c..00000000
--- a/src/gen_lib/0.11/sail2_operators_bitlists.lem
+++ /dev/null
@@ -1,308 +0,0 @@
-open import Pervasives_extra
-open import Machine_word
-open import Sail2_values
-open import Sail2_operators
-open import Sail2_prompt_monad
-open import Sail2_prompt
-
-(* Specialisation of operators to bit lists *)
-
-val uint_maybe : list bitU -> maybe integer
-let uint_maybe v = unsigned v
-let uint_fail v = maybe_fail "uint" (unsigned v)
-let uint_nondet v =
- bools_of_bits_nondet v >>= (fun bs ->
- return (int_of_bools false bs))
-let uint v = maybe_failwith (uint_maybe v)
-
-val sint_maybe : list bitU -> maybe integer
-let sint_maybe v = signed v
-let sint_fail v = maybe_fail "sint" (signed v)
-let sint_nondet v =
- bools_of_bits_nondet v >>= (fun bs ->
- return (int_of_bools true bs))
-let sint v = maybe_failwith (sint_maybe v)
-
-val extz_vec : integer -> list bitU -> list bitU
-let extz_vec = extz_bv
-
-val exts_vec : integer -> list bitU -> list bitU
-let exts_vec = exts_bv
-
-val zero_extend : list bitU -> integer -> list bitU
-let zero_extend bits len = extz_bits len bits
-
-val sign_extend : list bitU -> integer -> list bitU
-let sign_extend bits len = exts_bits len bits
-
-val zeros : integer -> list bitU
-let zeros len = repeat [B0] len
-
-val vector_truncate : list bitU -> integer -> list bitU
-let vector_truncate bs len = extz_bv len bs
-
-val vector_truncateLSB : list bitU -> integer -> list bitU
-let vector_truncateLSB bs len = take_list len bs
-
-val vec_of_bits_maybe : list bitU -> maybe (list bitU)
-val vec_of_bits_fail : forall 'rv 'e. list bitU -> monad 'rv (list bitU) 'e
-val vec_of_bits_nondet : forall 'rv 'e. list bitU -> monad 'rv (list bitU) 'e
-val vec_of_bits_failwith : list bitU -> list bitU
-val vec_of_bits : list bitU -> list bitU
-let inline vec_of_bits bits = bits
-let inline vec_of_bits_maybe bits = Just bits
-let inline vec_of_bits_fail bits = return bits
-let inline vec_of_bits_nondet bits = return bits
-let inline vec_of_bits_failwith bits = bits
-
-val access_vec_inc : list bitU -> integer -> bitU
-let access_vec_inc = access_bv_inc
-
-val access_vec_dec : list bitU -> integer -> bitU
-let access_vec_dec = access_bv_dec
-
-val update_vec_inc : list bitU -> integer -> bitU -> list bitU
-let update_vec_inc = update_bv_inc
-let update_vec_inc_maybe v i b = Just (update_vec_inc v i b)
-let update_vec_inc_fail v i b = return (update_vec_inc v i b)
-let update_vec_inc_nondet v i b = return (update_vec_inc v i b)
-
-val update_vec_dec : list bitU -> integer -> bitU -> list bitU
-let update_vec_dec = update_bv_dec
-let update_vec_dec_maybe v i b = Just (update_vec_dec v i b)
-let update_vec_dec_fail v i b = return (update_vec_dec v i b)
-let update_vec_dec_nondet v i b = return (update_vec_dec v i b)
-
-val subrange_vec_inc : list bitU -> integer -> integer -> list bitU
-let subrange_vec_inc = subrange_bv_inc
-
-val subrange_vec_dec : list bitU -> integer -> integer -> list bitU
-let subrange_vec_dec = subrange_bv_dec
-
-val update_subrange_vec_inc : list bitU -> integer -> integer -> list bitU -> list bitU
-let update_subrange_vec_inc = update_subrange_bv_inc
-
-val update_subrange_vec_dec : list bitU -> integer -> integer -> list bitU -> list bitU
-let update_subrange_vec_dec = update_subrange_bv_dec
-
-val concat_vec : list bitU -> list bitU -> list bitU
-let concat_vec = concat_bv
-
-val cons_vec : bitU -> list bitU -> list bitU
-let cons_vec = cons_bv
-let cons_vec_maybe b v = Just (cons_vec b v)
-let cons_vec_fail b v = return (cons_vec b v)
-let cons_vec_nondet b v = return (cons_vec b v)
-
-val cast_unit_vec : bitU -> list bitU
-let cast_unit_vec = cast_unit_bv
-let cast_unit_vec_maybe b = Just (cast_unit_vec b)
-let cast_unit_vec_fail b = return (cast_unit_vec b)
-let cast_unit_vec_nondet b = return (cast_unit_vec b)
-
-val vec_of_bit : integer -> bitU -> list bitU
-let vec_of_bit = bv_of_bit
-let vec_of_bit_maybe len b = Just (vec_of_bit len b)
-let vec_of_bit_fail len b = return (vec_of_bit len b)
-let vec_of_bit_nondet len b = return (vec_of_bit len b)
-
-val msb : list bitU -> bitU
-let msb = most_significant
-
-val int_of_vec_maybe : bool -> list bitU -> maybe integer
-let int_of_vec_maybe = int_of_bv
-let int_of_vec_fail sign v = maybe_fail "int_of_vec" (int_of_vec_maybe sign v)
-let int_of_vec_nondet sign v = bools_of_bits_nondet v >>= (fun v -> return (int_of_bools sign v))
-let int_of_vec sign v = maybe_failwith (int_of_vec_maybe sign v)
-
-val string_of_bits : list bitU -> string
-let string_of_bits = string_of_bv
-
-val decimal_string_of_bits : list bitU -> string
-let decimal_string_of_bits = decimal_string_of_bv
-
-val and_vec : list bitU -> list bitU -> list bitU
-val or_vec : list bitU -> list bitU -> list bitU
-val xor_vec : list bitU -> list bitU -> list bitU
-val not_vec : list bitU -> list bitU
-let and_vec = binop_list and_bit
-let or_vec = binop_list or_bit
-let xor_vec = binop_list xor_bit
-let not_vec = List.map not_bit
-
-val arith_op_double_bl : forall 'a 'b. Bitvector 'a =>
- (integer -> integer -> integer) -> bool -> 'a -> 'a -> list bitU
-let arith_op_double_bl op sign l r =
- let len = 2 * length l in
- let l' = if sign then exts_bv len l else extz_bv len l in
- let r' = if sign then exts_bv len r else extz_bv len r in
- arith_op_bv op sign l' r'
-
-val add_vec : list bitU -> list bitU -> list bitU
-val adds_vec : list bitU -> list bitU -> list bitU
-val sub_vec : list bitU -> list bitU -> list bitU
-val subs_vec : list bitU -> list bitU -> list bitU
-val mult_vec : list bitU -> list bitU -> list bitU
-val mults_vec : list bitU -> list bitU -> list bitU
-let add_vec = arith_op_bv integerAdd false
-let adds_vec = arith_op_bv integerAdd true
-let sub_vec = arith_op_bv integerMinus false
-let subs_vec = arith_op_bv integerMinus true
-let mult_vec = arith_op_double_bl integerMult false
-let mults_vec = arith_op_double_bl integerMult true
-
-val add_vec_int : list bitU -> integer -> list bitU
-val sub_vec_int : list bitU -> integer -> list bitU
-val mult_vec_int : list bitU -> integer -> list bitU
-let add_vec_int l r = arith_op_bv_int integerAdd false l r
-let sub_vec_int l r = arith_op_bv_int integerMinus false l r
-let mult_vec_int l r = arith_op_double_bl integerMult false l (of_int (length l) r)
-
-val add_int_vec : integer -> list bitU -> list bitU
-val sub_int_vec : integer -> list bitU -> list bitU
-val mult_int_vec : integer -> list bitU -> list bitU
-let add_int_vec l r = arith_op_int_bv integerAdd false l r
-let sub_int_vec l r = arith_op_int_bv integerMinus false l r
-let mult_int_vec l r = arith_op_double_bl integerMult false (of_int (length r) l) r
-
-val add_vec_bit : list bitU -> bitU -> list bitU
-val adds_vec_bit : list bitU -> bitU -> list bitU
-val sub_vec_bit : list bitU -> bitU -> list bitU
-val subs_vec_bit : list bitU -> bitU -> list bitU
-
-let add_vec_bool l r = arith_op_bv_bool integerAdd false l r
-let add_vec_bit_maybe l r = arith_op_bv_bit integerAdd false l r
-let add_vec_bit_fail l r = maybe_fail "add_vec_bit" (add_vec_bit_maybe l r)
-let add_vec_bit_nondet l r = bool_of_bitU_nondet r >>= (fun r -> return (add_vec_bool l r))
-let add_vec_bit l r = fromMaybe (repeat [BU] (length l)) (add_vec_bit_maybe l r)
-
-let adds_vec_bool l r = arith_op_bv_bool integerAdd true l r
-let adds_vec_bit_maybe l r = arith_op_bv_bit integerAdd true l r
-let adds_vec_bit_fail l r = maybe_fail "adds_vec_bit" (adds_vec_bit_maybe l r)
-let adds_vec_bit_nondet l r = bool_of_bitU_nondet r >>= (fun r -> return (adds_vec_bool l r))
-let adds_vec_bit l r = fromMaybe (repeat [BU] (length l)) (adds_vec_bit_maybe l r)
-
-let sub_vec_bool l r = arith_op_bv_bool integerMinus false l r
-let sub_vec_bit_maybe l r = arith_op_bv_bit integerMinus false l r
-let sub_vec_bit_fail l r = maybe_fail "sub_vec_bit" (sub_vec_bit_maybe l r)
-let sub_vec_bit_nondet l r = bool_of_bitU_nondet r >>= (fun r -> return (sub_vec_bool l r))
-let sub_vec_bit l r = fromMaybe (repeat [BU] (length l)) (sub_vec_bit_maybe l r)
-
-let subs_vec_bool l r = arith_op_bv_bool integerMinus true l r
-let subs_vec_bit_maybe l r = arith_op_bv_bit integerMinus true l r
-let subs_vec_bit_fail l r = maybe_fail "sub_vec_bit" (subs_vec_bit_maybe l r)
-let subs_vec_bit_nondet l r = bool_of_bitU_nondet r >>= (fun r -> return (subs_vec_bool l r))
-let subs_vec_bit l r = fromMaybe (repeat [BU] (length l)) (subs_vec_bit_maybe l r)
-
-(*val add_overflow_vec : list bitU -> list bitU -> (list bitU * bitU * bitU)
-val add_overflow_vec_signed : list bitU -> list bitU -> (list bitU * bitU * bitU)
-val sub_overflow_vec : list bitU -> list bitU -> (list bitU * bitU * bitU)
-val sub_overflow_vec_signed : list bitU -> list bitU -> (list bitU * bitU * bitU)
-val mult_overflow_vec : list bitU -> list bitU -> (list bitU * bitU * bitU)
-val mult_overflow_vec_signed : list bitU -> list bitU -> (list bitU * bitU * bitU)
-let add_overflow_vec = add_overflow_bv
-let add_overflow_vec_signed = add_overflow_bv_signed
-let sub_overflow_vec = sub_overflow_bv
-let sub_overflow_vec_signed = sub_overflow_bv_signed
-let mult_overflow_vec = mult_overflow_bv
-let mult_overflow_vec_signed = mult_overflow_bv_signed
-
-val add_overflow_vec_bit : list bitU -> bitU -> (list bitU * bitU * bitU)
-val add_overflow_vec_bit_signed : list bitU -> bitU -> (list bitU * bitU * bitU)
-val sub_overflow_vec_bit : list bitU -> bitU -> (list bitU * bitU * bitU)
-val sub_overflow_vec_bit_signed : list bitU -> bitU -> (list bitU * bitU * bitU)
-let add_overflow_vec_bit = add_overflow_bv_bit
-let add_overflow_vec_bit_signed = add_overflow_bv_bit_signed
-let sub_overflow_vec_bit = sub_overflow_bv_bit
-let sub_overflow_vec_bit_signed = sub_overflow_bv_bit_signed*)
-
-val shiftl : list bitU -> integer -> list bitU
-val shiftr : list bitU -> integer -> list bitU
-val arith_shiftr : list bitU -> integer -> list bitU
-val rotl : list bitU -> integer -> list bitU
-val rotr : list bitU -> integer -> list bitU
-let shiftl = shiftl_bv
-let shiftr = shiftr_bv
-let arith_shiftr = arith_shiftr_bv
-let rotl = rotl_bv
-let rotr = rotr_bv
-
-val mod_vec : list bitU -> list bitU -> list bitU
-val mod_vec_maybe : list bitU -> list bitU -> maybe (list bitU)
-val mod_vec_fail : forall 'rv 'e. list bitU -> list bitU -> monad 'rv (list bitU) 'e
-val mod_vec_nondet : forall 'rv 'e. list bitU -> list bitU -> monad 'rv (list bitU) 'e
-let mod_vec l r = fromMaybe (repeat [BU] (length l)) (mod_bv l r)
-let mod_vec_maybe l r = mod_bv l r
-let mod_vec_fail l r = maybe_fail "mod_vec" (mod_bv l r)
-let mod_vec_nondet l r = of_bits_nondet (mod_vec l r)
-
-val quot_vec : list bitU -> list bitU -> list bitU
-val quot_vec_maybe : list bitU -> list bitU -> maybe (list bitU)
-val quot_vec_fail : forall 'rv 'e. list bitU -> list bitU -> monad 'rv (list bitU) 'e
-val quot_vec_nondet : forall 'rv 'e. list bitU -> list bitU -> monad 'rv (list bitU) 'e
-let quot_vec l r = fromMaybe (repeat [BU] (length l)) (quot_bv l r)
-let quot_vec_maybe l r = quot_bv l r
-let quot_vec_fail l r = maybe_fail "quot_vec" (quot_bv l r)
-let quot_vec_nondet l r = of_bits_nondet (quot_vec l r)
-
-val quots_vec : list bitU -> list bitU -> list bitU
-val quots_vec_maybe : list bitU -> list bitU -> maybe (list bitU)
-val quots_vec_fail : forall 'rv 'e. list bitU -> list bitU -> monad 'rv (list bitU) 'e
-val quots_vec_nondet : forall 'rv 'e. list bitU -> list bitU -> monad 'rv (list bitU) 'e
-let quots_vec l r = fromMaybe (repeat [BU] (length l)) (quots_bv l r)
-let quots_vec_maybe l r = quots_bv l r
-let quots_vec_fail l r = maybe_fail "quots_vec" (quots_bv l r)
-let quots_vec_nondet l r = of_bits_nondet (quots_vec l r)
-
-val mod_vec_int : list bitU -> integer -> list bitU
-val mod_vec_int_maybe : list bitU -> integer -> maybe (list bitU)
-val mod_vec_int_fail : forall 'rv 'e. list bitU -> integer -> monad 'rv (list bitU) 'e
-val mod_vec_int_nondet : forall 'rv 'e. list bitU -> integer -> monad 'rv (list bitU) 'e
-let mod_vec_int l r = fromMaybe (repeat [BU] (length l)) (mod_bv_int l r)
-let mod_vec_int_maybe l r = mod_bv_int l r
-let mod_vec_int_fail l r = maybe_fail "mod_vec_int" (mod_bv_int l r)
-let mod_vec_int_nondet l r = of_bits_nondet (mod_vec_int l r)
-
-val quot_vec_int : list bitU -> integer -> list bitU
-val quot_vec_int_maybe : list bitU -> integer -> maybe (list bitU)
-val quot_vec_int_fail : forall 'rv 'e. list bitU -> integer -> monad 'rv (list bitU) 'e
-val quot_vec_int_nondet : forall 'rv 'e. list bitU -> integer -> monad 'rv (list bitU) 'e
-let quot_vec_int l r = fromMaybe (repeat [BU] (length l)) (quot_bv_int l r)
-let quot_vec_int_maybe l r = quot_bv_int l r
-let quot_vec_int_fail l r = maybe_fail "quot_vec_int" (quot_bv_int l r)
-let quot_vec_int_nondet l r = of_bits_nondet (quot_vec_int l r)
-
-val replicate_bits : list bitU -> integer -> list bitU
-let replicate_bits = replicate_bits_bv
-
-val duplicate : bitU -> integer -> list bitU
-let duplicate = duplicate_bit_bv
-let duplicate_maybe b n = Just (duplicate b n)
-let duplicate_fail b n = return (duplicate b n)
-let duplicate_nondet b n =
- bool_of_bitU_nondet b >>= (fun b ->
- return (duplicate (bitU_of_bool b) n))
-
-val reverse_endianness : list bitU -> list bitU
-let reverse_endianness v = reverse_endianness_list v
-
-val get_slice_int : integer -> integer -> integer -> list bitU
-let get_slice_int = get_slice_int_bv
-
-val set_slice_int : integer -> integer -> integer -> list bitU -> integer
-let set_slice_int = set_slice_int_bv
-
-val slice : list bitU -> integer -> integer -> list bitU
-let slice v lo len =
- subrange_vec_dec v (lo + len - 1) lo
-
-val set_slice : integer -> integer -> list bitU -> integer -> list bitU -> list bitU
-let set_slice (out_len:ii) (slice_len:ii) out (n:ii) v =
- update_subrange_vec_dec out (n + slice_len - 1) n v
-
-val eq_vec : list bitU -> list bitU -> bool
-val neq_vec : list bitU -> list bitU -> bool
-let eq_vec = eq_bv
-let neq_vec = neq_bv
-
-let inline count_leading_zeros v = count_leading_zero_bits v
diff --git a/src/gen_lib/0.11/sail2_operators_mwords.lem b/src/gen_lib/0.11/sail2_operators_mwords.lem
deleted file mode 100644
index c8524e16..00000000
--- a/src/gen_lib/0.11/sail2_operators_mwords.lem
+++ /dev/null
@@ -1,334 +0,0 @@
-open import Pervasives_extra
-open import Machine_word
-open import Sail2_values
-open import Sail2_operators
-open import Sail2_prompt_monad
-open import Sail2_prompt
-
-(* Specialisation of operators to machine words *)
-
-let inline uint v = unsignedIntegerFromWord v
-let uint_maybe v = Just (uint v)
-let uint_fail v = return (uint v)
-let uint_nondet v = return (uint v)
-
-let inline sint v = signedIntegerFromWord v
-let sint_maybe v = Just (sint v)
-let sint_fail v = return (sint v)
-let sint_nondet v = return (sint v)
-
-val vec_of_bits_maybe : forall 'a. Size 'a => list bitU -> maybe (mword 'a)
-val vec_of_bits_fail : forall 'rv 'a 'e. Size 'a => list bitU -> monad 'rv (mword 'a) 'e
-val vec_of_bits_nondet : forall 'rv 'a 'e. Size 'a => list bitU -> monad 'rv (mword 'a) 'e
-val vec_of_bits_failwith : forall 'a. Size 'a => list bitU -> mword 'a
-val vec_of_bits : forall 'a. Size 'a => list bitU -> mword 'a
-let vec_of_bits_maybe bits = of_bits bits
-let vec_of_bits_fail bits = of_bits_fail bits
-let vec_of_bits_nondet bits = of_bits_nondet bits
-let vec_of_bits_failwith bits = of_bits_failwith bits
-let vec_of_bits bits = of_bits_failwith bits
-
-val access_vec_inc : forall 'a. Size 'a => mword 'a -> integer -> bitU
-let access_vec_inc = access_bv_inc
-
-val access_vec_dec : forall 'a. Size 'a => mword 'a -> integer -> bitU
-let access_vec_dec = access_bv_dec
-
-let update_vec_dec_maybe w i b = update_mword_dec w i b
-let update_vec_dec_fail w i b =
- bool_of_bitU_fail b >>= (fun b ->
- return (update_mword_bool_dec w i b))
-let update_vec_dec_nondet w i b =
- bool_of_bitU_nondet b >>= (fun b ->
- return (update_mword_bool_dec w i b))
-let update_vec_dec w i b = maybe_failwith (update_vec_dec_maybe w i b)
-
-let update_vec_inc_maybe w i b = update_mword_inc w i b
-let update_vec_inc_fail w i b =
- bool_of_bitU_fail b >>= (fun b ->
- return (update_mword_bool_inc w i b))
-let update_vec_inc_nondet w i b =
- bool_of_bitU_nondet b >>= (fun b ->
- return (update_mword_bool_inc w i b))
-let update_vec_inc w i b = maybe_failwith (update_vec_inc_maybe w i b)
-
-val subrange_vec_dec : forall 'a 'b. Size 'a, Size 'b => mword 'a -> integer -> integer -> mword 'b
-let subrange_vec_dec w i j = Machine_word.word_extract (nat_of_int j) (nat_of_int i) w
-
-val subrange_vec_inc : forall 'a 'b. Size 'a, Size 'b => mword 'a -> integer -> integer -> mword 'b
-let subrange_vec_inc w i j = subrange_vec_dec w (length w - 1 - i) (length w - 1 - j)
-
-val update_subrange_vec_dec : forall 'a 'b. Size 'a, Size 'b => mword 'a -> integer -> integer -> mword 'b -> mword 'a
-let update_subrange_vec_dec w i j w' = Machine_word.word_update w (nat_of_int j) (nat_of_int i) w'
-
-val update_subrange_vec_inc : forall 'a 'b. Size 'a, Size 'b => mword 'a -> integer -> integer -> mword 'b -> mword 'a
-let update_subrange_vec_inc w i j w' = update_subrange_vec_dec w (length w - 1 - i) (length w - 1 - j) w'
-
-val extz_vec : forall 'a 'b. Size 'a, Size 'b => integer -> mword 'a -> mword 'b
-let extz_vec _ w = Machine_word.zeroExtend w
-
-val exts_vec : forall 'a 'b. Size 'a, Size 'b => integer -> mword 'a -> mword 'b
-let exts_vec _ w = Machine_word.signExtend w
-
-val zero_extend : forall 'a 'b. Size 'a, Size 'b => mword 'a -> integer -> mword 'b
-let zero_extend w _ = Machine_word.zeroExtend w
-
-val sign_extend : forall 'a 'b. Size 'a, Size 'b => mword 'a -> integer -> mword 'b
-let sign_extend w _ = Machine_word.signExtend w
-
-val zeros : forall 'a. Size 'a => integer -> mword 'a
-let zeros _ = Machine_word.wordFromNatural 0
-
-val vector_truncate : forall 'a 'b. Size 'a, Size 'b => mword 'a -> integer -> mword 'b
-let vector_truncate w _ = Machine_word.zeroExtend w
-
-val vector_truncateLSB : forall 'a 'b. Size 'a, Size 'b => mword 'a -> integer -> mword 'b
-let vector_truncateLSB w len =
- let len = nat_of_int len in
- let lo = Machine_word.word_length w - len in
- let hi = lo + len - 1 in
- Machine_word.word_extract lo hi w
-
-val concat_vec : forall 'a 'b 'c. Size 'a, Size 'b, Size 'c => mword 'a -> mword 'b -> mword 'c
-let concat_vec = Machine_word.word_concat
-
-val cons_vec_bool : forall 'a 'b 'c. Size 'a, Size 'b => bool -> mword 'a -> mword 'b
-let cons_vec_bool b w = wordFromBitlist (b :: bitlistFromWord w)
-let cons_vec_maybe b w = Maybe.map (fun b -> cons_vec_bool b w) (bool_of_bitU b)
-let cons_vec_fail b w = bool_of_bitU_fail b >>= (fun b -> return (cons_vec_bool b w))
-let cons_vec_nondet b w = bool_of_bitU_nondet b >>= (fun b -> return (cons_vec_bool b w))
-let cons_vec b w = maybe_failwith (cons_vec_maybe b w)
-
-val vec_of_bool : forall 'a. Size 'a => integer -> bool -> mword 'a
-let vec_of_bool _ b = wordFromBitlist [b]
-let vec_of_bit_maybe len b = Maybe.map (vec_of_bool len) (bool_of_bitU b)
-let vec_of_bit_fail len b = bool_of_bitU_fail b >>= (fun b -> return (vec_of_bool len b))
-let vec_of_bit_nondet len b = bool_of_bitU_nondet b >>= (fun b -> return (vec_of_bool len b))
-let vec_of_bit len b = maybe_failwith (vec_of_bit_maybe len b)
-
-val cast_bool_vec : bool -> mword ty1
-let cast_bool_vec b = vec_of_bool 1 b
-let cast_unit_vec_maybe b = vec_of_bit_maybe 1 b
-let cast_unit_vec_fail b = bool_of_bitU_fail b >>= (fun b -> return (cast_bool_vec b))
-let cast_unit_vec_nondet b = bool_of_bitU_nondet b >>= (fun b -> return (cast_bool_vec b))
-let cast_unit_vec b = maybe_failwith (cast_unit_vec_maybe b)
-
-val msb : forall 'a. Size 'a => mword 'a -> bitU
-let msb = most_significant
-
-val int_of_vec : forall 'a. Size 'a => bool -> mword 'a -> integer
-let int_of_vec sign w =
- if sign
- then signedIntegerFromWord w
- else unsignedIntegerFromWord w
-let int_of_vec_maybe sign w = Just (int_of_vec sign w)
-let int_of_vec_fail sign w = return (int_of_vec sign w)
-
-val string_of_bits : forall 'a. Size 'a => mword 'a -> string
-let string_of_bits = string_of_bv
-
-val decimal_string_of_bits : forall 'a. Size 'a => mword 'a -> string
-let decimal_string_of_bits = decimal_string_of_bv
-
-val and_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> mword 'a
-val or_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> mword 'a
-val xor_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> mword 'a
-val not_vec : forall 'a. Size 'a => mword 'a -> mword 'a
-let and_vec = Machine_word.lAnd
-let or_vec = Machine_word.lOr
-let xor_vec = Machine_word.lXor
-let not_vec = Machine_word.lNot
-
-val add_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> mword 'a
-val adds_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> mword 'a
-val sub_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> mword 'a
-val subs_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> mword 'a
-val mult_vec : forall 'a 'b. Size 'a, Size 'b => mword 'a -> mword 'a -> mword 'b
-val mults_vec : forall 'a 'b. Size 'a, Size 'b => mword 'a -> mword 'a -> mword 'b
-let add_vec l r = arith_op_bv integerAdd false l r
-let adds_vec l r = arith_op_bv integerAdd true l r
-let sub_vec l r = arith_op_bv integerMinus false l r
-let subs_vec l r = arith_op_bv integerMinus true l r
-let mult_vec l r = arith_op_bv integerMult false (zeroExtend l : mword 'b) (zeroExtend r : mword 'b)
-let mults_vec l r = arith_op_bv integerMult true (signExtend l : mword 'b) (signExtend r : mword 'b)
-
-val add_vec_int : forall 'a. Size 'a => mword 'a -> integer -> mword 'a
-val sub_vec_int : forall 'a. Size 'a => mword 'a -> integer -> mword 'a
-val mult_vec_int : forall 'a 'b. Size 'a, Size 'b => mword 'a -> integer -> mword 'b
-let add_vec_int l r = arith_op_bv_int integerAdd false l r
-let sub_vec_int l r = arith_op_bv_int integerMinus false l r
-let mult_vec_int l r = arith_op_bv_int integerMult false (zeroExtend l : mword 'b) r
-
-val add_int_vec : forall 'a. Size 'a => integer -> mword 'a -> mword 'a
-val sub_int_vec : forall 'a. Size 'a => integer -> mword 'a -> mword 'a
-val mult_int_vec : forall 'a 'b. Size 'a, Size 'b => integer -> mword 'a -> mword 'b
-let add_int_vec l r = arith_op_int_bv integerAdd false l r
-let sub_int_vec l r = arith_op_int_bv integerMinus false l r
-let mult_int_vec l r = arith_op_int_bv integerMult false l (zeroExtend r : mword 'b)
-
-val add_vec_bool : forall 'a. Size 'a => mword 'a -> bool -> mword 'a
-val adds_vec_bool : forall 'a. Size 'a => mword 'a -> bool -> mword 'a
-val sub_vec_bool : forall 'a. Size 'a => mword 'a -> bool -> mword 'a
-val subs_vec_bool : forall 'a. Size 'a => mword 'a -> bool -> mword 'a
-
-let add_vec_bool l r = arith_op_bv_bool integerAdd false l r
-let add_vec_bit_maybe l r = Maybe.map (add_vec_bool l) (bool_of_bitU r)
-let add_vec_bit_fail l r = bool_of_bitU_fail r >>= (fun r -> return (add_vec_bool l r))
-let add_vec_bit_nondet l r = bool_of_bitU_nondet r >>= (fun r -> return (add_vec_bool l r))
-let add_vec_bit l r = maybe_failwith (add_vec_bit_maybe l r)
-
-let adds_vec_bool l r = arith_op_bv_bool integerAdd true l r
-let adds_vec_bit_maybe l r = Maybe.map (adds_vec_bool l) (bool_of_bitU r)
-let adds_vec_bit_fail l r = bool_of_bitU_fail r >>= (fun r -> return (adds_vec_bool l r))
-let adds_vec_bit_nondet l r = bool_of_bitU_nondet r >>= (fun r -> return (adds_vec_bool l r))
-let adds_vec_bit l r = maybe_failwith (adds_vec_bit_maybe l r)
-
-let sub_vec_bool l r = arith_op_bv_bool integerMinus false l r
-let sub_vec_bit_maybe l r = Maybe.map (sub_vec_bool l) (bool_of_bitU r)
-let sub_vec_bit_fail l r = bool_of_bitU_fail r >>= (fun r -> return (sub_vec_bool l r))
-let sub_vec_bit_nondet l r = bool_of_bitU_nondet r >>= (fun r -> return (sub_vec_bool l r))
-let sub_vec_bit l r = maybe_failwith (sub_vec_bit_maybe l r)
-
-let subs_vec_bool l r = arith_op_bv_bool integerMinus true l r
-let subs_vec_bit_maybe l r = Maybe.map (subs_vec_bool l) (bool_of_bitU r)
-let subs_vec_bit_fail l r = bool_of_bitU_fail r >>= (fun r -> return (subs_vec_bool l r))
-let subs_vec_bit_nondet l r = bool_of_bitU_nondet r >>= (fun r -> return (subs_vec_bool l r))
-let subs_vec_bit l r = maybe_failwith (subs_vec_bit_maybe l r)
-
-(* TODO
-val maybe_mword_of_bits_overflow : forall 'a. Size 'a => (list bitU * bitU * bitU) -> maybe (mword 'a * bitU * bitU)
-let maybe_mword_of_bits_overflow (bits, overflow, carry) =
- Maybe.map (fun w -> (w, overflow, carry)) (of_bits bits)
-
-val add_overflow_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> maybe (mword 'a * bitU * bitU)
-val adds_overflow_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> maybe (mword 'a * bitU * bitU)
-val sub_overflow_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> maybe (mword 'a * bitU * bitU)
-val subs_overflow_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> maybe (mword 'a * bitU * bitU)
-val mult_overflow_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> maybe (mword 'a * bitU * bitU)
-val mults_overflow_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> maybe (mword 'a * bitU * bitU)
-let add_overflow_vec l r = maybe_mword_of_bits_overflow (add_overflow_bv l r)
-let adds_overflow_vec l r = maybe_mword_of_bits_overflow (adds_overflow_bv l r)
-let sub_overflow_vec l r = maybe_mword_of_bits_overflow (sub_overflow_bv l r)
-let subs_overflow_vec l r = maybe_mword_of_bits_overflow (subs_overflow_bv l r)
-let mult_overflow_vec l r = maybe_mword_of_bits_overflow (mult_overflow_bv l r)
-let mults_overflow_vec l r = maybe_mword_of_bits_overflow (mults_overflow_bv l r)
-
-val add_overflow_vec_bit : forall 'a. Size 'a => mword 'a -> bitU -> (mword 'a * bitU * bitU)
-val add_overflow_vec_bit_signed : forall 'a. Size 'a => mword 'a -> bitU -> (mword 'a * bitU * bitU)
-val sub_overflow_vec_bit : forall 'a. Size 'a => mword 'a -> bitU -> (mword 'a * bitU * bitU)
-val sub_overflow_vec_bit_signed : forall 'a. Size 'a => mword 'a -> bitU -> (mword 'a * bitU * bitU)
-let add_overflow_vec_bit = add_overflow_bv_bit
-let add_overflow_vec_bit_signed = add_overflow_bv_bit_signed
-let sub_overflow_vec_bit = sub_overflow_bv_bit
-let sub_overflow_vec_bit_signed = sub_overflow_bv_bit_signed*)
-
-val shiftl : forall 'a. Size 'a => mword 'a -> integer -> mword 'a
-val shiftr : forall 'a. Size 'a => mword 'a -> integer -> mword 'a
-val arith_shiftr : forall 'a. Size 'a => mword 'a -> integer -> mword 'a
-val rotl : forall 'a. Size 'a => mword 'a -> integer -> mword 'a
-val rotr : forall 'a. Size 'a => mword 'a -> integer -> mword 'a
-let shiftl = shiftl_mword
-let shiftr = shiftr_mword
-let arith_shiftr = arith_shiftr_mword
-let rotl = rotl_mword
-let rotr = rotr_mword
-
-val mod_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> mword 'a
-val mod_vec_maybe : forall 'a. Size 'a => mword 'a -> mword 'a -> maybe (mword 'a)
-val mod_vec_fail : forall 'rv 'a 'e. Size 'a => mword 'a -> mword 'a -> monad 'rv (mword 'a) 'e
-val mod_vec_nondet : forall 'rv 'a 'e. Size 'a => mword 'a -> mword 'a -> monad 'rv (mword 'a) 'e
-let mod_vec l r = mod_mword l r
-let mod_vec_maybe l r = mod_bv l r
-let mod_vec_fail l r = maybe_fail "mod_vec" (mod_bv l r)
-let mod_vec_nondet l r =
- match (mod_bv l r) with
- | Just w -> return w
- | Nothing -> mword_nondet ()
- end
-
-val quot_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> mword 'a
-val quot_vec_maybe : forall 'a. Size 'a => mword 'a -> mword 'a -> maybe (mword 'a)
-val quot_vec_fail : forall 'rv 'a 'e. Size 'a => mword 'a -> mword 'a -> monad 'rv (mword 'a) 'e
-val quot_vec_nondet : forall 'rv 'a 'e. Size 'a => mword 'a -> mword 'a -> monad 'rv (mword 'a) 'e
-let quot_vec l r = quot_mword l r
-let quot_vec_maybe l r = quot_bv l r
-let quot_vec_fail l r = maybe_fail "quot_vec" (quot_bv l r)
-let quot_vec_nondet l r =
- match (quot_bv l r) with
- | Just w -> return w
- | Nothing -> mword_nondet ()
- end
-
-val quots_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> mword 'a
-val quots_vec_maybe : forall 'a. Size 'a => mword 'a -> mword 'a -> maybe (mword 'a)
-val quots_vec_fail : forall 'rv 'a 'e. Size 'a => mword 'a -> mword 'a -> monad 'rv (mword 'a) 'e
-val quots_vec_nondet : forall 'rv 'a 'e. Size 'a => mword 'a -> mword 'a -> monad 'rv (mword 'a) 'e
-let quots_vec l r = quots_mword l r
-let quots_vec_maybe l r = quots_bv l r
-let quots_vec_fail l r = maybe_fail "quots_vec" (quots_bv l r)
-let quots_vec_nondet l r =
- match (quots_bv l r) with
- | Just w -> return w
- | Nothing -> mword_nondet ()
- end
-
-val mod_vec_int : forall 'a. Size 'a => mword 'a -> integer -> mword 'a
-val mod_vec_int_maybe : forall 'a. Size 'a => mword 'a -> integer -> maybe (mword 'a)
-val mod_vec_int_fail : forall 'rv 'a 'e. Size 'a => mword 'a -> integer -> monad 'rv (mword 'a) 'e
-val mod_vec_int_nondet : forall 'rv 'a 'e. Size 'a => mword 'a -> integer -> monad 'rv (mword 'a) 'e
-let mod_vec_int l r = mod_mword_int l r
-let mod_vec_int_maybe l r = mod_bv_int l r
-let mod_vec_int_fail l r = maybe_fail "mod_vec_int" (mod_bv_int l r)
-let mod_vec_int_nondet l r =
- match (mod_bv_int l r) with
- | Just w -> return w
- | Nothing -> mword_nondet ()
- end
-
-val quot_vec_int : forall 'a. Size 'a => mword 'a -> integer -> mword 'a
-val quot_vec_int_maybe : forall 'a. Size 'a => mword 'a -> integer -> maybe (mword 'a)
-val quot_vec_int_fail : forall 'rv 'a 'e. Size 'a => mword 'a -> integer -> monad 'rv (mword 'a) 'e
-val quot_vec_int_nondet : forall 'rv 'a 'e. Size 'a => mword 'a -> integer -> monad 'rv (mword 'a) 'e
-let quot_vec_int l r = quot_mword_int l r
-let quot_vec_int_maybe l r = quot_bv_int l r
-let quot_vec_int_fail l r = maybe_fail "quot_vec_int" (quot_bv_int l r)
-let quot_vec_int_nondet l r =
- match (quot_bv_int l r) with
- | Just w -> return w
- | Nothing -> mword_nondet ()
- end
-
-val replicate_bits : forall 'a 'b. Size 'a, Size 'b => mword 'a -> integer -> mword 'b
-let replicate_bits v count = wordFromBitlist (repeat (bitlistFromWord v) count)
-
-val duplicate_bool : forall 'a. Size 'a => bool -> integer -> mword 'a
-let duplicate_bool b n = wordFromBitlist (repeat [b] n)
-let duplicate_maybe b n = Maybe.map (fun b -> duplicate_bool b n) (bool_of_bitU b)
-let duplicate_fail b n = bool_of_bitU_fail b >>= (fun b -> return (duplicate_bool b n))
-let duplicate_nondet b n = bool_of_bitU_nondet b >>= (fun b -> return (duplicate_bool b n))
-let duplicate b n = maybe_failwith (duplicate_maybe b n)
-
-val reverse_endianness : forall 'a. Size 'a => mword 'a -> mword 'a
-let reverse_endianness v = wordFromBitlist (reverse_endianness_list (bitlistFromWord v))
-
-val get_slice_int : forall 'a. Size 'a => integer -> integer -> integer -> mword 'a
-let get_slice_int = get_slice_int_bv
-
-val set_slice_int : forall 'a. Size 'a => integer -> integer -> integer -> mword 'a -> integer
-let set_slice_int = set_slice_int_bv
-
-val slice : forall 'a 'b. Size 'a, Size 'b => mword 'a -> integer -> integer -> mword 'b
-let slice v lo len =
- subrange_vec_dec v (lo + len - 1) lo
-
-val set_slice : forall 'a 'b. Size 'a, Size 'b => integer -> integer -> mword 'a -> integer -> mword 'b -> mword 'a
-let set_slice (out_len:ii) (slice_len:ii) out (n:ii) v =
- update_subrange_vec_dec out (n + slice_len - 1) n v
-
-val eq_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> bool
-val neq_vec : forall 'a. Size 'a => mword 'a -> mword 'a -> bool
-let inline eq_vec = eq_mword
-let inline neq_vec = neq_mword
-
-val count_leading_zeros : forall 'a. Size 'a => mword 'a -> integer
-let count_leading_zeros v = count_leading_zeros_bv v
diff --git a/src/gen_lib/0.11/sail2_prompt.lem b/src/gen_lib/0.11/sail2_prompt.lem
deleted file mode 100644
index 3cde7ade..00000000
--- a/src/gen_lib/0.11/sail2_prompt.lem
+++ /dev/null
@@ -1,139 +0,0 @@
-open import Pervasives_extra
-(*open import Sail_impl_base*)
-open import Sail2_values
-open import Sail2_prompt_monad
-open import {isabelle} `Sail2_prompt_monad_lemmas`
-
-val (>>=) : forall 'rv 'a 'b 'e. monad 'rv 'a 'e -> ('a -> monad 'rv 'b 'e) -> monad 'rv 'b 'e
-declare isabelle target_rep function (>>=) = infix `\<bind>`
-let inline ~{isabelle} (>>=) = bind
-
-val (>>) : forall 'rv 'b 'e. monad 'rv unit 'e -> monad 'rv 'b 'e -> monad 'rv 'b 'e
-declare isabelle target_rep function (>>) = infix `\<then>`
-let inline ~{isabelle} (>>) m n = m >>= fun (_ : unit) -> n
-
-val iter_aux : forall 'rv 'a 'e. integer -> (integer -> 'a -> monad 'rv unit 'e) -> list 'a -> monad 'rv unit 'e
-let rec iter_aux i f xs = match xs with
- | x :: xs -> f i x >> iter_aux (i + 1) f xs
- | [] -> return ()
- end
-
-declare {isabelle} termination_argument iter_aux = automatic
-
-val iteri : forall 'rv 'a 'e. (integer -> 'a -> monad 'rv unit 'e) -> list 'a -> monad 'rv unit 'e
-let iteri f xs = iter_aux 0 f xs
-
-val iter : forall 'rv 'a 'e. ('a -> monad 'rv unit 'e) -> list 'a -> monad 'rv unit 'e
-let iter f xs = iteri (fun _ x -> f x) xs
-
-val foreachM : forall 'a 'rv 'vars 'e.
- list 'a -> 'vars -> ('a -> 'vars -> monad 'rv 'vars 'e) -> monad 'rv 'vars 'e
-let rec foreachM l vars body =
-match l with
-| [] -> return vars
-| (x :: xs) ->
- body x vars >>= fun vars ->
- foreachM xs vars body
-end
-
-declare {isabelle} termination_argument foreachM = automatic
-
-val genlistM : forall 'a 'rv 'e. (nat -> monad 'rv 'a 'e) -> nat -> monad 'rv (list 'a) 'e
-let genlistM f n =
- let indices = genlist (fun n -> n) n in
- foreachM indices [] (fun n xs -> (f n >>= (fun x -> return (xs ++ [x]))))
-
-val and_boolM : forall 'rv 'e. monad 'rv bool 'e -> monad 'rv bool 'e -> monad 'rv bool 'e
-let and_boolM l r = l >>= (fun l -> if l then r else return false)
-
-val or_boolM : forall 'rv 'e. monad 'rv bool 'e -> monad 'rv bool 'e -> monad 'rv bool 'e
-let or_boolM l r = l >>= (fun l -> if l then return true else r)
-
-val bool_of_bitU_fail : forall 'rv 'e. bitU -> monad 'rv bool 'e
-let bool_of_bitU_fail = function
- | B0 -> return false
- | B1 -> return true
- | BU -> Fail "bool_of_bitU"
-end
-
-val bool_of_bitU_nondet : forall 'rv 'e. bitU -> monad 'rv bool 'e
-let bool_of_bitU_nondet = function
- | B0 -> return false
- | B1 -> return true
- | BU -> choose_bool "bool_of_bitU"
-end
-
-val bools_of_bits_nondet : forall 'rv 'e. list bitU -> monad 'rv (list bool) 'e
-let bools_of_bits_nondet bits =
- foreachM bits []
- (fun b bools ->
- bool_of_bitU_nondet b >>= (fun b ->
- return (bools ++ [b])))
-
-val of_bits_nondet : forall 'rv 'a 'e. Bitvector 'a => list bitU -> monad 'rv 'a 'e
-let of_bits_nondet bits =
- bools_of_bits_nondet bits >>= (fun bs ->
- return (of_bools bs))
-
-val of_bits_fail : forall 'rv 'a 'e. Bitvector 'a => list bitU -> monad 'rv 'a 'e
-let of_bits_fail bits = maybe_fail "of_bits" (of_bits bits)
-
-val mword_nondet : forall 'rv 'a 'e. Size 'a => unit -> monad 'rv (mword 'a) 'e
-let mword_nondet () =
- bools_of_bits_nondet (repeat [BU] (integerFromNat size)) >>= (fun bs ->
- return (wordFromBitlist bs))
-
-val whileM : forall 'rv 'vars 'e. 'vars -> ('vars -> monad 'rv bool 'e) ->
- ('vars -> monad 'rv 'vars 'e) -> monad 'rv 'vars 'e
-let rec whileM vars cond body =
- cond vars >>= fun cond_val ->
- if cond_val then
- body vars >>= fun vars -> whileM vars cond body
- else return vars
-
-val untilM : forall 'rv 'vars 'e. 'vars -> ('vars -> monad 'rv bool 'e) ->
- ('vars -> monad 'rv 'vars 'e) -> monad 'rv 'vars 'e
-let rec untilM vars cond body =
- body vars >>= fun vars ->
- cond vars >>= fun cond_val ->
- if cond_val then return vars else untilM vars cond body
-
-val choose_bools : forall 'rv 'e. string -> nat -> monad 'rv (list bool) 'e
-let choose_bools descr n = genlistM (fun _ -> choose_bool descr) n
-
-val choose : forall 'rv 'a 'e. string -> list 'a -> monad 'rv 'a 'e
-let choose descr xs =
- (* Use sufficiently many nondeterministically chosen bits and convert into an
- index into the list *)
- choose_bools descr (List.length xs) >>= fun bs ->
- let idx = (natFromNatural (nat_of_bools bs)) mod List.length xs in
- match index xs idx with
- | Just x -> return x
- | Nothing -> Fail ("choose " ^ descr)
- end
-
-declare {isabelle} rename function choose = chooseM
-
-val internal_pick : forall 'rv 'a 'e. list 'a -> monad 'rv 'a 'e
-let internal_pick xs = choose "internal_pick" xs
-
-(*let write_two_regs r1 r2 vec =
- let is_inc =
- let is_inc_r1 = is_inc_of_reg r1 in
- let is_inc_r2 = is_inc_of_reg r2 in
- let () = ensure (is_inc_r1 = is_inc_r2)
- "write_two_regs called with vectors of different direction" in
- is_inc_r1 in
-
- let (size_r1 : integer) = size_of_reg r1 in
- let (start_vec : integer) = get_start vec in
- let size_vec = length vec in
- let r1_v =
- if is_inc
- then slice vec start_vec (size_r1 - start_vec - 1)
- else slice vec start_vec (start_vec - size_r1 - 1) in
- let r2_v =
- if is_inc
- then slice vec (size_r1 - start_vec) (size_vec - start_vec)
- else slice vec (start_vec - size_r1) (start_vec - size_vec) in
- write_reg r1 r1_v >> write_reg r2 r2_v*)
diff --git a/src/gen_lib/0.11/sail2_prompt_monad.lem b/src/gen_lib/0.11/sail2_prompt_monad.lem
deleted file mode 100644
index 28c0a27e..00000000
--- a/src/gen_lib/0.11/sail2_prompt_monad.lem
+++ /dev/null
@@ -1,336 +0,0 @@
-open import Pervasives_extra
-(*open import Sail_impl_base*)
-open import Sail2_instr_kinds
-open import Sail2_values
-
-type register_name = string
-type address = list bitU
-
-type monad 'regval 'a 'e =
- | Done of 'a
- (* Read a number of bytes from memory, returned in little endian order,
- with or without a tag. The first nat specifies the address, the second
- the number of bytes. *)
- | Read_mem of read_kind * nat * nat * (list memory_byte -> monad 'regval 'a 'e)
- | Read_memt of read_kind * nat * nat * ((list memory_byte * bitU) -> monad 'regval 'a 'e)
- (* Tell the system a write is imminent, at the given address and with the
- given size. *)
- | Write_ea of write_kind * nat * nat * monad 'regval 'a 'e
- (* Request the result of store-exclusive *)
- | Excl_res of (bool -> monad 'regval 'a 'e)
- (* Request to write a memory value of the given size at the given address,
- with or without a tag. *)
- | Write_mem of write_kind * nat * nat * list memory_byte * (bool -> monad 'regval 'a 'e)
- | Write_memt of write_kind * nat * nat * list memory_byte * bitU * (bool -> monad 'regval 'a 'e)
- (* Tell the system to dynamically recalculate dependency footprint *)
- | Footprint of monad 'regval 'a 'e
- (* Request a memory barrier *)
- | Barrier of barrier_kind * monad 'regval 'a 'e
- (* Request to read register, will track dependency when mode.track_values *)
- | Read_reg of register_name * ('regval -> monad 'regval 'a 'e)
- (* Request to write register *)
- | Write_reg of register_name * 'regval * monad 'regval 'a 'e
- (* Request to choose a Boolean, e.g. to resolve an undefined bit. The string
- argument may be used to provide information to the system about what the
- Boolean is going to be used for. *)
- | Choose of string * (bool -> monad 'regval 'a 'e)
- (* Print debugging or tracing information *)
- | Print of string * monad 'regval 'a 'e
- (*Result of a failed assert with possible error message to report*)
- | Fail of string
- (* Exception of type 'e *)
- | Exception of 'e
-
-type event 'regval =
- | E_read_mem of read_kind * nat * nat * list memory_byte
- | E_read_memt of read_kind * nat * nat * (list memory_byte * bitU)
- | E_write_mem of write_kind * nat * nat * list memory_byte * bool
- | E_write_memt of write_kind * nat * nat * list memory_byte * bitU * bool
- | E_write_ea of write_kind * nat * nat
- | E_excl_res of bool
- | E_barrier of barrier_kind
- | E_footprint
- | E_read_reg of register_name * 'regval
- | E_write_reg of register_name * 'regval
- | E_choose of string * bool
- | E_print of string
-
-type trace 'regval = list (event 'regval)
-
-val return : forall 'rv 'a 'e. 'a -> monad 'rv 'a 'e
-let return a = Done a
-
-val bind : forall 'rv 'a 'b 'e. monad 'rv 'a 'e -> ('a -> monad 'rv 'b 'e) -> monad 'rv 'b 'e
-let rec bind m f = match m with
- | Done a -> f a
- | Read_mem rk a sz k -> Read_mem rk a sz (fun v -> bind (k v) f)
- | Read_memt rk a sz k -> Read_memt rk a sz (fun v -> bind (k v) f)
- | Write_mem wk a sz v k -> Write_mem wk a sz v (fun v -> bind (k v) f)
- | Write_memt wk a sz v t k -> Write_memt wk a sz v t (fun v -> bind (k v) f)
- | Read_reg descr k -> Read_reg descr (fun v -> bind (k v) f)
- | Excl_res k -> Excl_res (fun v -> bind (k v) f)
- | Choose descr k -> Choose descr (fun v -> bind (k v) f)
- | Write_ea wk a sz k -> Write_ea wk a sz (bind k f)
- | Footprint k -> Footprint (bind k f)
- | Barrier bk k -> Barrier bk (bind k f)
- | Write_reg r v k -> Write_reg r v (bind k f)
- | Print msg k -> Print msg (bind k f)
- | Fail descr -> Fail descr
- | Exception e -> Exception e
-end
-
-val exit : forall 'rv 'a 'e. unit -> monad 'rv 'a 'e
-let exit () = Fail "exit"
-
-val choose_bool : forall 'rv 'e. string -> monad 'rv bool 'e
-let choose_bool descr = Choose descr return
-
-val undefined_bool : forall 'rv 'e. unit -> monad 'rv bool 'e
-let undefined_bool () = choose_bool "undefined_bool"
-
-val assert_exp : forall 'rv 'e. bool -> string -> monad 'rv unit 'e
-let assert_exp exp msg = if exp then Done () else Fail msg
-
-val throw : forall 'rv 'a 'e. 'e -> monad 'rv 'a 'e
-let throw e = Exception e
-
-val try_catch : forall 'rv 'a 'e1 'e2. monad 'rv 'a 'e1 -> ('e1 -> monad 'rv 'a 'e2) -> monad 'rv 'a 'e2
-let rec try_catch m h = match m with
- | Done a -> Done a
- | Read_mem rk a sz k -> Read_mem rk a sz (fun v -> try_catch (k v) h)
- | Read_memt rk a sz k -> Read_memt rk a sz (fun v -> try_catch (k v) h)
- | Write_mem wk a sz v k -> Write_mem wk a sz v (fun v -> try_catch (k v) h)
- | Write_memt wk a sz v t k -> Write_memt wk a sz v t (fun v -> try_catch (k v) h)
- | Read_reg descr k -> Read_reg descr (fun v -> try_catch (k v) h)
- | Excl_res k -> Excl_res (fun v -> try_catch (k v) h)
- | Choose descr k -> Choose descr (fun v -> try_catch (k v) h)
- | Write_ea wk a sz k -> Write_ea wk a sz (try_catch k h)
- | Footprint k -> Footprint (try_catch k h)
- | Barrier bk k -> Barrier bk (try_catch k h)
- | Write_reg r v k -> Write_reg r v (try_catch k h)
- | Print msg k -> Print msg (try_catch k h)
- | Fail descr -> Fail descr
- | Exception e -> h e
-end
-
-(* For early return, we abuse exceptions by throwing and catching
- the return value. The exception type is "either 'r 'e", where "Right e"
- represents a proper exception and "Left r" an early return of value "r". *)
-type monadR 'rv 'a 'r 'e = monad 'rv 'a (either 'r 'e)
-
-val early_return : forall 'rv 'a 'r 'e. 'r -> monadR 'rv 'a 'r 'e
-let early_return r = throw (Left r)
-
-val catch_early_return : forall 'rv 'a 'e. monadR 'rv 'a 'a 'e -> monad 'rv 'a 'e
-let catch_early_return m =
- try_catch m
- (function
- | Left a -> return a
- | Right e -> throw e
- end)
-
-(* Lift to monad with early return by wrapping exceptions *)
-val liftR : forall 'rv 'a 'r 'e. monad 'rv 'a 'e -> monadR 'rv 'a 'r 'e
-let liftR m = try_catch m (fun e -> throw (Right e))
-
-(* Catch exceptions in the presence of early returns *)
-val try_catchR : forall 'rv 'a 'r 'e1 'e2. monadR 'rv 'a 'r 'e1 -> ('e1 -> monadR 'rv 'a 'r 'e2) -> monadR 'rv 'a 'r 'e2
-let try_catchR m h =
- try_catch m
- (function
- | Left r -> throw (Left r)
- | Right e -> h e
- end)
-
-val maybe_fail : forall 'rv 'a 'e. string -> maybe 'a -> monad 'rv 'a 'e
-let maybe_fail msg = function
- | Just a -> return a
- | Nothing -> Fail msg
-end
-
-val read_memt_bytes : forall 'rv 'a 'b 'e. Bitvector 'a, Bitvector 'b => read_kind -> 'a -> integer -> monad 'rv (list memory_byte * bitU) 'e
-let read_memt_bytes rk addr sz =
- bind
- (maybe_fail "nat_of_bv" (nat_of_bv addr))
- (fun addr -> Read_memt rk addr (nat_of_int sz) return)
-
-val read_memt : forall 'rv 'a 'b 'e. Bitvector 'a, Bitvector 'b => read_kind -> 'a -> integer -> monad 'rv ('b * bitU) 'e
-let read_memt rk addr sz =
- bind
- (read_memt_bytes rk addr sz)
- (fun (bytes, tag) ->
- match of_bits (bits_of_mem_bytes bytes) with
- | Just v -> return (v, tag)
- | Nothing -> Fail "bits_of_mem_bytes"
- end)
-
-val read_mem_bytes : forall 'rv 'a 'b 'e. Bitvector 'a, Bitvector 'b => read_kind -> 'a -> integer -> monad 'rv (list memory_byte) 'e
-let read_mem_bytes rk addr sz =
- bind
- (maybe_fail "nat_of_bv" (nat_of_bv addr))
- (fun addr -> Read_mem rk addr (nat_of_int sz) return)
-
-val read_mem : forall 'rv 'a 'b 'e 'addrsize. Bitvector 'a, Bitvector 'b => read_kind -> 'addrsize -> 'a -> integer -> monad 'rv 'b 'e
-let read_mem rk addr_sz addr sz =
- bind
- (read_mem_bytes rk addr sz)
- (fun bytes ->
- match of_bits (bits_of_mem_bytes bytes) with
- | Just v -> return v
- | Nothing -> Fail "bits_of_mem_bytes"
- end)
-
-val excl_result : forall 'rv 'e. unit -> monad 'rv bool 'e
-let excl_result () =
- let k successful = (return successful) in
- Excl_res k
-
-val write_mem_ea : forall 'rv 'a 'e 'addrsize. Bitvector 'a => write_kind -> 'addrsize -> 'a -> integer -> monad 'rv unit 'e
-let write_mem_ea wk addr_size addr sz =
- bind
- (maybe_fail "nat_of_bv" (nat_of_bv addr))
- (fun addr -> Write_ea wk addr (nat_of_int sz) (Done ()))
-
-val write_mem : forall 'rv 'a 'b 'e 'addrsize. Bitvector 'a, Bitvector 'b =>
- write_kind -> 'addrsize -> 'a -> integer -> 'b -> monad 'rv bool 'e
-let write_mem wk addr_size addr sz v =
- match (mem_bytes_of_bits v, nat_of_bv addr) with
- | (Just v, Just addr) ->
- Write_mem wk addr (nat_of_int sz) v return
- | _ -> Fail "write_mem"
- end
-
-val write_memt : forall 'rv 'a 'b 'e. Bitvector 'a, Bitvector 'b =>
- write_kind -> 'a -> integer -> 'b -> bitU -> monad 'rv bool 'e
-let write_memt wk addr sz v tag =
- match (mem_bytes_of_bits v, nat_of_bv addr) with
- | (Just v, Just addr) ->
- Write_memt wk addr (nat_of_int sz) v tag return
- | _ -> Fail "write_mem"
- end
-
-val read_reg : forall 's 'rv 'a 'e. register_ref 's 'rv 'a -> monad 'rv 'a 'e
-let read_reg reg =
- let k v =
- match reg.of_regval v with
- | Just v -> Done v
- | Nothing -> Fail "read_reg: unrecognised value"
- end
- in
- Read_reg reg.name k
-
-(* TODO
-val read_reg_range : forall 's 'r 'rv 'a 'e. Bitvector 'a => register_ref 's 'rv 'r -> integer -> integer -> monad 'rv 'a 'e
-let read_reg_range reg i j =
- read_reg_aux of_bits (external_reg_slice reg (nat_of_int i,nat_of_int j))
-
-let read_reg_bit reg i =
- read_reg_aux (fun v -> v) (external_reg_slice reg (nat_of_int i,nat_of_int i)) >>= fun v ->
- return (extract_only_element v)
-
-let read_reg_field reg regfield =
- read_reg_aux (external_reg_field_whole reg regfield)
-
-let read_reg_bitfield reg regfield =
- read_reg_aux (external_reg_field_whole reg regfield) >>= fun v ->
- return (extract_only_element v)*)
-
-let reg_deref = read_reg
-
-val write_reg : forall 's 'rv 'a 'e. register_ref 's 'rv 'a -> 'a -> monad 'rv unit 'e
-let write_reg reg v = Write_reg reg.name (reg.regval_of v) (Done ())
-
-(* TODO
-let write_reg reg v =
- write_reg_aux (external_reg_whole reg) v
-let write_reg_range reg i j v =
- write_reg_aux (external_reg_slice reg (nat_of_int i,nat_of_int j)) v
-let write_reg_pos reg i v =
- let iN = nat_of_int i in
- write_reg_aux (external_reg_slice reg (iN,iN)) [v]
-let write_reg_bit = write_reg_pos
-let write_reg_field reg regfield v =
- write_reg_aux (external_reg_field_whole reg regfield.field_name) v
-let write_reg_field_bit reg regfield bit =
- write_reg_aux (external_reg_field_whole reg regfield.field_name)
- (Vector [bit] 0 (is_inc_of_reg reg))
-let write_reg_field_range reg regfield i j v =
- write_reg_aux (external_reg_field_slice reg regfield.field_name (nat_of_int i,nat_of_int j)) v
-let write_reg_field_pos reg regfield i v =
- write_reg_field_range reg regfield i i [v]
-let write_reg_field_bit = write_reg_field_pos*)
-
-val barrier : forall 'rv 'e. barrier_kind -> monad 'rv unit 'e
-let barrier bk = Barrier bk (Done ())
-
-val footprint : forall 'rv 'e. unit -> monad 'rv unit 'e
-let footprint _ = Footprint (Done ())
-
-(* Event traces *)
-
-val emitEvent : forall 'regval 'a 'e. Eq 'regval => monad 'regval 'a 'e -> event 'regval -> maybe (monad 'regval 'a 'e)
-let emitEvent m e = match (e, m) with
- | (E_read_mem rk a sz v, Read_mem rk' a' sz' k) ->
- if rk' = rk && a' = a && sz' = sz then Just (k v) else Nothing
- | (E_read_memt rk a sz vt, Read_memt rk' a' sz' k) ->
- if rk' = rk && a' = a && sz' = sz then Just (k vt) else Nothing
- | (E_write_mem wk a sz v r, Write_mem wk' a' sz' v' k) ->
- if wk' = wk && a' = a && sz' = sz && v' = v then Just (k r) else Nothing
- | (E_write_memt wk a sz v tag r, Write_memt wk' a' sz' v' tag' k) ->
- if wk' = wk && a' = a && sz' = sz && v' = v && tag' = tag then Just (k r) else Nothing
- | (E_read_reg r v, Read_reg r' k) ->
- if r' = r then Just (k v) else Nothing
- | (E_write_reg r v, Write_reg r' v' k) ->
- if r' = r && v' = v then Just k else Nothing
- | (E_write_ea wk a sz, Write_ea wk' a' sz' k) ->
- if wk' = wk && a' = a && sz' = sz then Just k else Nothing
- | (E_barrier bk, Barrier bk' k) ->
- if bk' = bk then Just k else Nothing
- | (E_print m, Print m' k) ->
- if m' = m then Just k else Nothing
- | (E_excl_res v, Excl_res k) -> Just (k v)
- | (E_choose descr v, Choose descr' k) -> if descr' = descr then Just (k v) else Nothing
- | (E_footprint, Footprint k) -> Just k
- | _ -> Nothing
-end
-
-val runTrace : forall 'regval 'a 'e. Eq 'regval => trace 'regval -> monad 'regval 'a 'e -> maybe (monad 'regval 'a 'e)
-let rec runTrace t m = match t with
- | [] -> Just m
- | e :: t' -> Maybe.bind (emitEvent m e) (runTrace t')
-end
-
-declare {isabelle} termination_argument runTrace = automatic
-
-val final : forall 'regval 'a 'e. monad 'regval 'a 'e -> bool
-let final = function
- | Done _ -> true
- | Fail _ -> true
- | Exception _ -> true
- | _ -> false
-end
-
-val hasTrace : forall 'regval 'a 'e. Eq 'regval => trace 'regval -> monad 'regval 'a 'e -> bool
-let hasTrace t m = match runTrace t m with
- | Just m -> final m
- | Nothing -> false
-end
-
-val hasException : forall 'regval 'a 'e. Eq 'regval => trace 'regval -> monad 'regval 'a 'e -> bool
-let hasException t m = match runTrace t m with
- | Just (Exception _) -> true
- | _ -> false
-end
-
-val hasFailure : forall 'regval 'a 'e. Eq 'regval => trace 'regval -> monad 'regval 'a 'e -> bool
-let hasFailure t m = match runTrace t m with
- | Just (Fail _) -> true
- | _ -> false
-end
-
-(* Define a type synonym that also takes the register state as a type parameter,
- in order to make switching to the state monad without changing generated
- definitions easier, see also lib/hol/prompt_monad.lem. *)
-
-type base_monad 'regval 'regstate 'a 'e = monad 'regval 'a 'e
-type base_monadR 'regval 'regstate 'a 'r 'e = monadR 'regval 'a 'r 'e
diff --git a/src/gen_lib/0.11/sail2_state.lem b/src/gen_lib/0.11/sail2_state.lem
deleted file mode 100644
index ec787764..00000000
--- a/src/gen_lib/0.11/sail2_state.lem
+++ /dev/null
@@ -1,105 +0,0 @@
-open import Pervasives_extra
-open import Sail2_values
-open import Sail2_state_monad
-open import {isabelle} `Sail2_state_monad_lemmas`
-
-val iterS_aux : forall 'rv 'a 'e. integer -> (integer -> 'a -> monadS 'rv unit 'e) -> list 'a -> monadS 'rv unit 'e
-let rec iterS_aux i f xs = match xs with
- | x :: xs -> f i x >>$ iterS_aux (i + 1) f xs
- | [] -> returnS ()
- end
-
-declare {isabelle} termination_argument iterS_aux = automatic
-
-val iteriS : forall 'rv 'a 'e. (integer -> 'a -> monadS 'rv unit 'e) -> list 'a -> monadS 'rv unit 'e
-let iteriS f xs = iterS_aux 0 f xs
-
-val iterS : forall 'rv 'a 'e. ('a -> monadS 'rv unit 'e) -> list 'a -> monadS 'rv unit 'e
-let iterS f xs = iteriS (fun _ x -> f x) xs
-
-val foreachS : forall 'a 'rv 'vars 'e.
- list 'a -> 'vars -> ('a -> 'vars -> monadS 'rv 'vars 'e) -> monadS 'rv 'vars 'e
-let rec foreachS xs vars body = match xs with
- | [] -> returnS vars
- | x :: xs ->
- body x vars >>$= fun vars ->
- foreachS xs vars body
-end
-
-declare {isabelle} termination_argument foreachS = automatic
-
-val genlistS : forall 'a 'rv 'e. (nat -> monadS 'rv 'a 'e) -> nat -> monadS 'rv (list 'a) 'e
-let genlistS f n =
- let indices = genlist (fun n -> n) n in
- foreachS indices [] (fun n xs -> (f n >>$= (fun x -> returnS (xs ++ [x]))))
-
-val and_boolS : forall 'rv 'e. monadS 'rv bool 'e -> monadS 'rv bool 'e -> monadS 'rv bool 'e
-let and_boolS l r = l >>$= (fun l -> if l then r else returnS false)
-
-val or_boolS : forall 'rv 'e. monadS 'rv bool 'e -> monadS 'rv bool 'e -> monadS 'rv bool 'e
-let or_boolS l r = l >>$= (fun l -> if l then returnS true else r)
-
-val bool_of_bitU_fail : forall 'rv 'e. bitU -> monadS 'rv bool 'e
-let bool_of_bitU_fail = function
- | B0 -> returnS false
- | B1 -> returnS true
- | BU -> failS "bool_of_bitU"
-end
-
-val bool_of_bitU_nondetS : forall 'rv 'e. bitU -> monadS 'rv bool 'e
-let bool_of_bitU_nondetS = function
- | B0 -> returnS false
- | B1 -> returnS true
- | BU -> undefined_boolS ()
-end
-
-val bools_of_bits_nondetS : forall 'rv 'e. list bitU -> monadS 'rv (list bool) 'e
-let bools_of_bits_nondetS bits =
- foreachS bits []
- (fun b bools ->
- bool_of_bitU_nondetS b >>$= (fun b ->
- returnS (bools ++ [b])))
-
-val of_bits_nondetS : forall 'rv 'a 'e. Bitvector 'a => list bitU -> monadS 'rv 'a 'e
-let of_bits_nondetS bits =
- bools_of_bits_nondetS bits >>$= (fun bs ->
- returnS (of_bools bs))
-
-val of_bits_failS : forall 'rv 'a 'e. Bitvector 'a => list bitU -> monadS 'rv 'a 'e
-let of_bits_failS bits = maybe_failS "of_bits" (of_bits bits)
-
-val mword_nondetS : forall 'rv 'a 'e. Size 'a => unit -> monadS 'rv (mword 'a) 'e
-let mword_nondetS () =
- bools_of_bits_nondetS (repeat [BU] (integerFromNat size)) >>$= (fun bs ->
- returnS (wordFromBitlist bs))
-
-
-val whileS : forall 'rv 'vars 'e. 'vars -> ('vars -> monadS 'rv bool 'e) ->
- ('vars -> monadS 'rv 'vars 'e) -> monadS 'rv 'vars 'e
-let rec whileS vars cond body s =
- (cond vars >>$= (fun cond_val s' ->
- if cond_val then
- (body vars >>$= (fun vars s'' -> whileS vars cond body s'')) s'
- else returnS vars s')) s
-
-val untilS : forall 'rv 'vars 'e. 'vars -> ('vars -> monadS 'rv bool 'e) ->
- ('vars -> monadS 'rv 'vars 'e) -> monadS 'rv 'vars 'e
-let rec untilS vars cond body s =
- (body vars >>$= (fun vars s' ->
- (cond vars >>$= (fun cond_val s'' ->
- if cond_val then returnS vars s'' else untilS vars cond body s'')) s')) s
-
-val choose_boolsS : forall 'rv 'e. nat -> monadS 'rv (list bool) 'e
-let choose_boolsS n = genlistS (fun _ -> choose_boolS ()) n
-
-(* TODO: Replace by chooseS and prove equivalence to prompt monad version *)
-val internal_pickS : forall 'rv 'a 'e. list 'a -> monadS 'rv 'a 'e
-let internal_pickS xs =
- (* Use sufficiently many nondeterministically chosen bits and convert into an
- index into the list *)
- choose_boolsS (List.length xs) >>$= fun bs ->
- let idx = (natFromNatural (nat_of_bools bs)) mod List.length xs in
- match index xs idx with
- | Just x -> returnS x
- | Nothing -> failS "choose internal_pick"
- end
diff --git a/src/gen_lib/0.11/sail2_state_lifting.lem b/src/gen_lib/0.11/sail2_state_lifting.lem
deleted file mode 100644
index 98a5390d..00000000
--- a/src/gen_lib/0.11/sail2_state_lifting.lem
+++ /dev/null
@@ -1,57 +0,0 @@
-open import Pervasives_extra
-open import Sail2_values
-open import Sail2_prompt_monad
-open import Sail2_prompt
-open import Sail2_state_monad
-open import {isabelle} `Sail2_state_monad_lemmas`
-
-(* Lifting from prompt monad to state monad *)
-val liftState : forall 'regval 'regs 'a 'e. register_accessors 'regs 'regval -> monad 'regval 'a 'e -> monadS 'regs 'a 'e
-let rec liftState ra m = match m with
- | (Done a) -> returnS a
- | (Read_mem rk a sz k) -> bindS (read_mem_bytesS rk a sz) (fun v -> liftState ra (k v))
- | (Read_memt rk a sz k) -> bindS (read_memt_bytesS rk a sz) (fun v -> liftState ra (k v))
- | (Write_mem wk a sz v k) -> bindS (write_mem_bytesS wk a sz v) (fun v -> liftState ra (k v))
- | (Write_memt wk a sz v t k) -> bindS (write_memt_bytesS wk a sz v t) (fun v -> liftState ra (k v))
- | (Read_reg r k) -> bindS (read_regvalS ra r) (fun v -> liftState ra (k v))
- | (Excl_res k) -> bindS (excl_resultS ()) (fun v -> liftState ra (k v))
- | (Choose _ k) -> bindS (choose_boolS ()) (fun v -> liftState ra (k v))
- | (Write_reg r v k) -> seqS (write_regvalS ra r v) (liftState ra k)
- | (Write_ea _ _ _ k) -> liftState ra k
- | (Footprint k) -> liftState ra k
- | (Barrier _ k) -> liftState ra k
- | (Print _ k) -> liftState ra k (* TODO *)
- | (Fail descr) -> failS descr
- | (Exception e) -> throwS e
-end
-
-val emitEventS : forall 'regval 'regs 'a 'e. Eq 'regval => register_accessors 'regs 'regval -> event 'regval -> sequential_state 'regs -> maybe (sequential_state 'regs)
-let emitEventS ra e s = match e with
- | E_read_mem _ addr sz v ->
- Maybe.bind (get_mem_bytes addr sz s) (fun (v', _) ->
- if v' = v then Just s else Nothing)
- | E_read_memt _ addr sz (v, tag) ->
- Maybe.bind (get_mem_bytes addr sz s) (fun (v', tag') ->
- if v' = v && tag' = tag then Just s else Nothing)
- | E_write_mem _ addr sz v success ->
- if success then Just (put_mem_bytes addr sz v B0 s) else Nothing
- | E_write_memt _ addr sz v tag success ->
- if success then Just (put_mem_bytes addr sz v tag s) else Nothing
- | E_read_reg r v ->
- let (read_reg, _) = ra in
- Maybe.bind (read_reg r s.regstate) (fun v' ->
- if v' = v then Just s else Nothing)
- | E_write_reg r v ->
- let (_, write_reg) = ra in
- Maybe.bind (write_reg r v s.regstate) (fun rs' ->
- Just <| s with regstate = rs' |>)
- | _ -> Just s
-end
-
-val runTraceS : forall 'regval 'regs 'a 'e. Eq 'regval => register_accessors 'regs 'regval -> trace 'regval -> sequential_state 'regs -> maybe (sequential_state 'regs)
-let rec runTraceS ra t s = match t with
- | [] -> Just s
- | e :: t' -> Maybe.bind (emitEventS ra e s) (runTraceS ra t')
-end
-
-declare {isabelle} termination_argument runTraceS = automatic
diff --git a/src/gen_lib/0.11/sail2_state_monad.lem b/src/gen_lib/0.11/sail2_state_monad.lem
deleted file mode 100644
index 8ea919f9..00000000
--- a/src/gen_lib/0.11/sail2_state_monad.lem
+++ /dev/null
@@ -1,278 +0,0 @@
-open import Pervasives_extra
-open import Sail2_instr_kinds
-open import Sail2_values
-
-(* 'a is result type *)
-
-type memstate = map nat memory_byte
-type tagstate = map nat bitU
-(* type regstate = map string (vector bitU) *)
-
-type sequential_state 'regs =
- <| regstate : 'regs;
- memstate : memstate;
- tagstate : tagstate |>
-
-val init_state : forall 'regs. 'regs -> sequential_state 'regs
-let init_state regs =
- <| regstate = regs;
- memstate = Map.empty;
- tagstate = Map.empty |>
-
-type ex 'e =
- | Failure of string
- | Throw of 'e
-
-type result 'a 'e =
- | Value of 'a
- | Ex of (ex 'e)
-
-(* State, nondeterminism and exception monad with result value type 'a
- and exception type 'e. *)
-type monadS 'regs 'a 'e = sequential_state 'regs -> set (result 'a 'e * sequential_state 'regs)
-
-val returnS : forall 'regs 'a 'e. 'a -> monadS 'regs 'a 'e
-let returnS a s = {(Value a,s)}
-
-val bindS : forall 'regs 'a 'b 'e. monadS 'regs 'a 'e -> ('a -> monadS 'regs 'b 'e) -> monadS 'regs 'b 'e
-let bindS m f (s : sequential_state 'regs) =
- Set.bigunion (Set.map (function
- | (Value a, s') -> f a s'
- | (Ex e, s') -> {(Ex e, s')}
- end) (m s))
-
-val seqS: forall 'regs 'b 'e. monadS 'regs unit 'e -> monadS 'regs 'b 'e -> monadS 'regs 'b 'e
-let seqS m n = bindS m (fun (_ : unit) -> n)
-
-let inline (>>$=) = bindS
-let inline (>>$) = seqS
-
-val chooseS : forall 'regs 'a 'e. SetType 'a => list 'a -> monadS 'regs 'a 'e
-let chooseS xs s = Set.fromList (List.map (fun x -> (Value x, s)) xs)
-
-val readS : forall 'regs 'a 'e. (sequential_state 'regs -> 'a) -> monadS 'regs 'a 'e
-let readS f = (fun s -> returnS (f s) s)
-
-val updateS : forall 'regs 'e. (sequential_state 'regs -> sequential_state 'regs) -> monadS 'regs unit 'e
-let updateS f = (fun s -> returnS () (f s))
-
-val failS : forall 'regs 'a 'e. string -> monadS 'regs 'a 'e
-let failS msg s = {(Ex (Failure msg), s)}
-
-val choose_boolS : forall 'regval 'regs 'a 'e. unit -> monadS 'regs bool 'e
-let choose_boolS () = chooseS [false; true]
-let undefined_boolS = choose_boolS
-
-val exitS : forall 'regs 'e 'a. unit -> monadS 'regs 'a 'e
-let exitS () = failS "exit"
-
-val throwS : forall 'regs 'a 'e. 'e -> monadS 'regs 'a 'e
-let throwS e s = {(Ex (Throw e), s)}
-
-val try_catchS : forall 'regs 'a 'e1 'e2. monadS 'regs 'a 'e1 -> ('e1 -> monadS 'regs 'a 'e2) -> monadS 'regs 'a 'e2
-let try_catchS m h s =
- Set.bigunion (Set.map (function
- | (Value a, s') -> returnS a s'
- | (Ex (Throw e), s') -> h e s'
- | (Ex (Failure msg), s') -> {(Ex (Failure msg), s')}
- end) (m s))
-
-val assert_expS : forall 'regs 'e. bool -> string -> monadS 'regs unit 'e
-let assert_expS exp msg = if exp then returnS () else failS msg
-
-(* For early return, we abuse exceptions by throwing and catching
- the return value. The exception type is "either 'r 'e", where "Right e"
- represents a proper exception and "Left r" an early return of value "r". *)
-type monadRS 'regs 'a 'r 'e = monadS 'regs 'a (either 'r 'e)
-
-val early_returnS : forall 'regs 'a 'r 'e. 'r -> monadRS 'regs 'a 'r 'e
-let early_returnS r = throwS (Left r)
-
-val catch_early_returnS : forall 'regs 'a 'e. monadRS 'regs 'a 'a 'e -> monadS 'regs 'a 'e
-let catch_early_returnS m =
- try_catchS m
- (function
- | Left a -> returnS a
- | Right e -> throwS e
- end)
-
-(* Lift to monad with early return by wrapping exceptions *)
-val liftRS : forall 'a 'r 'regs 'e. monadS 'regs 'a 'e -> monadRS 'regs 'a 'r 'e
-let liftRS m = try_catchS m (fun e -> throwS (Right e))
-
-(* Catch exceptions in the presence of early returns *)
-val try_catchRS : forall 'regs 'a 'r 'e1 'e2. monadRS 'regs 'a 'r 'e1 -> ('e1 -> monadRS 'regs 'a 'r 'e2) -> monadRS 'regs 'a 'r 'e2
-let try_catchRS m h =
- try_catchS m
- (function
- | Left r -> throwS (Left r)
- | Right e -> h e
- end)
-
-val maybe_failS : forall 'regs 'a 'e. string -> maybe 'a -> monadS 'regs 'a 'e
-let maybe_failS msg = function
- | Just a -> returnS a
- | Nothing -> failS msg
-end
-
-val read_tagS : forall 'regs 'a 'e. Bitvector 'a => 'a -> monadS 'regs bitU 'e
-let read_tagS addr =
- maybe_failS "nat_of_bv" (nat_of_bv addr) >>$= (fun addr ->
- readS (fun s -> fromMaybe B0 (Map.lookup addr s.tagstate)))
-
-(* Read bytes from memory and return in little endian order *)
-val get_mem_bytes : forall 'regs. nat -> nat -> sequential_state 'regs -> maybe (list memory_byte * bitU)
-let get_mem_bytes addr sz s =
- let addrs = genlist (fun n -> addr + n) sz in
- let read_byte s addr = Map.lookup addr s.memstate in
- let read_tag s addr = Map.findWithDefault addr B0 s.tagstate in
- Maybe.map
- (fun mem_val -> (mem_val, List.foldl and_bit B1 (List.map (read_tag s) addrs)))
- (just_list (List.map (read_byte s) addrs))
-
-val read_memt_bytesS : forall 'regs 'e. read_kind -> nat -> nat -> monadS 'regs (list memory_byte * bitU) 'e
-let read_memt_bytesS _ addr sz =
- readS (get_mem_bytes addr sz) >>$=
- maybe_failS "read_memS"
-
-val read_mem_bytesS : forall 'regs 'e. read_kind -> nat -> nat -> monadS 'regs (list memory_byte) 'e
-let read_mem_bytesS rk addr sz =
- read_memt_bytesS rk addr sz >>$= (fun (bytes, _) ->
- returnS bytes)
-
-val read_memtS : forall 'regs 'e 'a 'b. Bitvector 'a, Bitvector 'b => read_kind -> 'a -> integer -> monadS 'regs ('b * bitU) 'e
-let read_memtS rk a sz =
- maybe_failS "nat_of_bv" (nat_of_bv a) >>$= (fun a ->
- read_memt_bytesS rk a (nat_of_int sz) >>$= (fun (bytes, tag) ->
- maybe_failS "bits_of_mem_bytes" (of_bits (bits_of_mem_bytes bytes)) >>$= (fun mem_val ->
- returnS (mem_val, tag))))
-
-val read_memS : forall 'regs 'e 'a 'b 'addrsize. Bitvector 'a, Bitvector 'b => read_kind -> 'addrsize -> 'a -> integer -> monadS 'regs 'b 'e
-let read_memS rk addr_size a sz =
- read_memtS rk a sz >>$= (fun (bytes, _) ->
- returnS bytes)
-
-val excl_resultS : forall 'regs 'e. unit -> monadS 'regs bool 'e
-let excl_resultS =
- (* TODO: This used to be more deterministic, checking a flag in the state
- whether an exclusive load has occurred before. However, this does not
- seem very precise; it might be safer to overapproximate the possible
- behaviours by always making a nondeterministic choice. *)
- undefined_boolS
-
-(* Write little-endian list of bytes to given address *)
-val put_mem_bytes : forall 'regs. nat -> nat -> list memory_byte -> bitU -> sequential_state 'regs -> sequential_state 'regs
-let put_mem_bytes addr sz v tag s =
- let addrs = genlist (fun n -> addr + n) sz in
- let a_v = List.zip addrs v in
- let write_byte mem (addr, v) = Map.insert addr v mem in
- let write_tag mem addr = Map.insert addr tag mem in
- <| s with memstate = List.foldl write_byte s.memstate a_v;
- tagstate = List.foldl write_tag s.tagstate addrs |>
-
-val write_memt_bytesS : forall 'regs 'e. write_kind -> nat -> nat -> list memory_byte -> bitU -> monadS 'regs bool 'e
-let write_memt_bytesS _ addr sz v t =
- updateS (put_mem_bytes addr sz v t) >>$
- returnS true
-
-val write_mem_bytesS : forall 'regs 'e. write_kind -> nat -> nat -> list memory_byte -> monadS 'regs bool 'e
-let write_mem_bytesS wk addr sz v = write_memt_bytesS wk addr sz v B0
-
-val write_memtS : forall 'regs 'e 'a 'b. Bitvector 'a, Bitvector 'b =>
- write_kind -> 'a -> integer -> 'b -> bitU -> monadS 'regs bool 'e
-let write_memtS wk addr sz v t =
- match (nat_of_bv addr, mem_bytes_of_bits v) with
- | (Just addr, Just v) -> write_memt_bytesS wk addr (nat_of_int sz) v t
- | _ -> failS "write_mem"
- end
-
-val write_memS : forall 'regs 'e 'a 'b 'addrsize. Bitvector 'a, Bitvector 'b =>
- write_kind -> 'addrsize -> 'a -> integer -> 'b -> monadS 'regs bool 'e
-let write_memS wk addr_size addr sz v = write_memtS wk addr sz v B0
-
-val read_regS : forall 'regs 'rv 'a 'e. register_ref 'regs 'rv 'a -> monadS 'regs 'a 'e
-let read_regS reg = readS (fun s -> reg.read_from s.regstate)
-
-(* TODO
-let read_reg_range reg i j state =
- let v = slice (get_reg state (name_of_reg reg)) i j in
- [(Value (vec_to_bvec v),state)]
-let read_reg_bit reg i state =
- let v = access (get_reg state (name_of_reg reg)) i in
- [(Value v,state)]
-let read_reg_field reg regfield =
- let (i,j) = register_field_indices reg regfield in
- read_reg_range reg i j
-let read_reg_bitfield reg regfield =
- let (i,_) = register_field_indices reg regfield in
- read_reg_bit reg i *)
-
-val read_regvalS : forall 'regs 'rv 'e.
- register_accessors 'regs 'rv -> string -> monadS 'regs 'rv 'e
-let read_regvalS (read, _) reg =
- readS (fun s -> read reg s.regstate) >>$= (function
- | Just v -> returnS v
- | Nothing -> failS ("read_regvalS " ^ reg)
- end)
-
-val write_regvalS : forall 'regs 'rv 'e.
- register_accessors 'regs 'rv -> string -> 'rv -> monadS 'regs unit 'e
-let write_regvalS (_, write) reg v =
- readS (fun s -> write reg v s.regstate) >>$= (function
- | Just rs' -> updateS (fun s -> <| s with regstate = rs' |>)
- | Nothing -> failS ("write_regvalS " ^ reg)
- end)
-
-val write_regS : forall 'regs 'rv 'a 'e. register_ref 'regs 'rv 'a -> 'a -> monadS 'regs unit 'e
-let write_regS reg v =
- updateS (fun s -> <| s with regstate = reg.write_to v s.regstate |>)
-
-(* TODO
-val update_reg : forall 'regs 'rv 'a 'b 'e. register_ref 'regs 'rv 'a -> ('a -> 'b -> 'a) -> 'b -> monadS 'regs unit 'e
-let update_reg reg f v state =
- let current_value = get_reg state reg in
- let new_value = f current_value v in
- [(Value (), set_reg state reg new_value)]
-
-let write_reg_field reg regfield = update_reg reg regfield.set_field
-
-val update_reg_range : forall 'regs 'rv 'a 'b. Bitvector 'a, Bitvector 'b => register_ref 'regs 'rv 'a -> integer -> integer -> 'a -> 'b -> 'a
-let update_reg_range reg i j reg_val new_val = set_bits (reg.is_inc) reg_val i j (bits_of new_val)
-let write_reg_range reg i j = update_reg reg (update_reg_range reg i j)
-
-let update_reg_pos reg i reg_val x = update_list reg.is_inc reg_val i x
-let write_reg_pos reg i = update_reg reg (update_reg_pos reg i)
-
-let update_reg_bit reg i reg_val bit = set_bit (reg.is_inc) reg_val i (to_bitU bit)
-let write_reg_bit reg i = update_reg reg (update_reg_bit reg i)
-
-let update_reg_field_range regfield i j reg_val new_val =
- let current_field_value = regfield.get_field reg_val in
- let new_field_value = set_bits (regfield.field_is_inc) current_field_value i j (bits_of new_val) in
- regfield.set_field reg_val new_field_value
-let write_reg_field_range reg regfield i j = update_reg reg (update_reg_field_range regfield i j)
-
-let update_reg_field_pos regfield i reg_val x =
- let current_field_value = regfield.get_field reg_val in
- let new_field_value = update_list regfield.field_is_inc current_field_value i x in
- regfield.set_field reg_val new_field_value
-let write_reg_field_pos reg regfield i = update_reg reg (update_reg_field_pos regfield i)
-
-let update_reg_field_bit regfield i reg_val bit =
- let current_field_value = regfield.get_field reg_val in
- let new_field_value = set_bit (regfield.field_is_inc) current_field_value i (to_bitU bit) in
- regfield.set_field reg_val new_field_value
-let write_reg_field_bit reg regfield i = update_reg reg (update_reg_field_bit regfield i)*)
-
-(* TODO Add Show typeclass for value and exception type *)
-val show_result : forall 'a 'e. result 'a 'e -> string
-let show_result = function
- | Value _ -> "Value ()"
- | Ex (Failure msg) -> "Failure " ^ msg
- | Ex (Throw _) -> "Throw"
-end
-
-val prerr_results : forall 'a 'e 's. SetType 's => set (result 'a 'e * 's) -> unit
-let prerr_results rs =
- let _ = Set.map (fun (r, _) -> let _ = prerr_endline (show_result r) in ()) rs in
- ()
diff --git a/src/gen_lib/0.11/sail2_string.lem b/src/gen_lib/0.11/sail2_string.lem
deleted file mode 100644
index 33a665a0..00000000
--- a/src/gen_lib/0.11/sail2_string.lem
+++ /dev/null
@@ -1,448 +0,0 @@
-open import Pervasives
-open import List
-open import List_extra
-open import String
-open import String_extra
-
-open import Sail2_operators
-open import Sail2_values
-
-val string_sub : string -> ii -> ii -> string
-let string_sub str start len =
- toString (take (natFromInteger len) (drop (natFromInteger start) (toCharList str)))
-
-val string_startswith : string -> string -> bool
-let string_startswith str1 str2 =
- let prefix = string_sub str1 0 (integerFromNat (stringLength str2)) in
- (prefix = str2)
-
-val string_drop : string -> ii -> string
-let string_drop str n =
- toString (drop (natFromInteger n) (toCharList str))
-
-val string_take : string -> ii -> string
-let string_take str n =
- toString (take (natFromInteger n) (toCharList str))
-
-val string_length : string -> ii
-let string_length s = integerFromNat (stringLength s)
-
-let string_append = stringAppend
-
-(***********************************************
- * Begin stuff that should be in Lem Num_extra *
- ***********************************************)
-
-val maybeIntegerOfString : string -> maybe integer
-let maybeIntegerOfString _ = Nothing (* TODO FIXME *)
-declare ocaml target_rep function maybeIntegerOfString = `(fun s -> match int_of_string s with i -> Some (Nat_big_num.of_int i) | exception Failure _ -> None )`
-
-(***********************************************
- * end stuff that should be in Lem Num_extra *
- ***********************************************)
-
-let rec maybe_int_of_prefix s =
- match s with
- | "" -> Nothing
- | str ->
- let len = string_length str in
- match maybeIntegerOfString str with
- | Just n -> Just (n, len)
- | Nothing -> maybe_int_of_prefix (string_sub str 0 (len - 1))
- end
- end
-
-let maybe_int_of_string = maybeIntegerOfString
-
-val n_leading_spaces : string -> ii
-let rec n_leading_spaces s =
- let len = string_length s in
- if len = 0 then 0 else
- if len = 1 then
- match s with
- | " " -> 1
- | _ -> 0
- end
- else
- (* Isabelle generation for pattern matching on characters
- is currently broken, so use an if-expression *)
- if nth s 0 = #' '
- then 1 + (n_leading_spaces (string_sub s 1 (len - 1)))
- else 0
- (* end *)
-
-let opt_spc_matches_prefix s =
- Just ((), n_leading_spaces s)
-
-let spc_matches_prefix s =
- let n = n_leading_spaces s in
- (* match n with *)
-(* | 0 -> Nothing *)
- if n = 0 then Nothing else
- (* | n -> *) Just ((), n)
- (* end *)
-
-(* Python:
-f = """let hex_bits_{0}_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** {0}) then
- Just ((of_int {0} n, len))
- else
- Nothing
- end
-"""
-
-for i in list(range(1, 34)) + [48, 64]:
- print(f.format(i))
-*)
-let hex_bits_1_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 1) then
- Just ((of_int 1 n, len))
- else
- Nothing
- end
-
-let hex_bits_2_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 2) then
- Just ((of_int 2 n, len))
- else
- Nothing
- end
-
-let hex_bits_3_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 3) then
- Just ((of_int 3 n, len))
- else
- Nothing
- end
-
-let hex_bits_4_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 4) then
- Just ((of_int 4 n, len))
- else
- Nothing
- end
-
-let hex_bits_5_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 5) then
- Just ((of_int 5 n, len))
- else
- Nothing
- end
-
-let hex_bits_6_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 6) then
- Just ((of_int 6 n, len))
- else
- Nothing
- end
-
-let hex_bits_7_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 7) then
- Just ((of_int 7 n, len))
- else
- Nothing
- end
-
-let hex_bits_8_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 8) then
- Just ((of_int 8 n, len))
- else
- Nothing
- end
-
-let hex_bits_9_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 9) then
- Just ((of_int 9 n, len))
- else
- Nothing
- end
-
-let hex_bits_10_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 10) then
- Just ((of_int 10 n, len))
- else
- Nothing
- end
-
-let hex_bits_11_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 11) then
- Just ((of_int 11 n, len))
- else
- Nothing
- end
-
-let hex_bits_12_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 12) then
- Just ((of_int 12 n, len))
- else
- Nothing
- end
-
-let hex_bits_13_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 13) then
- Just ((of_int 13 n, len))
- else
- Nothing
- end
-
-let hex_bits_14_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 14) then
- Just ((of_int 14 n, len))
- else
- Nothing
- end
-
-let hex_bits_15_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 15) then
- Just ((of_int 15 n, len))
- else
- Nothing
- end
-
-let hex_bits_16_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 16) then
- Just ((of_int 16 n, len))
- else
- Nothing
- end
-
-let hex_bits_17_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 17) then
- Just ((of_int 17 n, len))
- else
- Nothing
- end
-
-let hex_bits_18_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 18) then
- Just ((of_int 18 n, len))
- else
- Nothing
- end
-
-let hex_bits_19_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 19) then
- Just ((of_int 19 n, len))
- else
- Nothing
- end
-
-let hex_bits_20_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 20) then
- Just ((of_int 20 n, len))
- else
- Nothing
- end
-
-let hex_bits_21_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 21) then
- Just ((of_int 21 n, len))
- else
- Nothing
- end
-
-let hex_bits_22_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 22) then
- Just ((of_int 22 n, len))
- else
- Nothing
- end
-
-let hex_bits_23_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 23) then
- Just ((of_int 23 n, len))
- else
- Nothing
- end
-
-let hex_bits_24_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 24) then
- Just ((of_int 24 n, len))
- else
- Nothing
- end
-
-let hex_bits_25_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 25) then
- Just ((of_int 25 n, len))
- else
- Nothing
- end
-
-let hex_bits_26_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 26) then
- Just ((of_int 26 n, len))
- else
- Nothing
- end
-
-let hex_bits_27_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 27) then
- Just ((of_int 27 n, len))
- else
- Nothing
- end
-
-let hex_bits_28_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 28) then
- Just ((of_int 28 n, len))
- else
- Nothing
- end
-
-let hex_bits_29_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 29) then
- Just ((of_int 29 n, len))
- else
- Nothing
- end
-
-let hex_bits_30_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 30) then
- Just ((of_int 30 n, len))
- else
- Nothing
- end
-
-let hex_bits_31_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 31) then
- Just ((of_int 31 n, len))
- else
- Nothing
- end
-
-let hex_bits_32_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 32) then
- Just ((of_int 32 n, len))
- else
- Nothing
- end
-
-let hex_bits_33_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 33) then
- Just ((of_int 33 n, len))
- else
- Nothing
- end
-
-let hex_bits_48_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 48) then
- Just ((of_int 48 n, len))
- else
- Nothing
- end
-
-let hex_bits_64_matches_prefix s =
- match maybe_int_of_prefix s with
- | Nothing -> Nothing
- | Just (n, len) ->
- if 0 <= n && n < (2 ** 64) then
- Just ((of_int 64 n, len))
- else
- Nothing
- end
diff --git a/src/gen_lib/0.11/sail2_values.lem b/src/gen_lib/0.11/sail2_values.lem
deleted file mode 100644
index f657803f..00000000
--- a/src/gen_lib/0.11/sail2_values.lem
+++ /dev/null
@@ -1,999 +0,0 @@
-open import Pervasives_extra
-open import Machine_word
-(*open import Sail_impl_base*)
-
-
-type ii = integer
-type nn = natural
-
-val nat_of_int : integer -> nat
-let nat_of_int i = if i < 0 then 0 else natFromInteger i
-
-val pow : integer -> integer -> integer
-let pow m n = m ** (nat_of_int n)
-
-let pow2 n = pow 2 n
-
-let inline lt = (<)
-let inline gt = (>)
-let inline lteq = (<=)
-let inline gteq = (>=)
-
-val eq : forall 'a. Eq 'a => 'a -> 'a -> bool
-let inline eq l r = (l = r)
-
-val neq : forall 'a. Eq 'a => 'a -> 'a -> bool
-let inline neq l r = (l <> r)
-
-(*let add_int l r = integerAdd l r
-let add_signed l r = integerAdd l r
-let sub_int l r = integerMinus l r
-let mult_int l r = integerMult l r
-let div_int l r = integerDiv l r
-let div_nat l r = natDiv l r
-let power_int_nat l r = integerPow l r
-let power_int_int l r = integerPow l (nat_of_int r)
-let negate_int i = integerNegate i
-let min_int l r = integerMin l r
-let max_int l r = integerMax l r
-
-let add_real l r = realAdd l r
-let sub_real l r = realMinus l r
-let mult_real l r = realMult l r
-let div_real l r = realDiv l r
-let negate_real r = realNegate r
-let abs_real r = realAbs r
-let power_real b e = realPowInteger b e*)
-
-val print_endline : string -> unit
-let print_endline _ = ()
-declare ocaml target_rep function print_endline = `print_endline`
-
-val print : string -> unit
-let print _ = ()
-declare ocaml target_rep function print = `print_string`
-
-val prerr_endline : string -> unit
-let prerr_endline _ = ()
-declare ocaml target_rep function prerr_endline = `prerr_endline`
-
-let prerr x = prerr_endline x
-
-val print_int : string -> integer -> unit
-let print_int msg i = print_endline (msg ^ (stringFromInteger i))
-
-val prerr_int : string -> integer -> unit
-let prerr_int msg i = prerr_endline (msg ^ (stringFromInteger i))
-
-val putchar : integer -> unit
-let putchar _ = ()
-declare ocaml target_rep function putchar i = (`print_char` (`char_of_int` (`Nat_big_num.to_int` i)))
-
-val shr_int : ii -> ii -> ii
-let rec shr_int x s = if s > 0 then shr_int (x / 2) (s - 1) else x
-
-val shl_int : integer -> integer -> integer
-let rec shl_int i shift = if shift > 0 then 2 * shl_int i (shift - 1) else i
-
-let inline or_bool l r = (l || r)
-let inline and_bool l r = (l && r)
-let inline xor_bool l r = xor l r
-
-let inline append_list l r = l ++ r
-let inline length_list xs = integerFromNat (List.length xs)
-let take_list n xs = List.take (nat_of_int n) xs
-let drop_list n xs = List.drop (nat_of_int n) xs
-
-val repeat : forall 'a. list 'a -> integer -> list 'a
-let rec repeat xs n =
- if n <= 0 then []
- else xs ++ repeat xs (n-1)
-declare {isabelle} termination_argument repeat = automatic
-
-let duplicate_to_list bit length = repeat [bit] length
-
-let rec replace bs (n : integer) b' = match bs with
- | [] -> []
- | b :: bs ->
- if n = 0 then b' :: bs
- else b :: replace bs (n - 1) b'
- end
-declare {isabelle; hol} termination_argument replace = automatic
-
-let upper n = n
-
-(* Modulus operation corresponding to quot below -- result
- has sign of dividend. *)
-let tmod_int (a: integer) (b:integer) : integer =
- let m = (abs a) mod (abs b) in
- if a < 0 then ~m else m
-
-let hardware_mod = tmod_int
-
-(* There are different possible answers for integer divide regarding
-rounding behaviour on negative operands. Positive operands always
-round down so derive the one we want (trucation towards zero) from
-that *)
-let tdiv_int (a:integer) (b:integer) : integer =
- let q = (abs a) / (abs b) in
- if ((a<0) = (b<0)) then
- q (* same sign -- result positive *)
- else
- ~q (* different sign -- result negative *)
-
-let hardware_quot = tdiv_int
-
-let max_64u = (integerPow 2 64) - 1
-let max_64 = (integerPow 2 63) - 1
-let min_64 = 0 - (integerPow 2 63)
-let max_32u = (4294967295 : integer)
-let max_32 = (2147483647 : integer)
-let min_32 = (0 - 2147483648 : integer)
-let max_8 = (127 : integer)
-let min_8 = (0 - 128 : integer)
-let max_5 = (31 : integer)
-let min_5 = (0 - 32 : integer)
-
-(* just_list takes a list of maybes and returns Just xs if all elements have
- a value, and Nothing if one of the elements is Nothing. *)
-val just_list : forall 'a. list (maybe 'a) -> maybe (list 'a)
-let rec just_list l = match l with
- | [] -> Just []
- | (x :: xs) ->
- match (x, just_list xs) with
- | (Just x, Just xs) -> Just (x :: xs)
- | (_, _) -> Nothing
- end
- end
-declare {isabelle; hol} termination_argument just_list = automatic
-
-lemma just_list_spec:
- ((forall xs. (just_list xs = Nothing) <-> List.elem Nothing xs) &&
- (forall xs es. (just_list xs = Just es) <-> (xs = List.map Just es)))
-
-val maybe_failwith : forall 'a. maybe 'a -> 'a
-let maybe_failwith = function
- | Just a -> a
- | Nothing -> failwith "maybe_failwith"
-end
-
-(*** Bits *)
-type bitU = B0 | B1 | BU
-
-let showBitU = function
- | B0 -> "O"
- | B1 -> "I"
- | BU -> "U"
-end
-
-let bitU_char = function
- | B0 -> #'0'
- | B1 -> #'1'
- | BU -> #'?'
-end
-
-instance (Show bitU)
- let show = showBitU
-end
-
-val compare_bitU : bitU -> bitU -> ordering
-let compare_bitU l r = match (l, r) with
- | (BU, BU) -> EQ
- | (B0, B0) -> EQ
- | (B1, B1) -> EQ
- | (BU, _) -> LT
- | (_, BU) -> GT
- | (B0, _) -> LT
- | (_, _) -> GT
-end
-
-instance (Ord bitU)
- let compare = compare_bitU
- let (<) l r = (compare_bitU l r) = LT
- let (<=) l r = (compare_bitU l r) <> GT
- let (>) l r = (compare_bitU l r) = GT
- let (>=) l r = (compare_bitU l r) <> LT
-end
-
-class (BitU 'a)
- val to_bitU : 'a -> bitU
- val of_bitU : bitU -> 'a
-end
-
-instance (BitU bitU)
- let to_bitU b = b
- let of_bitU b = b
-end
-
-let bool_of_bitU = function
- | B0 -> Just false
- | B1 -> Just true
- | BU -> Nothing
- end
-
-let bitU_of_bool b = if b then B1 else B0
-
-(*instance (BitU bool)
- let to_bitU = bitU_of_bool
- let of_bitU = bool_of_bitU
-end*)
-
-let cast_bit_bool = bool_of_bitU
-
-let not_bit = function
- | B1 -> B0
- | B0 -> B1
- | BU -> BU
- end
-
-val is_one : integer -> bitU
-let is_one i =
- if i = 1 then B1 else B0
-
-val and_bit : bitU -> bitU -> bitU
-let and_bit x y =
- match (x, y) with
- | (B0, _) -> B0
- | (_, B0) -> B0
- | (B1, B1) -> B1
- | (_, _) -> BU
- end
-
-val or_bit : bitU -> bitU -> bitU
-let or_bit x y =
- match (x, y) with
- | (B1, _) -> B1
- | (_, B1) -> B1
- | (B0, B0) -> B0
- | (_, _) -> BU
- end
-
-val xor_bit : bitU -> bitU -> bitU
-let xor_bit x y=
- match (x, y) with
- | (B0, B0) -> B0
- | (B0, B1) -> B1
- | (B1, B0) -> B1
- | (B1, B1) -> B0
- | (_, _) -> BU
- end
-
-val (&.) : bitU -> bitU -> bitU
-let inline (&.) x y = and_bit x y
-
-val (|.) : bitU -> bitU -> bitU
-let inline (|.) x y = or_bit x y
-
-val (+.) : bitU -> bitU -> bitU
-let inline (+.) x y = xor_bit x y
-
-
-(*** Bool lists ***)
-
-val bools_of_nat_aux : integer -> natural -> list bool -> list bool
-let rec bools_of_nat_aux len x acc =
- if len <= 0 then acc
- else bools_of_nat_aux (len - 1) (x / 2) ((if x mod 2 = 1 then true else false) :: acc)
- (*else (if x mod 2 = 1 then true else false) :: bools_of_nat_aux (x / 2)*)
-declare {isabelle} termination_argument bools_of_nat_aux = automatic
-let bools_of_nat len n = bools_of_nat_aux len n [] (*List.reverse (bools_of_nat_aux n)*)
-
-val nat_of_bools_aux : natural -> list bool -> natural
-let rec nat_of_bools_aux acc bs = match bs with
- | [] -> acc
- | true :: bs -> nat_of_bools_aux ((2 * acc) + 1) bs
- | false :: bs -> nat_of_bools_aux (2 * acc) bs
-end
-declare {isabelle; hol} termination_argument nat_of_bools_aux = automatic
-let nat_of_bools bs = nat_of_bools_aux 0 bs
-
-val unsigned_of_bools : list bool -> integer
-let unsigned_of_bools bs = integerFromNatural (nat_of_bools bs)
-
-val signed_of_bools : list bool -> integer
-let signed_of_bools bs =
- match bs with
- | true :: _ -> 0 - (1 + (unsigned_of_bools (List.map not bs)))
- | false :: _ -> unsigned_of_bools bs
- | [] -> 0 (* Treat empty list as all zeros *)
- end
-
-val int_of_bools : bool -> list bool -> integer
-let int_of_bools sign bs = if sign then signed_of_bools bs else unsigned_of_bools bs
-
-val pad_list : forall 'a. 'a -> list 'a -> integer -> list 'a
-let rec pad_list x xs n =
- if n <= 0 then xs else pad_list x (x :: xs) (n - 1)
-declare {isabelle} termination_argument pad_list = automatic
-
-let ext_list pad len xs =
- let longer = len - (integerFromNat (List.length xs)) in
- if longer < 0 then drop (nat_of_int (abs (longer))) xs
- else pad_list pad xs longer
-
-let extz_bools len bs = ext_list false len bs
-let exts_bools len bs =
- match bs with
- | true :: _ -> ext_list true len bs
- | _ -> ext_list false len bs
- end
-
-let rec add_one_bool_ignore_overflow_aux bits = match bits with
- | [] -> []
- | false :: bits -> true :: bits
- | true :: bits -> false :: add_one_bool_ignore_overflow_aux bits
-end
-declare {isabelle; hol} termination_argument add_one_bool_ignore_overflow_aux = automatic
-
-let add_one_bool_ignore_overflow bits =
- List.reverse (add_one_bool_ignore_overflow_aux (List.reverse bits))
-
-(*let bool_list_of_int n =
- let bs_abs = false :: bools_of_nat (naturalFromInteger (abs n)) in
- if n >= (0 : integer) then bs_abs
- else add_one_bool_ignore_overflow (List.map not bs_abs)
-let bools_of_int len n = exts_bools len (bool_list_of_int n)*)
-let bools_of_int len n =
- let bs_abs = bools_of_nat len (naturalFromInteger (abs n)) in
- if n >= (0 : integer) then bs_abs
- else add_one_bool_ignore_overflow (List.map not bs_abs)
-
-(*** Bit lists ***)
-
-val has_undefined_bits : list bitU -> bool
-let has_undefined_bits bs = List.any (function BU -> true | _ -> false end) bs
-
-let bits_of_nat len n = List.map bitU_of_bool (bools_of_nat len n)
-
-let nat_of_bits bits =
- match (just_list (List.map bool_of_bitU bits)) with
- | Just bs -> Just (nat_of_bools bs)
- | Nothing -> Nothing
- end
-
-let not_bits = List.map not_bit
-
-val binop_list : forall 'a. ('a -> 'a -> 'a) -> list 'a -> list 'a -> list 'a
-let binop_list op xs ys =
- foldr (fun (x, y) acc -> op x y :: acc) [] (zip xs ys)
-
-let unsigned_of_bits bits =
- match (just_list (List.map bool_of_bitU bits)) with
- | Just bs -> Just (unsigned_of_bools bs)
- | Nothing -> Nothing
- end
-
-let signed_of_bits bits =
- match (just_list (List.map bool_of_bitU bits)) with
- | Just bs -> Just (signed_of_bools bs)
- | Nothing -> Nothing
- end
-
-val int_of_bits : bool -> list bitU -> maybe integer
-let int_of_bits sign bs = if sign then signed_of_bits bs else unsigned_of_bits bs
-
-let extz_bits len bits = ext_list B0 len bits
-let exts_bits len bits =
- match bits with
- | BU :: _ -> ext_list BU len bits
- | B1 :: _ -> ext_list B1 len bits
- | _ -> ext_list B0 len bits
- end
-
-let rec add_one_bit_ignore_overflow_aux bits = match bits with
- | [] -> []
- | B0 :: bits -> B1 :: bits
- | B1 :: bits -> B0 :: add_one_bit_ignore_overflow_aux bits
- | BU :: bits -> BU :: List.map (fun _ -> BU) bits
-end
-declare {isabelle; hol} termination_argument add_one_bit_ignore_overflow_aux = automatic
-
-let add_one_bit_ignore_overflow bits =
- List.reverse (add_one_bit_ignore_overflow_aux (List.reverse bits))
-
-(*let bit_list_of_int n = List.map bitU_of_bool (bool_list_of_int n)
-let bits_of_int len n = exts_bits len (bit_list_of_int n)*)
-let bits_of_int len n = List.map bitU_of_bool (bools_of_int len n)
-
-val arith_op_bits :
- (integer -> integer -> integer) -> bool -> list bitU -> list bitU -> list bitU
-let arith_op_bits op sign l r =
- match (int_of_bits sign l, int_of_bits sign r) with
- | (Just li, Just ri) -> bits_of_int (length_list l) (op li ri)
- | (_, _) -> repeat [BU] (length_list l)
- end
-
-let char_of_nibble = function
- | (B0, B0, B0, B0) -> Just #'0'
- | (B0, B0, B0, B1) -> Just #'1'
- | (B0, B0, B1, B0) -> Just #'2'
- | (B0, B0, B1, B1) -> Just #'3'
- | (B0, B1, B0, B0) -> Just #'4'
- | (B0, B1, B0, B1) -> Just #'5'
- | (B0, B1, B1, B0) -> Just #'6'
- | (B0, B1, B1, B1) -> Just #'7'
- | (B1, B0, B0, B0) -> Just #'8'
- | (B1, B0, B0, B1) -> Just #'9'
- | (B1, B0, B1, B0) -> Just #'A'
- | (B1, B0, B1, B1) -> Just #'B'
- | (B1, B1, B0, B0) -> Just #'C'
- | (B1, B1, B0, B1) -> Just #'D'
- | (B1, B1, B1, B0) -> Just #'E'
- | (B1, B1, B1, B1) -> Just #'F'
- | _ -> Nothing
- end
-
-let rec hexstring_of_bits bs = match bs with
- | b1 :: b2 :: b3 :: b4 :: bs ->
- let n = char_of_nibble (b1, b2, b3, b4) in
- let s = hexstring_of_bits bs in
- match (n, s) with
- | (Just n, Just s) -> Just (n :: s)
- | _ -> Nothing
- end
- | [] -> Just []
- | _ -> Nothing
- end
-declare {isabelle; hol} termination_argument hexstring_of_bits = automatic
-
-let show_bitlist bs =
- match hexstring_of_bits bs with
- | Just s -> toString (#'0' :: #'x' :: s)
- | Nothing -> toString (#'0' :: #'b' :: map bitU_char bs)
- end
-
-(*** List operations *)
-
-let inline (^^) = append_list
-
-val subrange_list_inc : forall 'a. list 'a -> integer -> integer -> list 'a
-let subrange_list_inc xs i j =
- let (toJ,_suffix) = List.splitAt (nat_of_int (j + 1)) xs in
- let (_prefix,fromItoJ) = List.splitAt (nat_of_int i) toJ in
- fromItoJ
-
-val subrange_list_dec : forall 'a. list 'a -> integer -> integer -> list 'a
-let subrange_list_dec xs i j =
- let top = (length_list xs) - 1 in
- subrange_list_inc xs (top - i) (top - j)
-
-val subrange_list : forall 'a. bool -> list 'a -> integer -> integer -> list 'a
-let subrange_list is_inc xs i j = if is_inc then subrange_list_inc xs i j else subrange_list_dec xs i j
-
-val update_subrange_list_inc : forall 'a. list 'a -> integer -> integer -> list 'a -> list 'a
-let update_subrange_list_inc xs i j xs' =
- let (toJ,suffix) = List.splitAt (nat_of_int (j + 1)) xs in
- let (prefix,_fromItoJ) = List.splitAt (nat_of_int i) toJ in
- prefix ++ xs' ++ suffix
-
-val update_subrange_list_dec : forall 'a. list 'a -> integer -> integer -> list 'a -> list 'a
-let update_subrange_list_dec xs i j xs' =
- let top = (length_list xs) - 1 in
- update_subrange_list_inc xs (top - i) (top - j) xs'
-
-val update_subrange_list : forall 'a. bool -> list 'a -> integer -> integer -> list 'a -> list 'a
-let update_subrange_list is_inc xs i j xs' =
- if is_inc then update_subrange_list_inc xs i j xs' else update_subrange_list_dec xs i j xs'
-
-val access_list_inc : forall 'a. list 'a -> integer -> 'a
-let access_list_inc xs n = List_extra.nth xs (nat_of_int n)
-
-val access_list_dec : forall 'a. list 'a -> integer -> 'a
-let access_list_dec xs n =
- let top = (length_list xs) - 1 in
- access_list_inc xs (top - n)
-
-val access_list : forall 'a. bool -> list 'a -> integer -> 'a
-let access_list is_inc xs n =
- if is_inc then access_list_inc xs n else access_list_dec xs n
-
-val update_list_inc : forall 'a. list 'a -> integer -> 'a -> list 'a
-let update_list_inc xs n x = List.update xs (nat_of_int n) x
-
-val update_list_dec : forall 'a. list 'a -> integer -> 'a -> list 'a
-let update_list_dec xs n x =
- let top = (length_list xs) - 1 in
- update_list_inc xs (top - n) x
-
-val update_list : forall 'a. bool -> list 'a -> integer -> 'a -> list 'a
-let update_list is_inc xs n x =
- if is_inc then update_list_inc xs n x else update_list_dec xs n x
-
-let extract_only_bit = function
- | [] -> BU
- | [e] -> e
- | _ -> BU
-end
-
-(*** Machine words *)
-
-val length_mword : forall 'a. mword 'a -> integer
-let inline length_mword w = integerFromNat (word_length w)
-
-val slice_mword_dec : forall 'a 'b. mword 'a -> integer -> integer -> mword 'b
-let slice_mword_dec w i j = word_extract (nat_of_int i) (nat_of_int j) w
-
-val slice_mword_inc : forall 'a 'b. mword 'a -> integer -> integer -> mword 'b
-let slice_mword_inc w i j =
- let top = (length_mword w) - 1 in
- slice_mword_dec w (top - i) (top - j)
-
-val slice_mword : forall 'a 'b. bool -> mword 'a -> integer -> integer -> mword 'b
-let slice_mword is_inc w i j = if is_inc then slice_mword_inc w i j else slice_mword_dec w i j
-
-val update_slice_mword_dec : forall 'a 'b. mword 'a -> integer -> integer -> mword 'b -> mword 'a
-let update_slice_mword_dec w i j w' = word_update w (nat_of_int i) (nat_of_int j) w'
-
-val update_slice_mword_inc : forall 'a 'b. mword 'a -> integer -> integer -> mword 'b -> mword 'a
-let update_slice_mword_inc w i j w' =
- let top = (length_mword w) - 1 in
- update_slice_mword_dec w (top - i) (top - j) w'
-
-val update_slice_mword : forall 'a 'b. bool -> mword 'a -> integer -> integer -> mword 'b -> mword 'a
-let update_slice_mword is_inc w i j w' =
- if is_inc then update_slice_mword_inc w i j w' else update_slice_mword_dec w i j w'
-
-val access_mword_dec : forall 'a. mword 'a -> integer -> bitU
-let access_mword_dec w n = bitU_of_bool (getBit w (nat_of_int n))
-
-val access_mword_inc : forall 'a. mword 'a -> integer -> bitU
-let access_mword_inc w n =
- let top = (length_mword w) - 1 in
- access_mword_dec w (top - n)
-
-val access_mword : forall 'a. bool -> mword 'a -> integer -> bitU
-let access_mword is_inc w n =
- if is_inc then access_mword_inc w n else access_mword_dec w n
-
-val update_mword_bool_dec : forall 'a. mword 'a -> integer -> bool -> mword 'a
-let update_mword_bool_dec w n b = setBit w (nat_of_int n) b
-let update_mword_dec w n b = Maybe.map (update_mword_bool_dec w n) (bool_of_bitU b)
-
-val update_mword_bool_inc : forall 'a. mword 'a -> integer -> bool -> mword 'a
-let update_mword_bool_inc w n b =
- let top = (length_mword w) - 1 in
- update_mword_bool_dec w (top - n) b
-let update_mword_inc w n b = Maybe.map (update_mword_bool_inc w n) (bool_of_bitU b)
-
-val int_of_mword : forall 'a. bool -> mword 'a -> integer
-let int_of_mword sign w =
- if sign then signedIntegerFromWord w else unsignedIntegerFromWord w
-
-(* Translating between a type level number (itself 'n) and an integer *)
-
-let size_itself_int x = integerFromNat (size_itself x)
-
-(* NB: the corresponding sail type is forall 'n. atom('n) -> itself('n),
- the actual integer is ignored. *)
-
-val make_the_value : forall 'n. integer -> itself 'n
-let make_the_value _ = the_value
-
-(*** Bitvectors *)
-
-class (Bitvector 'a)
- val bits_of : 'a -> list bitU
- (* We allow of_bits to be partial, as not all bitvector representations
- support undefined bits *)
- val of_bits : list bitU -> maybe 'a
- val of_bools : list bool -> 'a
- val length : 'a -> integer
- (* of_int: the first parameter specifies the desired length of the bitvector *)
- val of_int : integer -> integer -> 'a
- (* Conversion to integers is undefined if any bit is undefined *)
- val unsigned : 'a -> maybe integer
- val signed : 'a -> maybe integer
- (* Lifting of integer operations to bitvectors: The boolean flag indicates
- whether to treat the bitvectors as signed (true) or not (false). *)
- val arith_op_bv : (integer -> integer -> integer) -> bool -> 'a -> 'a -> 'a
-end
-
-val of_bits_failwith : forall 'a. Bitvector 'a => list bitU -> 'a
-let of_bits_failwith bits = maybe_failwith (of_bits bits)
-
-let int_of_bv sign = if sign then signed else unsigned
-
-instance forall 'a. BitU 'a => (Bitvector (list 'a))
- let bits_of v = List.map to_bitU v
- let of_bits v = Just (List.map of_bitU v)
- let of_bools v = List.map of_bitU (List.map bitU_of_bool v)
- let of_int len n = List.map of_bitU (bits_of_int len n)
- let length = length_list
- let unsigned v = unsigned_of_bits (List.map to_bitU v)
- let signed v = signed_of_bits (List.map to_bitU v)
- let arith_op_bv op sign l r = List.map of_bitU (arith_op_bits op sign (List.map to_bitU l) (List.map to_bitU r))
-end
-
-instance forall 'a. Size 'a => (Bitvector (mword 'a))
- let bits_of v = List.map bitU_of_bool (bitlistFromWord v)
- let of_bits v = Maybe.map wordFromBitlist (just_list (List.map bool_of_bitU v))
- let of_bools v = wordFromBitlist v
- let of_int = (fun _ n -> wordFromInteger n)
- let length v = integerFromNat (word_length v)
- let unsigned v = Just (unsignedIntegerFromWord v)
- let signed v = Just (signedIntegerFromWord v)
- let arith_op_bv op sign l r = wordFromInteger (op (int_of_mword sign l) (int_of_mword sign r))
-end
-
-let access_bv_inc v n = access_list true (bits_of v) n
-let access_bv_dec v n = access_list false (bits_of v) n
-
-let update_bv_inc v n b = update_list true (bits_of v) n b
-let update_bv_dec v n b = update_list false (bits_of v) n b
-
-let subrange_bv_inc v i j = subrange_list true (bits_of v) i j
-let subrange_bv_dec v i j = subrange_list false (bits_of v) i j
-
-let update_subrange_bv_inc v i j v' = update_subrange_list true (bits_of v) i j (bits_of v')
-let update_subrange_bv_dec v i j v' = update_subrange_list false (bits_of v) i j (bits_of v')
-
-val extz_bv : forall 'a. Bitvector 'a => integer -> 'a -> list bitU
-let extz_bv n v = extz_bits n (bits_of v)
-
-val exts_bv : forall 'a. Bitvector 'a => integer -> 'a -> list bitU
-let exts_bv n v = exts_bits n (bits_of v)
-
-val nat_of_bv : forall 'a. Bitvector 'a => 'a -> maybe nat
-let nat_of_bv v = Maybe.map nat_of_int (unsigned v)
-
-val string_of_bv : forall 'a. Bitvector 'a => 'a -> string
-let string_of_bv v = show_bitlist (bits_of v)
-
-val print_bits : forall 'a. Bitvector 'a => string -> 'a -> unit
-let print_bits str v = print_endline (str ^ string_of_bv v)
-
-val dec_str : integer -> string
-let dec_str bv = show bv
-
-val concat_str : string -> string -> string
-let concat_str str1 str2 = str1 ^ str2
-
-val int_of_bit : bitU -> integer
-let int_of_bit b =
- match b with
- | B0 -> 0
- | B1 -> 1
- | _ -> failwith "int_of_bit saw unknown"
- end
-
-val count_leading_zero_bits : list bitU -> integer
-let rec count_leading_zero_bits v =
- match v with
- | B0 :: v' -> count_leading_zero_bits v' + 1
- | _ -> 0
- end
-
-val count_leading_zeros_bv : forall 'a. Bitvector 'a => 'a -> integer
-let count_leading_zeros_bv v = count_leading_zero_bits (bits_of v)
-
-val decimal_string_of_bv : forall 'a. Bitvector 'a => 'a -> string
-let decimal_string_of_bv bv =
- let place_values =
- List.mapi
- (fun i b -> (int_of_bit b) * (2 ** i))
- (List.reverse (bits_of bv))
- in
- let sum = List.foldl (+) 0 place_values in
- show sum
-
-(*** Bytes and addresses *)
-
-type memory_byte = list bitU
-
-val byte_chunks : forall 'a. list 'a -> maybe (list (list 'a))
-let rec byte_chunks bs = match bs with
- | [] -> Just []
- | a::b::c::d::e::f::g::h::rest ->
- Maybe.bind (byte_chunks rest) (fun rest -> Just ([a;b;c;d;e;f;g;h] :: rest))
- | _ -> Nothing
-end
-declare {isabelle; hol} termination_argument byte_chunks = automatic
-
-val bytes_of_bits : forall 'a. Bitvector 'a => 'a -> maybe (list memory_byte)
-let bytes_of_bits bs = byte_chunks (bits_of bs)
-
-val bits_of_bytes : list memory_byte -> list bitU
-let bits_of_bytes bs = List.concat (List.map bits_of bs)
-
-let mem_bytes_of_bits bs = Maybe.map List.reverse (bytes_of_bits bs)
-let bits_of_mem_bytes bs = bits_of_bytes (List.reverse bs)
-
-(*val bitv_of_byte_lifteds : list Sail_impl_base.byte_lifted -> list bitU
-let bitv_of_byte_lifteds v =
- foldl (fun x (Byte_lifted y) -> x ++ (List.map bitU_of_bit_lifted y)) [] v
-
-val bitv_of_bytes : list Sail_impl_base.byte -> list bitU
-let bitv_of_bytes v =
- foldl (fun x (Byte y) -> x ++ (List.map bitU_of_bit y)) [] v
-
-val byte_lifteds_of_bitv : list bitU -> list byte_lifted
-let byte_lifteds_of_bitv bits =
- let bits = List.map bit_lifted_of_bitU bits in
- byte_lifteds_of_bit_lifteds bits
-
-val bytes_of_bitv : list bitU -> list byte
-let bytes_of_bitv bits =
- let bits = List.map bit_of_bitU bits in
- bytes_of_bits bits
-
-val bit_lifteds_of_bitUs : list bitU -> list bit_lifted
-let bit_lifteds_of_bitUs bits = List.map bit_lifted_of_bitU bits
-
-val bit_lifteds_of_bitv : list bitU -> list bit_lifted
-let bit_lifteds_of_bitv v = bit_lifteds_of_bitUs v
-
-
-val address_lifted_of_bitv : list bitU -> address_lifted
-let address_lifted_of_bitv v =
- let byte_lifteds = byte_lifteds_of_bitv v in
- let maybe_address_integer =
- match (maybe_all (List.map byte_of_byte_lifted byte_lifteds)) with
- | Just bs -> Just (integer_of_byte_list bs)
- | _ -> Nothing
- end in
- Address_lifted byte_lifteds maybe_address_integer
-
-val bitv_of_address_lifted : address_lifted -> list bitU
-let bitv_of_address_lifted (Address_lifted bs _) = bitv_of_byte_lifteds bs
-
-val address_of_bitv : list bitU -> address
-let address_of_bitv v =
- let bytes = bytes_of_bitv v in
- address_of_byte_list bytes*)
-
-let rec reverse_endianness_list bits =
- if List.length bits <= 8 then bits else
- reverse_endianness_list (drop_list 8 bits) ++ take_list 8 bits
-
-
-(*** Registers *)
-
-(*type register_field = string
-type register_field_index = string * (integer * integer) (* name, start and end *)
-
-type register =
- | Register of string * (* name *)
- integer * (* length *)
- integer * (* start index *)
- bool * (* is increasing *)
- list register_field_index
- | UndefinedRegister of integer (* length *)
- | RegisterPair of register * register*)
-
-type register_ref 'regstate 'regval 'a =
- <| name : string;
- (*is_inc : bool;*)
- read_from : 'regstate -> 'a;
- write_to : 'a -> 'regstate -> 'regstate;
- of_regval : 'regval -> maybe 'a;
- regval_of : 'a -> 'regval |>
-
-(* Register accessors: pair of functions for reading and writing register values *)
-type register_accessors 'regstate 'regval =
- ((string -> 'regstate -> maybe 'regval) *
- (string -> 'regval -> 'regstate -> maybe 'regstate))
-
-type field_ref 'regtype 'a =
- <| field_name : string;
- field_start : integer;
- field_is_inc : bool;
- get_field : 'regtype -> 'a;
- set_field : 'regtype -> 'a -> 'regtype |>
-
-(*let name_of_reg = function
- | Register name _ _ _ _ -> name
- | UndefinedRegister _ -> failwith "name_of_reg UndefinedRegister"
- | RegisterPair _ _ -> failwith "name_of_reg RegisterPair"
-end
-
-let size_of_reg = function
- | Register _ size _ _ _ -> size
- | UndefinedRegister size -> size
- | RegisterPair _ _ -> failwith "size_of_reg RegisterPair"
-end
-
-let start_of_reg = function
- | Register _ _ start _ _ -> start
- | UndefinedRegister _ -> failwith "start_of_reg UndefinedRegister"
- | RegisterPair _ _ -> failwith "start_of_reg RegisterPair"
-end
-
-let is_inc_of_reg = function
- | Register _ _ _ is_inc _ -> is_inc
- | UndefinedRegister _ -> failwith "is_inc_of_reg UndefinedRegister"
- | RegisterPair _ _ -> failwith "in_inc_of_reg RegisterPair"
-end
-
-let dir_of_reg = function
- | Register _ _ _ is_inc _ -> dir_of_bool is_inc
- | UndefinedRegister _ -> failwith "dir_of_reg UndefinedRegister"
- | RegisterPair _ _ -> failwith "dir_of_reg RegisterPair"
-end
-
-let size_of_reg_nat reg = natFromInteger (size_of_reg reg)
-let start_of_reg_nat reg = natFromInteger (start_of_reg reg)
-
-val register_field_indices_aux : register -> register_field -> maybe (integer * integer)
-let rec register_field_indices_aux register rfield =
- match register with
- | Register _ _ _ _ rfields -> List.lookup rfield rfields
- | RegisterPair r1 r2 ->
- let m_indices = register_field_indices_aux r1 rfield in
- if isJust m_indices then m_indices else register_field_indices_aux r2 rfield
- | UndefinedRegister _ -> Nothing
- end
-
-val register_field_indices : register -> register_field -> integer * integer
-let register_field_indices register rfield =
- match register_field_indices_aux register rfield with
- | Just indices -> indices
- | Nothing -> failwith "Invalid register/register-field combination"
- end
-
-let register_field_indices_nat reg regfield=
- let (i,j) = register_field_indices reg regfield in
- (natFromInteger i,natFromInteger j)*)
-
-(*let rec external_reg_value reg_name v =
- let (internal_start, external_start, direction) =
- match reg_name with
- | Reg _ start size dir ->
- (start, (if dir = D_increasing then start else (start - (size +1))), dir)
- | Reg_slice _ reg_start dir (slice_start, _) ->
- ((if dir = D_increasing then slice_start else (reg_start - slice_start)),
- slice_start, dir)
- | Reg_field _ reg_start dir _ (slice_start, _) ->
- ((if dir = D_increasing then slice_start else (reg_start - slice_start)),
- slice_start, dir)
- | Reg_f_slice _ reg_start dir _ _ (slice_start, _) ->
- ((if dir = D_increasing then slice_start else (reg_start - slice_start)),
- slice_start, dir)
- end in
- let bits = bit_lifteds_of_bitv v in
- <| rv_bits = bits;
- rv_dir = direction;
- rv_start = external_start;
- rv_start_internal = internal_start |>
-
-val internal_reg_value : register_value -> list bitU
-let internal_reg_value v =
- List.map bitU_of_bit_lifted v.rv_bits
- (*(integerFromNat v.rv_start_internal)
- (v.rv_dir = D_increasing)*)
-
-
-let external_slice (d:direction) (start:nat) ((i,j):(nat*nat)) =
- match d with
- (*This is the case the thread/concurrecny model expects, so no change needed*)
- | D_increasing -> (i,j)
- | D_decreasing -> let slice_i = start - i in
- let slice_j = (i - j) + slice_i in
- (slice_i,slice_j)
- end *)
-
-(* TODO
-let external_reg_whole r =
- Reg (r.name) (natFromInteger r.start) (natFromInteger r.size) (dir_of_bool r.is_inc)
-
-let external_reg_slice r (i,j) =
- let start = natFromInteger r.start in
- let dir = dir_of_bool r.is_inc in
- Reg_slice (r.name) start dir (external_slice dir start (i,j))
-
-let external_reg_field_whole reg rfield =
- let (m,n) = register_field_indices_nat reg rfield in
- let start = start_of_reg_nat reg in
- let dir = dir_of_reg reg in
- Reg_field (name_of_reg reg) start dir rfield (external_slice dir start (m,n))
-
-let external_reg_field_slice reg rfield (i,j) =
- let (m,n) = register_field_indices_nat reg rfield in
- let start = start_of_reg_nat reg in
- let dir = dir_of_reg reg in
- Reg_f_slice (name_of_reg reg) start dir rfield
- (external_slice dir start (m,n))
- (external_slice dir start (i,j))*)
-
-(*val external_mem_value : list bitU -> memory_value
-let external_mem_value v =
- byte_lifteds_of_bitv v $> List.reverse
-
-val internal_mem_value : memory_value -> list bitU
-let internal_mem_value bytes =
- List.reverse bytes $> bitv_of_byte_lifteds*)
-
-
-val foreach : forall 'a 'vars.
- (list 'a) -> 'vars -> ('a -> 'vars -> 'vars) -> 'vars
-let rec foreach l vars body =
- match l with
- | [] -> vars
- | (x :: xs) -> foreach xs (body x vars) body
- end
-
-declare {isabelle; hol} termination_argument foreach = automatic
-
-val index_list : integer -> integer -> integer -> list integer
-let rec index_list from to step =
- if (step > 0 && from <= to) || (step < 0 && to <= from) then
- from :: index_list (from + step) to step
- else []
-
-val while : forall 'vars. 'vars -> ('vars -> bool) -> ('vars -> 'vars) -> 'vars
-let rec while vars cond body =
- if cond vars then while (body vars) cond body else vars
-
-val until : forall 'vars. 'vars -> ('vars -> bool) -> ('vars -> 'vars) -> 'vars
-let rec until vars cond body =
- let vars = body vars in
- if cond vars then vars else until (body vars) cond body
-
-
-(* convert numbers unsafely to naturals *)
-
-class (ToNatural 'a) val toNatural : 'a -> natural end
-(* eta-expanded for Isabelle output, otherwise it breaks *)
-instance (ToNatural integer) let toNatural = (fun n -> naturalFromInteger n) end
-instance (ToNatural int) let toNatural = (fun n -> naturalFromInt n) end
-instance (ToNatural nat) let toNatural = (fun n -> naturalFromNat n) end
-instance (ToNatural natural) let toNatural = (fun n -> n) end
-
-let toNaturalFiveTup (n1,n2,n3,n4,n5) =
- (toNatural n1,
- toNatural n2,
- toNatural n3,
- toNatural n4,
- toNatural n5)
-
-(* Let the following types be generated by Sail per spec, using either bitlists
- or machine words as bitvector representation *)
-(*type regfp =
- | RFull of (string)
- | RSlice of (string * integer * integer)
- | RSliceBit of (string * integer)
- | RField of (string * string)
-
-type niafp =
- | NIAFP_successor
- | NIAFP_concrete_address of vector bitU
- | NIAFP_indirect_address
-
-(* only for MIPS *)
-type diafp =
- | DIAFP_none
- | DIAFP_concrete of vector bitU
- | DIAFP_reg of regfp
-
-let regfp_to_reg (reg_info : string -> maybe string -> (nat * nat * direction * (nat * nat))) = function
- | RFull name ->
- let (start,length,direction,_) = reg_info name Nothing in
- Reg name start length direction
- | RSlice (name,i,j) ->
- let i = natFromInteger i in
- let j = natFromInteger j in
- let (start,length,direction,_) = reg_info name Nothing in
- let slice = external_slice direction start (i,j) in
- Reg_slice name start direction slice
- | RSliceBit (name,i) ->
- let i = natFromInteger i in
- let (start,length,direction,_) = reg_info name Nothing in
- let slice = external_slice direction start (i,i) in
- Reg_slice name start direction slice
- | RField (name,field_name) ->
- let (start,length,direction,span) = reg_info name (Just field_name) in
- let slice = external_slice direction start span in
- Reg_field name start direction field_name slice
-end
-
-let niafp_to_nia reginfo = function
- | NIAFP_successor -> NIA_successor
- | NIAFP_concrete_address v -> NIA_concrete_address (address_of_bitv v)
- | NIAFP_indirect_address -> NIA_indirect_address
-end
-
-let diafp_to_dia reginfo = function
- | DIAFP_none -> DIA_none
- | DIAFP_concrete v -> DIA_concrete_address (address_of_bitv v)
- | DIAFP_reg r -> DIA_register (regfp_to_reg reginfo r)
-end
-*)
diff --git a/src/gen_lib/0.11/sail_impl_base.lem b/src/gen_lib/0.11/sail_impl_base.lem
deleted file mode 100644
index 421219da..00000000
--- a/src/gen_lib/0.11/sail_impl_base.lem
+++ /dev/null
@@ -1,1518 +0,0 @@
-(*========================================================================*)
-(* Sail *)
-(* *)
-(* Copyright (c) 2013-2017 *)
-(* Kathyrn Gray *)
-(* Shaked Flur *)
-(* Stephen Kell *)
-(* Gabriel Kerneis *)
-(* Robert Norton-Wright *)
-(* Christopher Pulte *)
-(* Peter Sewell *)
-(* Alasdair Armstrong *)
-(* Brian Campbell *)
-(* Thomas Bauereiss *)
-(* Anthony Fox *)
-(* Jon French *)
-(* Dominic Mulligan *)
-(* Stephen Kell *)
-(* Mark Wassell *)
-(* *)
-(* All rights reserved. *)
-(* *)
-(* This software was developed by the University of Cambridge Computer *)
-(* Laboratory as part of the Rigorous Engineering of Mainstream Systems *)
-(* (REMS) project, funded by EPSRC grant EP/K008528/1. *)
-(* *)
-(* Redistribution and use in source and binary forms, with or without *)
-(* modification, are permitted provided that the following conditions *)
-(* are met: *)
-(* 1. Redistributions of source code must retain the above copyright *)
-(* notice, this list of conditions and the following disclaimer. *)
-(* 2. Redistributions in binary form must reproduce the above copyright *)
-(* notice, this list of conditions and the following disclaimer in *)
-(* the documentation and/or other materials provided with the *)
-(* distribution. *)
-(* *)
-(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
-(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
-(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
-(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
-(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
-(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
-(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
-(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
-(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
-(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
-(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
-(* SUCH DAMAGE. *)
-(*========================================================================*)
-
-open import Pervasives_extra
-
-
-
-class ( EnumerationType 'a )
- val toNat : 'a -> nat
-end
-
-
-val enumeration_typeCompare : forall 'a. EnumerationType 'a => 'a -> 'a -> ordering
-let ~{ocaml} enumeration_typeCompare e1 e2 =
- compare (toNat e1) (toNat e2)
-let inline {ocaml} enumeration_typeCompare = defaultCompare
-
-
-default_instance forall 'a. EnumerationType 'a => (Ord 'a)
- let compare = enumeration_typeCompare
- let (<) r1 r2 = (enumeration_typeCompare r1 r2) = LT
- let (<=) r1 r2 = (enumeration_typeCompare r1 r2) <> GT
- let (>) r1 r2 = (enumeration_typeCompare r1 r2) = GT
- let (>=) r1 r2 = (enumeration_typeCompare r1 r2) <> LT
-end
-
-
-
-(* maybe isn't a member of type Ord - this should be in the Lem standard library*)
-instance forall 'a. Ord 'a => (Ord (maybe 'a))
- let compare = maybeCompare compare
- let (<) r1 r2 = (maybeCompare compare r1 r2) = LT
- let (<=) r1 r2 = (maybeCompare compare r1 r2) <> GT
- let (>) r1 r2 = (maybeCompare compare r1 r2) = GT
- let (>=) r1 r2 = (maybeCompare compare r1 r2) <> LT
-end
-
-type word8 = nat (* bounded at a byte, for when lem supports it*)
-
-type end_flag =
- | E_big_endian
- | E_little_endian
-
-type bit =
- | Bitc_zero
- | Bitc_one
-
-type bit_lifted =
- | Bitl_zero
- | Bitl_one
- | Bitl_undef (* used for modelling h/w arch unspecified bits *)
- | Bitl_unknown (* used for interpreter analysis exhaustive execution *)
-
-type direction =
- | D_increasing
- | D_decreasing
-
-(* at some point this should probably not mention bit_lifted anymore *)
-type register_value = <|
- rv_bits: list bit_lifted (* MSB first, smallest index number *);
- rv_dir: direction;
- rv_start: nat ;
- rv_start_internal: nat;
- (*when dir is increasing, rv_start = rv_start_internal.
- Otherwise, tells interpreter how to reconstruct a proper decreasing value*)
- |>
-
-type byte_lifted = Byte_lifted of list bit_lifted (* of length 8 *) (*MSB first everywhere*)
-
-type instruction_field_value = list bit
-
-type byte = Byte of list bit (* of length 8 *) (*MSB first everywhere*)
-
-type address_lifted = Address_lifted of list byte_lifted (* of length 8 for 64bit machines*) * maybe integer
-(* for both values of end_flag, MSBy first *)
-
-type memory_byte = byte_lifted (* of length 8 *) (*MSB first everywhere*)
-
-type memory_value = list memory_byte
-(* the list is of length >=1 *)
-(* the head of the list is the byte stored at the lowest address;
-when calling a Sail function with a wmv effect, the least significant 8
-bits of the bit vector passed to the function will be interpreted as
-the lowest address byte; similarly, when calling a Sail function with
-rmem effect, the lowest address byte will be placed in the least
-significant 8 bits of the bit vector returned by the function; this
-behaviour is consistent with little-endian. *)
-
-
-(* not sure which of these is more handy yet *)
-type address = Address of list byte (* of length 8 *) * integer
-(* type address = Address of integer *)
-
-type opcode = Opcode of list byte (* of length 4 *)
-
-(** typeclass instantiations *)
-
-let ~{ocaml} bitCompare (b1:bit) (b2:bit) =
- match (b1,b2) with
- | (Bitc_zero, Bitc_zero) -> EQ
- | (Bitc_one, Bitc_one) -> EQ
- | (Bitc_zero, _) -> LT
- | (_,_) -> GT
- end
-let inline {ocaml} bitCompare = defaultCompare
-
-let ~{ocaml} bitLess b1 b2 = bitCompare b1 b2 = LT
-let ~{ocaml} bitLessEq b1 b2 = bitCompare b1 b2 <> GT
-let ~{ocaml} bitGreater b1 b2 = bitCompare b1 b2 = GT
-let ~{ocaml} bitGreaterEq b1 b2 = bitCompare b1 b2 <> LT
-
-let inline {ocaml} bitLess = defaultLess
-let inline {ocaml} bitLessEq = defaultLessEq
-let inline {ocaml} bitGreater = defaultGreater
-let inline {ocaml} bitGreaterEq = defaultGreaterEq
-
-instance (Ord bit)
- let compare = bitCompare
- let (<) = bitLess
- let (<=) = bitLessEq
- let (>) = bitGreater
- let (>=) = bitGreaterEq
-end
-
-let ~{ocaml} bit_liftedCompare (bl1:bit_lifted) (bl2:bit_lifted) =
- match (bl1,bl2) with
- | (Bitl_zero, Bitl_zero) -> EQ
- | (Bitl_zero,_) -> LT
- | (Bitl_one, Bitl_zero) -> GT
- | (Bitl_one, Bitl_one) -> EQ
- | (Bitl_one, _) -> LT
- | (Bitl_undef,Bitl_zero) -> GT
- | (Bitl_undef,Bitl_one) -> GT
- | (Bitl_undef,Bitl_undef) -> EQ
- | (Bitl_undef,_) -> LT
- | (Bitl_unknown,Bitl_unknown) -> EQ
- | (Bitl_unknown,_) -> GT
- end
-let inline {ocaml} bit_liftedCompare = defaultCompare
-
-let ~{ocaml} bit_liftedLess b1 b2 = bit_liftedCompare b1 b2 = LT
-let ~{ocaml} bit_liftedLessEq b1 b2 = bit_liftedCompare b1 b2 <> GT
-let ~{ocaml} bit_liftedGreater b1 b2 = bit_liftedCompare b1 b2 = GT
-let ~{ocaml} bit_liftedGreaterEq b1 b2 = bit_liftedCompare b1 b2 <> LT
-
-let inline {ocaml} bit_liftedLess = defaultLess
-let inline {ocaml} bit_liftedLessEq = defaultLessEq
-let inline {ocaml} bit_liftedGreater = defaultGreater
-let inline {ocaml} bit_liftedGreaterEq = defaultGreaterEq
-
-instance (Ord bit_lifted)
- let compare = bit_liftedCompare
- let (<) = bit_liftedLess
- let (<=) = bit_liftedLessEq
- let (>) = bit_liftedGreater
- let (>=) = bit_liftedGreaterEq
-end
-
-let ~{ocaml} byte_liftedCompare (Byte_lifted b1) (Byte_lifted b2) = compare b1 b2
-let inline {ocaml} byte_liftedCompare = defaultCompare
-
-let ~{ocaml} byte_liftedLess b1 b2 = byte_liftedCompare b1 b2 = LT
-let ~{ocaml} byte_liftedLessEq b1 b2 = byte_liftedCompare b1 b2 <> GT
-let ~{ocaml} byte_liftedGreater b1 b2 = byte_liftedCompare b1 b2 = GT
-let ~{ocaml} byte_liftedGreaterEq b1 b2 = byte_liftedCompare b1 b2 <> LT
-
-let inline {ocaml} byte_liftedLess = defaultLess
-let inline {ocaml} byte_liftedLessEq = defaultLessEq
-let inline {ocaml} byte_liftedGreater = defaultGreater
-let inline {ocaml} byte_liftedGreaterEq = defaultGreaterEq
-
-instance (Ord byte_lifted)
- let compare = byte_liftedCompare
- let (<) = byte_liftedLess
- let (<=) = byte_liftedLessEq
- let (>) = byte_liftedGreater
- let (>=) = byte_liftedGreaterEq
-end
-
-let ~{ocaml} byteCompare (Byte b1) (Byte b2) = compare b1 b2
-let inline {ocaml} byteCompare = defaultCompare
-
-let ~{ocaml} byteLess b1 b2 = byteCompare b1 b2 = LT
-let ~{ocaml} byteLessEq b1 b2 = byteCompare b1 b2 <> GT
-let ~{ocaml} byteGreater b1 b2 = byteCompare b1 b2 = GT
-let ~{ocaml} byteGreaterEq b1 b2 = byteCompare b1 b2 <> LT
-
-let inline {ocaml} byteLess = defaultLess
-let inline {ocaml} byteLessEq = defaultLessEq
-let inline {ocaml} byteGreater = defaultGreater
-let inline {ocaml} byteGreaterEq = defaultGreaterEq
-
-instance (Ord byte)
- let compare = byteCompare
- let (<) = byteLess
- let (<=) = byteLessEq
- let (>) = byteGreater
- let (>=) = byteGreaterEq
-end
-
-let ~{ocaml} opcodeCompare (Opcode o1) (Opcode o2) =
- compare o1 o2
-let {ocaml} opcodeCompare = defaultCompare
-
-let ~{ocaml} opcodeLess b1 b2 = opcodeCompare b1 b2 = LT
-let ~{ocaml} opcodeLessEq b1 b2 = opcodeCompare b1 b2 <> GT
-let ~{ocaml} opcodeGreater b1 b2 = opcodeCompare b1 b2 = GT
-let ~{ocaml} opcodeGreaterEq b1 b2 = opcodeCompare b1 b2 <> LT
-
-let inline {ocaml} opcodeLess = defaultLess
-let inline {ocaml} opcodeLessEq = defaultLessEq
-let inline {ocaml} opcodeGreater = defaultGreater
-let inline {ocaml} opcodeGreaterEq = defaultGreaterEq
-
-instance (Ord opcode)
- let compare = opcodeCompare
- let (<) = opcodeLess
- let (<=) = opcodeLessEq
- let (>) = opcodeGreater
- let (>=) = opcodeGreaterEq
-end
-
-let addressCompare (Address b1 i1) (Address b2 i2) = compare i1 i2
-(* this cannot be defaultCompare for OCaml because addresses contain big ints *)
-
-let addressLess b1 b2 = addressCompare b1 b2 = LT
-let addressLessEq b1 b2 = addressCompare b1 b2 <> GT
-let addressGreater b1 b2 = addressCompare b1 b2 = GT
-let addressGreaterEq b1 b2 = addressCompare b1 b2 <> LT
-
-instance (SetType address)
- let setElemCompare = addressCompare
-end
-
-instance (Ord address)
- let compare = addressCompare
- let (<) = addressLess
- let (<=) = addressLessEq
- let (>) = addressGreater
- let (>=) = addressGreaterEq
-end
-
-let {coq; ocaml} addressEqual a1 a2 = (addressCompare a1 a2) = EQ
-let inline {hol; isabelle} addressEqual = unsafe_structural_equality
-
-let {coq; ocaml} addressInequal a1 a2 = not (addressEqual a1 a2)
-let inline {hol; isabelle} addressInequal = unsafe_structural_inequality
-
-instance (Eq address)
- let (=) = addressEqual
- let (<>) = addressInequal
-end
-
-let ~{ocaml} directionCompare d1 d2 =
- match (d1, d2) with
- | (D_decreasing, D_increasing) -> GT
- | (D_increasing, D_decreasing) -> LT
- | _ -> EQ
- end
-let inline {ocaml} directionCompare = defaultCompare
-
-let ~{ocaml} directionLess b1 b2 = directionCompare b1 b2 = LT
-let ~{ocaml} directionLessEq b1 b2 = directionCompare b1 b2 <> GT
-let ~{ocaml} directionGreater b1 b2 = directionCompare b1 b2 = GT
-let ~{ocaml} directionGreaterEq b1 b2 = directionCompare b1 b2 <> LT
-
-let inline {ocaml} directionLess = defaultLess
-let inline {ocaml} directionLessEq = defaultLessEq
-let inline {ocaml} directionGreater = defaultGreater
-let inline {ocaml} directionGreaterEq = defaultGreaterEq
-
-instance (Ord direction)
- let compare = directionCompare
- let (<) = directionLess
- let (<=) = directionLessEq
- let (>) = directionGreater
- let (>=) = directionGreaterEq
-end
-
-instance (Show direction)
- let show = function D_increasing -> "D_increasing" | D_decreasing -> "D_decreasing" end
-end
-
-let ~{ocaml} register_valueCompare rv1 rv2 =
- compare (rv1.rv_bits, rv1.rv_dir, rv1.rv_start, rv1.rv_start_internal)
- (rv2.rv_bits, rv2.rv_dir, rv2.rv_start, rv2.rv_start_internal)
-let inline {ocaml} register_valueCompare = defaultCompare
-
-let ~{ocaml} register_valueLess b1 b2 = register_valueCompare b1 b2 = LT
-let ~{ocaml} register_valueLessEq b1 b2 = register_valueCompare b1 b2 <> GT
-let ~{ocaml} register_valueGreater b1 b2 = register_valueCompare b1 b2 = GT
-let ~{ocaml} register_valueGreaterEq b1 b2 = register_valueCompare b1 b2 <> LT
-
-let inline {ocaml} register_valueLess = defaultLess
-let inline {ocaml} register_valueLessEq = defaultLessEq
-let inline {ocaml} register_valueGreater = defaultGreater
-let inline {ocaml} register_valueGreaterEq = defaultGreaterEq
-
-instance (Ord register_value)
- let compare = register_valueCompare
- let (<) = register_valueLess
- let (<=) = register_valueLessEq
- let (>) = register_valueGreater
- let (>=) = register_valueGreaterEq
-end
-
-let address_liftedCompare (Address_lifted b1 i1) (Address_lifted b2 i2) =
- compare (i1,b1) (i2,b2)
-(* this cannot be defaultCompare for OCaml because address_lifteds contain big
- ints *)
-
-let address_liftedLess b1 b2 = address_liftedCompare b1 b2 = LT
-let address_liftedLessEq b1 b2 = address_liftedCompare b1 b2 <> GT
-let address_liftedGreater b1 b2 = address_liftedCompare b1 b2 = GT
-let address_liftedGreaterEq b1 b2 = address_liftedCompare b1 b2 <> LT
-
-instance (Ord address_lifted)
- let compare = address_liftedCompare
- let (<) = address_liftedLess
- let (<=) = address_liftedLessEq
- let (>) = address_liftedGreater
- let (>=) = address_liftedGreaterEq
-end
-
-(* Registers *)
-type slice = (nat * nat)
-
-type reg_name =
- (* do we really need this here if ppcmem already has this information by itself? *)
-| Reg of string * nat * nat * direction
-(*Name of the register, accessing the entire register, the start and size of this register, and its direction *)
-
-| Reg_slice of string * nat * direction * slice
-(* Name of the register, accessing from the bit indexed by the first
-to the bit indexed by the second integer of the slice, inclusive. For
-machineDef* the first is a smaller number or equal to the second, adjusted
-to reflect the correct span direction in the interpreter side. *)
-
-| Reg_field of string * nat * direction * string * slice
-(*Name of the register, start and direction, and name of the field of the register
-accessed. The slice specifies where this field is in the register*)
-
-| Reg_f_slice of string * nat * direction * string * slice * slice
-(* The first four components are as in Reg_field; the final slice
-specifies a part of the field, indexed w.r.t. the register as a whole *)
-
-let register_base_name : reg_name -> string = function
- | Reg s _ _ _ -> s
- | Reg_slice s _ _ _ -> s
- | Reg_field s _ _ _ _ -> s
- | Reg_f_slice s _ _ _ _ _ -> s
- end
-
-let slice_of_reg_name : reg_name -> slice = function
- | Reg _ start width D_increasing -> (start, start + width -1)
- | Reg _ start width D_decreasing -> (start - width - 1, start)
- | Reg_slice _ _ _ sl -> sl
- | Reg_field _ _ _ _ sl -> sl
- | Reg_f_slice _ _ _ _ _ sl -> sl
- end
-
-let width_of_reg_name (r: reg_name) : nat =
- let width_of_slice (i, j) = (* j - i + 1 in *)
-
- (integerFromNat j) - (integerFromNat i) + 1
- $> abs $> natFromInteger
- in
- match r with
- | Reg _ _ width _ -> width
- | Reg_slice _ _ _ sl -> width_of_slice sl
- | Reg_field _ _ _ _ sl -> width_of_slice sl
- | Reg_f_slice _ _ _ _ _ sl -> width_of_slice sl
- end
-
-let reg_name_non_empty_intersection (r: reg_name) (r': reg_name) : bool =
- register_base_name r = register_base_name r' &&
- let (i1, i2) = slice_of_reg_name r in
- let (i1', i2') = slice_of_reg_name r' in
- i1' <= i2 && i2' >= i1
-
-let reg_nameCompare r1 r2 =
- compare (register_base_name r1,slice_of_reg_name r1)
- (register_base_name r2,slice_of_reg_name r2)
-
-let reg_nameLess b1 b2 = reg_nameCompare b1 b2 = LT
-let reg_nameLessEq b1 b2 = reg_nameCompare b1 b2 <> GT
-let reg_nameGreater b1 b2 = reg_nameCompare b1 b2 = GT
-let reg_nameGreaterEq b1 b2 = reg_nameCompare b1 b2 <> LT
-
-instance (Ord reg_name)
- let compare = reg_nameCompare
- let (<) = reg_nameLess
- let (<=) = reg_nameLessEq
- let (>) = reg_nameGreater
- let (>=) = reg_nameGreaterEq
-end
-
-let {coq;ocaml} reg_nameEqual a1 a2 = (reg_nameCompare a1 a2) = EQ
-let {hol;isabelle} reg_nameEqual = unsafe_structural_equality
-let {coq;ocaml} reg_nameInequal a1 a2 = not (reg_nameEqual a1 a2)
-let {hol;isabelle} reg_nameInequal = unsafe_structural_inequality
-
-instance (Eq reg_name)
- let (=) = reg_nameEqual
- let (<>) = reg_nameInequal
-end
-
-instance (SetType reg_name)
- let setElemCompare = reg_nameCompare
-end
-
-let direction_of_reg_name r = match r with
- | Reg _ _ _ d -> d
- | Reg_slice _ _ d _ -> d
- | Reg_field _ _ d _ _ -> d
- | Reg_f_slice _ _ d _ _ _ -> d
- end
-
-let start_of_reg_name r = match r with
- | Reg _ start _ _ -> start
- | Reg_slice _ start _ _ -> start
- | Reg_field _ start _ _ _ -> start
- | Reg_f_slice _ start _ _ _ _ -> start
-end
-
-(* Data structures for building up instructions *)
-
-(* careful: changes in the read/write/barrier kinds have to be
- reflected in deep_shallow_convert *)
-type read_kind =
- (* common reads *)
- | Read_plain
- (* Power reads *)
- | Read_reserve
- (* AArch64 reads *)
- | Read_acquire | Read_exclusive | Read_exclusive_acquire | Read_stream
- (* RISC-V reads *)
- | Read_RISCV_acquire | Read_RISCV_strong_acquire
- | Read_RISCV_reserved | Read_RISCV_reserved_acquire
- | Read_RISCV_reserved_strong_acquire
- (* x86 reads *)
- | Read_X86_locked (* the read part of a lock'd instruction (rmw) *)
-
-instance (Show read_kind)
- let show = function
- | Read_plain -> "Read_plain"
- | Read_reserve -> "Read_reserve"
- | Read_acquire -> "Read_acquire"
- | Read_exclusive -> "Read_exclusive"
- | Read_exclusive_acquire -> "Read_exclusive_acquire"
- | Read_stream -> "Read_stream"
- | Read_RISCV_acquire -> "Read_RISCV_acquire"
- | Read_RISCV_strong_acquire -> "Read_RISCV_strong_acquire"
- | Read_RISCV_reserved -> "Read_RISCV_reserved"
- | Read_RISCV_reserved_acquire -> "Read_RISCV_reserved_acquire"
- | Read_RISCV_reserved_strong_acquire -> "Read_RISCV_reserved_strong_acquire"
- | Read_X86_locked -> "Read_X86_locked"
- end
-end
-
-type write_kind =
- (* common writes *)
- | Write_plain
- (* Power writes *)
- | Write_conditional
- (* AArch64 writes *)
- | Write_release | Write_exclusive | Write_exclusive_release
- (* RISC-V *)
- | Write_RISCV_release | Write_RISCV_strong_release
- | Write_RISCV_conditional | Write_RISCV_conditional_release
- | Write_RISCV_conditional_strong_release
- (* x86 writes *)
- | Write_X86_locked (* the write part of a lock'd instruction (rmw) *)
-
-instance (Show write_kind)
- let show = function
- | Write_plain -> "Write_plain"
- | Write_conditional -> "Write_conditional"
- | Write_release -> "Write_release"
- | Write_exclusive -> "Write_exclusive"
- | Write_exclusive_release -> "Write_exclusive_release"
- | Write_RISCV_release -> "Write_RISCV_release"
- | Write_RISCV_strong_release -> "Write_RISCV_strong_release"
- | Write_RISCV_conditional -> "Write_RISCV_conditional"
- | Write_RISCV_conditional_release -> "Write_RISCV_conditional_release"
- | Write_RISCV_conditional_strong_release -> "Write_RISCV_conditional_strong_release"
- | Write_X86_locked -> "Write_X86_locked"
- end
-end
-
-type barrier_kind =
- (* Power barriers *)
- Barrier_Sync | Barrier_LwSync | Barrier_Eieio | Barrier_Isync
- (* AArch64 barriers *)
- | Barrier_DMB | Barrier_DMB_ST | Barrier_DMB_LD | Barrier_DSB
- | Barrier_DSB_ST | Barrier_DSB_LD | Barrier_ISB
- | Barrier_TM_COMMIT
- (* MIPS barriers *)
- | Barrier_MIPS_SYNC
- (* RISC-V barriers *)
- | Barrier_RISCV_rw_rw
- | Barrier_RISCV_r_rw
- | Barrier_RISCV_r_r
- | Barrier_RISCV_rw_w
- | Barrier_RISCV_w_w
- | Barrier_RISCV_i
- (* X86 *)
- | Barrier_x86_MFENCE
-
-
-instance (Show barrier_kind)
- let show = function
- | Barrier_Sync -> "Barrier_Sync"
- | Barrier_LwSync -> "Barrier_LwSync"
- | Barrier_Eieio -> "Barrier_Eieio"
- | Barrier_Isync -> "Barrier_Isync"
- | Barrier_DMB -> "Barrier_DMB"
- | Barrier_DMB_ST -> "Barrier_DMB_ST"
- | Barrier_DMB_LD -> "Barrier_DMB_LD"
- | Barrier_DSB -> "Barrier_DSB"
- | Barrier_DSB_ST -> "Barrier_DSB_ST"
- | Barrier_DSB_LD -> "Barrier_DSB_LD"
- | Barrier_ISB -> "Barrier_ISB"
- | Barrier_TM_COMMIT -> "Barrier_TM_COMMIT"
- | Barrier_MIPS_SYNC -> "Barrier_MIPS_SYNC"
- | Barrier_RISCV_rw_rw -> "Barrier_RISCV_rw_rw"
- | Barrier_RISCV_r_rw -> "Barrier_RISCV_r_rw"
- | Barrier_RISCV_r_r -> "Barrier_RISCV_r_r"
- | Barrier_RISCV_rw_w -> "Barrier_RISCV_rw_w"
- | Barrier_RISCV_w_w -> "Barrier_RISCV_w_w"
- | Barrier_RISCV_i -> "Barrier_RISCV_i"
- | Barrier_x86_MFENCE -> "Barrier_x86_MFENCE"
- end
-end
-
-type trans_kind =
- (* AArch64 *)
- | Transaction_start | Transaction_commit | Transaction_abort
-
-instance (Show trans_kind)
- let show = function
- | Transaction_start -> "Transaction_start"
- | Transaction_commit -> "Transaction_commit"
- | Transaction_abort -> "Transaction_abort"
- end
-end
-
-type instruction_kind =
- | IK_barrier of barrier_kind
- | IK_mem_read of read_kind
- | IK_mem_write of write_kind
- | IK_mem_rmw of (read_kind * write_kind)
- | IK_cond_branch
- (* unconditional branches are not distinguished in the instruction_kind;
- they just have particular nias (and will be IK_simple *)
- (* | IK_uncond_branch *)
- | IK_trans of trans_kind
- | IK_simple
-
-
-instance (Show instruction_kind)
- let show = function
- | IK_barrier barrier_kind -> "IK_barrier " ^ (show barrier_kind)
- | IK_mem_read read_kind -> "IK_mem_read " ^ (show read_kind)
- | IK_mem_write write_kind -> "IK_mem_write " ^ (show write_kind)
- | IK_cond_branch -> "IK_cond_branch"
- | IK_trans trans_kind -> "IK_trans " ^ (show trans_kind)
- | IK_simple -> "IK_simple"
- end
-end
-
-
-
-let ~{ocaml} read_kindCompare rk1 rk2 =
- match (rk1, rk2) with
- | (Read_plain, Read_plain) -> EQ
- | (Read_plain, Read_reserve) -> LT
- | (Read_plain, Read_acquire) -> LT
- | (Read_plain, Read_exclusive) -> LT
- | (Read_plain, Read_exclusive_acquire) -> LT
- | (Read_plain, Read_stream) -> LT
-
- | (Read_reserve, Read_plain) -> GT
- | (Read_reserve, Read_reserve) -> EQ
- | (Read_reserve, Read_acquire) -> LT
- | (Read_reserve, Read_exclusive) -> LT
- | (Read_reserve, Read_exclusive_acquire) -> LT
- | (Read_reserve, Read_stream) -> LT
-
- | (Read_acquire, Read_plain) -> GT
- | (Read_acquire, Read_reserve) -> GT
- | (Read_acquire, Read_acquire) -> EQ
- | (Read_acquire, Read_exclusive) -> LT
- | (Read_acquire, Read_exclusive_acquire) -> LT
- | (Read_acquire, Read_stream) -> LT
-
- | (Read_exclusive, Read_plain) -> GT
- | (Read_exclusive, Read_reserve) -> GT
- | (Read_exclusive, Read_acquire) -> GT
- | (Read_exclusive, Read_exclusive) -> EQ
- | (Read_exclusive, Read_exclusive_acquire) -> LT
- | (Read_exclusive, Read_stream) -> LT
-
- | (Read_exclusive_acquire, Read_plain) -> GT
- | (Read_exclusive_acquire, Read_reserve) -> GT
- | (Read_exclusive_acquire, Read_acquire) -> GT
- | (Read_exclusive_acquire, Read_exclusive) -> GT
- | (Read_exclusive_acquire, Read_exclusive_acquire) -> EQ
- | (Read_exclusive_acquire, Read_stream) -> GT
-
- | (Read_stream, Read_plain) -> GT
- | (Read_stream, Read_reserve) -> GT
- | (Read_stream, Read_acquire) -> GT
- | (Read_stream, Read_exclusive) -> GT
- | (Read_stream, Read_exclusive_acquire) -> GT
- | (Read_stream, Read_stream) -> EQ
-end
-let inline {ocaml} read_kindCompare = defaultCompare
-
-let ~{ocaml} read_kindLess b1 b2 = read_kindCompare b1 b2 = LT
-let ~{ocaml} read_kindLessEq b1 b2 = read_kindCompare b1 b2 <> GT
-let ~{ocaml} read_kindGreater b1 b2 = read_kindCompare b1 b2 = GT
-let ~{ocaml} read_kindGreaterEq b1 b2 = read_kindCompare b1 b2 <> LT
-
-let inline {ocaml} read_kindLess = defaultLess
-let inline {ocaml} read_kindLessEq = defaultLessEq
-let inline {ocaml} read_kindGreater = defaultGreater
-let inline {ocaml} read_kindGreaterEq = defaultGreaterEq
-
-instance (Ord read_kind)
- let compare = read_kindCompare
- let (<) = read_kindLess
- let (<=) = read_kindLessEq
- let (>) = read_kindGreater
- let (>=) = read_kindGreaterEq
-end
-
-let ~{ocaml} write_kindCompare wk1 wk2 =
- match (wk1, wk2) with
- | (Write_plain, Write_plain) -> EQ
- | (Write_plain, Write_conditional) -> LT
- | (Write_plain, Write_release) -> LT
- | (Write_plain, Write_exclusive) -> LT
- | (Write_plain, Write_exclusive_release) -> LT
-
- | (Write_conditional, Write_plain) -> GT
- | (Write_conditional, Write_conditional) -> EQ
- | (Write_conditional, Write_release) -> LT
- | (Write_conditional, Write_exclusive) -> LT
- | (Write_conditional, Write_exclusive_release) -> LT
-
- | (Write_release, Write_plain) -> GT
- | (Write_release, Write_conditional) -> GT
- | (Write_release, Write_release) -> EQ
- | (Write_release, Write_exclusive) -> LT
- | (Write_release, Write_exclusive_release) -> LT
-
- | (Write_exclusive, Write_plain) -> GT
- | (Write_exclusive, Write_conditional) -> GT
- | (Write_exclusive, Write_release) -> GT
- | (Write_exclusive, Write_exclusive) -> EQ
- | (Write_exclusive, Write_exclusive_release) -> LT
-
- | (Write_exclusive_release, Write_plain) -> GT
- | (Write_exclusive_release, Write_conditional) -> GT
- | (Write_exclusive_release, Write_release) -> GT
- | (Write_exclusive_release, Write_exclusive) -> GT
- | (Write_exclusive_release, Write_exclusive_release) -> EQ
-end
-let inline {ocaml} write_kindCompare = defaultCompare
-
-let ~{ocaml} write_kindLess b1 b2 = write_kindCompare b1 b2 = LT
-let ~{ocaml} write_kindLessEq b1 b2 = write_kindCompare b1 b2 <> GT
-let ~{ocaml} write_kindGreater b1 b2 = write_kindCompare b1 b2 = GT
-let ~{ocaml} write_kindGreaterEq b1 b2 = write_kindCompare b1 b2 <> LT
-
-let inline {ocaml} write_kindLess = defaultLess
-let inline {ocaml} write_kindLessEq = defaultLessEq
-let inline {ocaml} write_kindGreater = defaultGreater
-let inline {ocaml} write_kindGreaterEq = defaultGreaterEq
-
-instance (Ord write_kind)
- let compare = write_kindCompare
- let (<) = write_kindLess
- let (<=) = write_kindLessEq
- let (>) = write_kindGreater
- let (>=) = write_kindGreaterEq
-end
-
-(* Barrier comparison that uses less memory in Isabelle/HOL *)
-let ~{ocaml} barrier_number = function
- | Barrier_Sync -> (0 : natural)
- | Barrier_LwSync -> 1
- | Barrier_Eieio -> 2
- | Barrier_Isync -> 3
- | Barrier_DMB -> 4
- | Barrier_DMB_ST -> 5
- | Barrier_DMB_LD -> 6
- | Barrier_DSB -> 7
- | Barrier_DSB_ST -> 8
- | Barrier_DSB_LD -> 9
- | Barrier_ISB -> 10
- | Barrier_TM_COMMIT -> 11
- | Barrier_MIPS_SYNC -> 12
- | Barrier_RISCV_rw_rw -> 13
- | Barrier_RISCV_r_rw -> 14
- | Barrier_RISCV_r_r -> 15
- | Barrier_RISCV_rw_w -> 16
- | Barrier_RISCV_w_w -> 17
- | Barrier_RISCV_i -> 18
- | Barrier_x86_MFENCE -> 19
- end
-
-let ~{ocaml} barrier_kindCompare bk1 bk2 =
- let n1 = barrier_number bk1 in
- let n2 = barrier_number bk2 in
- if n1 < n2 then LT
- else if n1 = n2 then EQ
- else GT
-let inline {ocaml} barrier_kindCompare = defaultCompare
-
-(*let ~{ocaml} barrier_kindCompare bk1 bk2 =
- match (bk1, bk2) with
- | (Barrier_Sync, Barrier_Sync) -> EQ
- | (Barrier_Sync, _) -> LT
- | (_, Barrier_Sync) -> GT
-
- | (Barrier_LwSync, Barrier_LwSync) -> EQ
- | (Barrier_LwSync, _) -> LT
- | (_, Barrier_LwSync) -> GT
-
- | (Barrier_Eieio, Barrier_Eieio) -> EQ
- | (Barrier_Eieio, _) -> LT
- | (_, Barrier_Eieio) -> GT
-
- | (Barrier_Isync, Barrier_Isync) -> EQ
- | (Barrier_Isync, _) -> LT
- | (_, Barrier_Isync) -> GT
-
- | (Barrier_DMB, Barrier_DMB) -> EQ
- | (Barrier_DMB, _) -> LT
- | (_, Barrier_DMB) -> GT
-
- | (Barrier_DMB_ST, Barrier_DMB_ST) -> EQ
- | (Barrier_DMB_ST, _) -> LT
- | (_, Barrier_DMB_ST) -> GT
-
- | (Barrier_DMB_LD, Barrier_DMB_LD) -> EQ
- | (Barrier_DMB_LD, _) -> LT
- | (_, Barrier_DMB_LD) -> GT
-
- | (Barrier_DSB, Barrier_DSB) -> EQ
- | (Barrier_DSB, _) -> LT
- | (_, Barrier_DSB) -> GT
-
- | (Barrier_DSB_ST, Barrier_DSB_ST) -> EQ
- | (Barrier_DSB_ST, _) -> LT
- | (_, Barrier_DSB_ST) -> GT
-
- | (Barrier_DSB_LD, Barrier_DSB_LD) -> EQ
- | (Barrier_DSB_LD, _) -> LT
- | (_, Barrier_DSB_LD) -> GT
-
- | (Barrier_ISB, Barrier_ISB) -> EQ
- | (Barrier_ISB, _) -> LT
- | (_, Barrier_ISB) -> GT
-
- | (Barrier_TM_COMMIT, Barrier_TM_COMMIT) -> EQ
- | (Barrier_TM_COMMIT, _) -> LT
- | (_, Barrier_TM_COMMIT) -> GT
-
- | (Barrier_MIPS_SYNC, Barrier_MIPS_SYNC) -> EQ
- (* | (Barrier_MIPS_SYNC, _) -> LT
- | (_, Barrier_MIPS_SYNC) -> GT *)
-
- end*)
-
-let ~{ocaml} barrier_kindLess b1 b2 = barrier_kindCompare b1 b2 = LT
-let ~{ocaml} barrier_kindLessEq b1 b2 = barrier_kindCompare b1 b2 <> GT
-let ~{ocaml} barrier_kindGreater b1 b2 = barrier_kindCompare b1 b2 = GT
-let ~{ocaml} barrier_kindGreaterEq b1 b2 = barrier_kindCompare b1 b2 <> LT
-
-let inline {ocaml} barrier_kindLess = defaultLess
-let inline {ocaml} barrier_kindLessEq = defaultLessEq
-let inline {ocaml} barrier_kindGreater = defaultGreater
-let inline {ocaml} barrier_kindGreaterEq = defaultGreaterEq
-
-instance (Ord barrier_kind)
- let compare = barrier_kindCompare
- let (<) = barrier_kindLess
- let (<=) = barrier_kindLessEq
- let (>) = barrier_kindGreater
- let (>=) = barrier_kindGreaterEq
-end
-
-type event =
- | E_read_mem of read_kind * address_lifted * nat * maybe (list reg_name)
- | E_read_memt of read_kind * address_lifted * nat * maybe (list reg_name)
- | E_write_mem of write_kind * address_lifted * nat * maybe (list reg_name) * memory_value * maybe (list reg_name)
- | E_write_ea of write_kind * address_lifted * nat * maybe (list reg_name)
- | E_excl_res
- | E_write_memv of maybe address_lifted * memory_value * maybe (list reg_name)
- | E_write_memvt of maybe address_lifted * (bit_lifted * memory_value) * maybe (list reg_name)
- | E_barrier of barrier_kind
- | E_footprint
- | E_read_reg of reg_name
- | E_write_reg of reg_name * register_value
- | E_escape
- | E_error of string
-
-
-let eventCompare e1 e2 =
- match (e1,e2) with
- | (E_read_mem rk1 v1 i1 tr1, E_read_mem rk2 v2 i2 tr2) ->
- compare (rk1, (v1,i1,tr1)) (rk2,(v2, i2, tr2))
- | (E_read_memt rk1 v1 i1 tr1, E_read_memt rk2 v2 i2 tr2) ->
- compare (rk1, (v1,i1,tr1)) (rk2,(v2, i2, tr2))
- | (E_write_mem wk1 v1 i1 tr1 v1' tr1', E_write_mem wk2 v2 i2 tr2 v2' tr2') ->
- compare ((wk1,v1,i1),(tr1,v1',tr1')) ((wk2,v2,i2),(tr2,v2',tr2'))
- | (E_write_ea wk1 a1 i1 tr1, E_write_ea wk2 a2 i2 tr2) ->
- compare (wk1, (a1, i1, tr1)) (wk2, (a2, i2, tr2))
- | (E_excl_res, E_excl_res) -> EQ
- | (E_write_memv _ mv1 tr1, E_write_memv _ mv2 tr2) -> compare (mv1,tr1) (mv2,tr2)
- | (E_write_memvt _ mv1 tr1, E_write_memvt _ mv2 tr2) -> compare (mv1,tr1) (mv2,tr2)
- | (E_barrier bk1, E_barrier bk2) -> compare bk1 bk2
- | (E_read_reg r1, E_read_reg r2) -> compare r1 r2
- | (E_write_reg r1 v1, E_write_reg r2 v2) -> compare (r1,v1) (r2,v2)
- | (E_error s1, E_error s2) -> compare s1 s2
- | (E_escape,E_escape) -> EQ
- | (E_read_mem _ _ _ _, _) -> LT
- | (E_write_mem _ _ _ _ _ _, _) -> LT
- | (E_write_ea _ _ _ _, _) -> LT
- | (E_excl_res, _) -> LT
- | (E_write_memv _ _ _, _) -> LT
- | (E_barrier _, _) -> LT
- | (E_read_reg _, _) -> LT
- | (E_write_reg _ _, _) -> LT
- | _ -> GT
- end
-
-let eventLess b1 b2 = eventCompare b1 b2 = LT
-let eventLessEq b1 b2 = eventCompare b1 b2 <> GT
-let eventGreater b1 b2 = eventCompare b1 b2 = GT
-let eventGreaterEq b1 b2 = eventCompare b1 b2 <> LT
-
-instance (Ord event)
- let compare = eventCompare
- let (<) = eventLess
- let (<=) = eventLessEq
- let (>) = eventGreater
- let (>=) = eventGreaterEq
-end
-
-instance (SetType event)
- let setElemCompare = compare
-end
-
-
-(* the address_lifted types should go away here and be replaced by address *)
-type with_aux 'o = 'o * maybe ((unit -> (string * string)) * ((list (reg_name * register_value)) -> list event))
-type outcome_r 'a 'r =
- (* Request to read memory, value is location to read, integer is size to read,
- followed by registers that were used in computing that size *)
- | Read_mem of (read_kind * address_lifted * nat) * (memory_value -> with_aux (outcome_r 'a 'r))
- (* Tell the system a write is imminent, at address lifted, of size nat *)
- | Write_ea of (write_kind * address_lifted * nat) * (with_aux (outcome_r 'a 'r))
- (* Request the result of store-exclusive *)
- | Excl_res of (bool -> with_aux (outcome_r 'a 'r))
- (* Request to write memory at last signalled address. Memory value should be 8
- times the size given in ea signal *)
- | Write_memv of memory_value * (bool -> with_aux (outcome_r 'a 'r))
- (* Request a memory barrier *)
- | Barrier of barrier_kind * with_aux (outcome_r 'a 'r)
- (* Tell the system to dynamically recalculate dependency footprint *)
- | Footprint of with_aux (outcome_r 'a 'r)
- (* Request to read register, will track dependency when mode.track_values *)
- | Read_reg of reg_name * (register_value -> with_aux (outcome_r 'a 'r))
- (* Request to write register *)
- | Write_reg of (reg_name * register_value) * with_aux (outcome_r 'a 'r)
- | Escape of maybe string
- (*Result of a failed assert with possible error message to report*)
- | Fail of maybe string
- (* Early return with value of type 'r *)
- | Return of 'r
- | Internal of (maybe string * maybe (unit -> string)) * with_aux (outcome_r 'a 'r)
- | Done of 'a
- | Error of string
-
-type outcome 'a = outcome_r 'a unit
-type outcome_s 'a = with_aux (outcome 'a)
-(* first string : output of instruction_stack_to_string
- second string: output of local_variables_to_string *)
-
-(** operations and coercions on basic values *)
-
-val word8_to_bitls : word8 -> list bit_lifted
-val bitls_to_word8 : list bit_lifted -> word8
-
-val integer_of_word8_list : list word8 -> integer
-val word8_list_of_integer : integer -> integer -> list word8
-
-val concretizable_bitl : bit_lifted -> bool
-val concretizable_bytl : byte_lifted -> bool
-val concretizable_bytls : list byte_lifted -> bool
-
-let concretizable_bitl = function
- | Bitl_zero -> true
- | Bitl_one -> true
- | Bitl_undef -> false
- | Bitl_unknown -> false
-end
-
-let concretizable_bytl (Byte_lifted bs) = List.all concretizable_bitl bs
-let concretizable_bytls = List.all concretizable_bytl
-
-(* constructing values *)
-
-val build_register_value : list bit_lifted -> direction -> nat -> nat -> register_value
-let build_register_value bs dir width start_index =
- <| rv_bits = bs;
- rv_dir = dir; (* D_increasing for Power, D_decreasing for ARM *)
- rv_start_internal = start_index;
- rv_start = if dir = D_increasing
- then start_index
- else (start_index+1) - width; (* Smaller index, as in Power, for external interaction *)
- |>
-
-val register_value : bit_lifted -> direction -> nat -> nat -> register_value
-let register_value b dir width start_index =
- build_register_value (List.replicate width b) dir width start_index
-
-val register_value_zeros : direction -> nat -> nat -> register_value
-let register_value_zeros dir width start_index =
- register_value Bitl_zero dir width start_index
-
-val register_value_ones : direction -> nat -> nat -> register_value
-let register_value_ones dir width start_index =
- register_value Bitl_one dir width start_index
-
-val register_value_for_reg : reg_name -> list bit_lifted -> register_value
-let register_value_for_reg r bs : register_value =
- let () = ensure (width_of_reg_name r = List.length bs)
- ("register_value_for_reg (\"" ^ show (register_base_name r) ^ "\") length mismatch: "
- ^ show (width_of_reg_name r) ^ " vs " ^ show (List.length bs))
- in
- let (j1, j2) = slice_of_reg_name r in
- let d = direction_of_reg_name r in
- <| rv_bits = bs;
- rv_dir = d;
- rv_start_internal = if d = D_increasing then j1 else (start_of_reg_name r) - j1;
- rv_start = j1;
- |>
-
-val byte_lifted_undef : byte_lifted
-let byte_lifted_undef = Byte_lifted (List.replicate 8 Bitl_undef)
-
-val byte_lifted_unknown : byte_lifted
-let byte_lifted_unknown = Byte_lifted (List.replicate 8 Bitl_unknown)
-
-val memory_value_unknown : nat (*the number of bytes*) -> memory_value
-let memory_value_unknown (width:nat) : memory_value =
- List.replicate width byte_lifted_unknown
-
-val memory_value_undef : nat (*the number of bytes*) -> memory_value
-let memory_value_undef (width:nat) : memory_value =
- List.replicate width byte_lifted_undef
-
-val match_endianness : forall 'a. end_flag -> list 'a -> list 'a
-let match_endianness endian l =
- match endian with
- | E_little_endian -> List.reverse l
- | E_big_endian -> l
- end
-
-(* lengths *)
-
-val memory_value_length : memory_value -> nat
-let memory_value_length (mv:memory_value) = List.length mv
-
-
-(* aux fns *)
-
-val maybe_all : forall 'a. list (maybe 'a) -> maybe (list 'a)
-let rec maybe_all' xs acc =
- match xs with
- | [] -> Just (List.reverse acc)
- | Nothing :: _ -> Nothing
- | (Just y)::xs' -> maybe_all' xs' (y::acc)
- end
-let maybe_all xs = maybe_all' xs []
-
-(** coercions *)
-
-(* bits and bytes *)
-
-let bit_to_bool = function (* TODO: rename bool_of_bit *)
- | Bitc_zero -> false
- | Bitc_one -> true
-end
-
-
-val bit_lifted_of_bit : bit -> bit_lifted
-let bit_lifted_of_bit b =
- match b with
- | Bitc_zero -> Bitl_zero
- | Bitc_one -> Bitl_one
- end
-
-val bit_of_bit_lifted : bit_lifted -> maybe bit
-let bit_of_bit_lifted bl =
- match bl with
- | Bitl_zero -> Just Bitc_zero
- | Bitl_one -> Just Bitc_one
- | Bitl_undef -> Nothing
- | Bitl_unknown -> Nothing
- end
-
-
-val byte_lifted_of_byte : byte -> byte_lifted
-let byte_lifted_of_byte (Byte bs) : byte_lifted = Byte_lifted (List.map bit_lifted_of_bit bs)
-
-val byte_of_byte_lifted : byte_lifted -> maybe byte
-let byte_of_byte_lifted bl =
- match bl with
- | Byte_lifted bls ->
- match maybe_all (List.map bit_of_bit_lifted bls) with
- | Nothing -> Nothing
- | Just bs -> Just (Byte bs)
- end
- end
-
-
-val bytes_of_bits : list bit -> list byte (*assumes (length bits) mod 8 = 0*)
-let rec bytes_of_bits bits = match bits with
- | [] -> []
- | b0::b1::b2::b3::b4::b5::b6::b7::bits ->
- (Byte [b0;b1;b2;b3;b4;b5;b6;b7])::(bytes_of_bits bits)
- | _ -> failwith "bytes_of_bits not given bits divisible by 8"
-end
-
-val byte_lifteds_of_bit_lifteds : list bit_lifted -> list byte_lifted (*assumes (length bits) mod 8 = 0*)
-let rec byte_lifteds_of_bit_lifteds bits = match bits with
- | [] -> []
- | b0::b1::b2::b3::b4::b5::b6::b7::bits ->
- (Byte_lifted [b0;b1;b2;b3;b4;b5;b6;b7])::(byte_lifteds_of_bit_lifteds bits)
- | _ -> failwith "byte_lifteds of bit_lifteds not given bits divisible by 8"
-end
-
-
-val byte_of_memory_byte : memory_byte -> maybe byte
-let byte_of_memory_byte = byte_of_byte_lifted
-
-val memory_byte_of_byte : byte -> memory_byte
-let memory_byte_of_byte = byte_lifted_of_byte
-
-
-(* to and from nat *)
-
-(* this natFromBoolList could move to the Lem word.lem library *)
-val natFromBoolList : list bool -> nat
-let rec natFromBoolListAux (acc : nat) (bl : list bool) =
- match bl with
- | [] -> acc
- | (true :: bl') -> natFromBoolListAux ((acc * 2) + 1) bl'
- | (false :: bl') -> natFromBoolListAux (acc * 2) bl'
- end
-let natFromBoolList bl =
- natFromBoolListAux 0 (List.reverse bl)
-
-
-val nat_of_bit_list : list bit -> nat
-let nat_of_bit_list b =
- natFromBoolList (List.reverse (List.map bit_to_bool b))
- (* natFromBoolList takes a list with LSB first, for consistency with rest of Lem word library, so we reverse it. twice. *)
-
-
-(* to and from integer *)
-
-val integer_of_bit_list : list bit -> integer
-let integer_of_bit_list b =
- integerFromBoolList (false,(List.reverse (List.map bit_to_bool b)))
- (* integerFromBoolList takes a list with LSB first, so we reverse it *)
-
-val bit_list_of_integer : nat -> integer -> list bit
-let bit_list_of_integer len b =
- List.map (fun b -> if b then Bitc_one else Bitc_zero)
- (reverse (boolListFrombitSeq len (bitSeqFromInteger Nothing b)))
-
-val integer_of_byte_list : list byte -> integer
-let integer_of_byte_list bytes = integer_of_bit_list (List.concatMap (fun (Byte bs) -> bs) bytes)
-
-val byte_list_of_integer : nat -> integer -> list byte
-let byte_list_of_integer (len:nat) (a:integer):list byte =
- let bits = bit_list_of_integer (len * 8) a in bytes_of_bits bits
-
-
-val integer_of_address : address -> integer
-let integer_of_address (a:address):integer =
- match a with
- | Address bs i -> i
- end
-
-val address_of_integer : integer -> address
-let address_of_integer (i:integer):address =
- Address (byte_list_of_integer 8 i) i
-
-(* to and from signed-integer *)
-
-val signed_integer_of_bit_list : list bit -> integer
-let signed_integer_of_bit_list b =
- match b with
- | [] -> failwith "empty bit list"
- | Bitc_zero :: b' ->
- integerFromBoolList (false,(List.reverse (List.map bit_to_bool b)))
- | Bitc_one :: b' ->
- let b'_val = integerFromBoolList (false,(List.reverse (List.map bit_to_bool b'))) in
- (* integerFromBoolList takes a list with LSB first, so we reverse it *)
- let msb_val = integerPow 2 ((List.length b) - 1) in
- b'_val - msb_val
- end
-
-
-(* regarding a list of int as a list of bytes in memory, MSB lowest-address first, convert to an integer *)
-val integer_address_of_int_list : list int -> integer
-let rec integerFromIntListAux (acc: integer) (is: list int) =
- match is with
- | [] -> acc
- | (i :: is') -> integerFromIntListAux ((acc * 256) + integerFromInt i) is'
- end
-let integer_address_of_int_list (is: list int) =
- integerFromIntListAux 0 is
-
-val address_of_byte_list : list byte -> address
-let address_of_byte_list bs =
- if List.length bs <> 8 then failwith "address_of_byte_list given list not of length 8" else
- Address bs (integer_of_byte_list bs)
-
-let address_of_byte_lifted_list bls =
- match maybe_all (List.map byte_of_byte_lifted bls) with
- | Nothing -> Nothing
- | Just bs -> Just (address_of_byte_list bs)
- end
-
-(* operations on addresses *)
-
-val add_address_nat : address -> nat -> address
-let add_address_nat (a:address) (i:nat) : address =
- address_of_integer ((integer_of_address a) + (integerFromNat i))
-
-val clear_low_order_bits_of_address : address -> address
-let clear_low_order_bits_of_address a =
- match a with
- | Address [b0;b1;b2;b3;b4;b5;b6;b7] i ->
- match b7 with
- | Byte [bt0;bt1;bt2;bt3;bt4;bt5;bt6;bt7] ->
- let b7' = Byte [bt0;bt1;bt2;bt3;bt4;bt5;Bitc_zero;Bitc_zero] in
- let bytes = [b0;b1;b2;b3;b4;b5;b6;b7'] in
- Address bytes (integer_of_byte_list bytes)
- | _ -> failwith "Byte does not contain 8 bits"
- end
- | _ -> failwith "Address does not contain 8 bytes"
- end
-
-
-
-val byte_list_of_memory_value : end_flag -> memory_value -> maybe (list byte)
-let byte_list_of_memory_value endian mv =
- match_endianness endian mv
- $> List.map byte_of_memory_byte
- $> maybe_all
-
-
-val integer_of_memory_value : end_flag -> memory_value -> maybe integer
-let integer_of_memory_value endian (mv:memory_value):maybe integer =
- match byte_list_of_memory_value endian mv with
- | Just bs -> Just (integer_of_byte_list bs)
- | Nothing -> Nothing
- end
-
-val memory_value_of_integer : end_flag -> nat -> integer -> memory_value
-let memory_value_of_integer endian (len:nat) (i:integer):memory_value =
- List.map byte_lifted_of_byte (byte_list_of_integer len i)
- $> match_endianness endian
-
-
-val integer_of_register_value : register_value -> maybe integer
-let integer_of_register_value (rv:register_value):maybe integer =
- match maybe_all (List.map bit_of_bit_lifted rv.rv_bits) with
- | Nothing -> Nothing
- | Just bs -> Just (integer_of_bit_list bs)
- end
-
-(* NOTE: register_value_for_reg_of_integer might be easier to use *)
-val register_value_of_integer : nat -> nat -> direction -> integer -> register_value
-let register_value_of_integer (len:nat) (start:nat) (dir:direction) (i:integer):register_value =
- let bs = bit_list_of_integer len i in
- build_register_value (List.map bit_lifted_of_bit bs) dir len start
-
-val register_value_for_reg_of_integer : reg_name -> integer -> register_value
-let register_value_for_reg_of_integer (r: reg_name) (i:integer) : register_value =
- register_value_of_integer (width_of_reg_name r) (start_of_reg_name r) (direction_of_reg_name r) i
-
-(* *)
-
-val opcode_of_bytes : byte -> byte -> byte -> byte -> opcode
-let opcode_of_bytes b0 b1 b2 b3 : opcode = Opcode [b0;b1;b2;b3]
-
-val register_value_of_address : address -> direction -> register_value
-let register_value_of_address (Address bytes _) dir : register_value =
- let bits = List.concatMap (fun (Byte bs) -> List.map bit_lifted_of_bit bs) bytes in
- <| rv_bits = bits;
- rv_dir = dir;
- rv_start = 0;
- rv_start_internal = if dir = D_increasing then 0 else (List.length bits) - 1
- |>
-
-val register_value_of_memory_value : memory_value -> direction -> register_value
-let register_value_of_memory_value bytes dir : register_value =
- let bitls = List.concatMap (fun (Byte_lifted bs) -> bs) bytes in
- <| rv_bits = bitls;
- rv_dir = dir;
- rv_start = 0;
- rv_start_internal = if dir = D_increasing then 0 else (List.length bitls) - 1
- |>
-
-val memory_value_of_register_value: register_value -> memory_value
-let memory_value_of_register_value r =
- (byte_lifteds_of_bit_lifteds r.rv_bits)
-
-val address_lifted_of_register_value : register_value -> maybe address_lifted
-(* returning Nothing iff the register value is not 64 bits wide, but
-allowing Bitl_undef and Bitl_unknown *)
-let address_lifted_of_register_value (rv:register_value) : maybe address_lifted =
- if List.length rv.rv_bits <> 64 then Nothing
- else
- Just (Address_lifted (byte_lifteds_of_bit_lifteds rv.rv_bits)
- (if List.all concretizable_bitl rv.rv_bits
- then match (maybe_all (List.map bit_of_bit_lifted rv.rv_bits)) with
- | (Just(bits)) -> Just (integer_of_bit_list bits)
- | Nothing -> Nothing end
- else Nothing))
-
-val address_of_address_lifted : address_lifted -> maybe address
-(* returning Nothing iff the address contains any Bitl_undef or Bitl_unknown *)
-let address_of_address_lifted (al:address_lifted): maybe address =
- match al with
- | Address_lifted bls (Just i)->
- match maybe_all ((List.map byte_of_byte_lifted) bls) with
- | Nothing -> Nothing
- | Just bs -> Just (Address bs i)
- end
- | _ -> Nothing
-end
-
-val address_of_register_value : register_value -> maybe address
-(* returning Nothing iff the register value is not 64 bits wide, or contains Bitl_undef or Bitl_unknown *)
-let address_of_register_value (rv:register_value) : maybe address =
- match address_lifted_of_register_value rv with
- | Nothing -> Nothing
- | Just al ->
- match address_of_address_lifted al with
- | Nothing -> Nothing
- | Just a -> Just a
- end
- end
-
-let address_of_memory_value (endian: end_flag) (mv:memory_value) : maybe address =
- match byte_list_of_memory_value endian mv with
- | Nothing -> Nothing
- | Just bs ->
- if List.length bs <> 8 then Nothing else
- Just (address_of_byte_list bs)
- end
-
-val byte_of_int : int -> byte
-let byte_of_int (i:int) : byte =
- Byte (bit_list_of_integer 8 (integerFromInt i))
-
-val memory_byte_of_int : int -> memory_byte
-let memory_byte_of_int (i:int) : memory_byte =
- memory_byte_of_byte (byte_of_int i)
-
-(*
-val int_of_memory_byte : int -> maybe memory_byte
-let int_of_memory_byte (mb:memory_byte) : int =
- failwith "TODO"
-*)
-
-
-
-val memory_value_of_address_lifted : end_flag -> address_lifted -> memory_value
-let memory_value_of_address_lifted endian (Address_lifted bs _ :address_lifted) =
- match_endianness endian bs
-
-val byte_list_of_address : address -> list byte
-let byte_list_of_address (Address bs _) : list byte = bs
-
-val memory_value_of_address : end_flag -> address -> memory_value
-let memory_value_of_address endian (Address bs _) =
- match_endianness endian bs
- $> List.map byte_lifted_of_byte
-
-val byte_list_of_opcode : opcode -> list byte
-let byte_list_of_opcode (Opcode bs) : list byte = bs
-
-(** ****************************************** *)
-(** show type class instantiations *)
-(** ****************************************** *)
-
-(* matching printing_functions.ml *)
-val stringFromReg_name : reg_name -> string
-let stringFromReg_name r =
- let norm_sl start dir (first,second) = (first,second)
- (* match dir with
- | D_increasing -> (first,second)
- | D_decreasing -> (start - first, start - second)
- end *)
- in
- match r with
- | Reg s start size dir -> s
- | Reg_slice s start dir sl ->
- let (first,second) = norm_sl start dir sl in
- s ^ "[" ^ show first ^ (if (first = second) then "" else ".." ^ (show second)) ^ "]"
- | Reg_field s start dir f sl ->
- let (first,second) = norm_sl start dir sl in
- s ^ "." ^ f ^ " (" ^ (show start) ^ ", " ^ (show dir) ^ ", " ^ (show first) ^ ", " ^ (show second) ^ ")"
- | Reg_f_slice s start dir f (first1,second1) (first,second) ->
- let (first,second) =
- match dir with
- | D_increasing -> (first,second)
- | D_decreasing -> (start - first, start - second)
- end in
- s ^ "." ^ f ^ "]" ^ show first ^ (if (first = second) then "" else ".." ^ (show second)) ^ "]"
- end
-
-instance (Show reg_name)
- let show = stringFromReg_name
-end
-
-
-(* hex pp of integers, adapting the Lem string_extra.lem code *)
-val stringFromNaturalHexHelper : natural -> list char -> list char
-let rec stringFromNaturalHexHelper n acc =
- if n = 0 then
- acc
- else
- stringFromNaturalHexHelper (n / 16) (String_extra.chr (natFromNatural (let nd = n mod 16 in if nd <=9 then nd + 48 else nd - 10 + 97)) :: acc)
-
-val stringFromNaturalHex : natural -> string
-let (*~{ocaml;hol}*) stringFromNaturalHex n =
- if n = 0 then "0" else toString (stringFromNaturalHexHelper n [])
-
-val stringFromIntegerHex : integer -> string
-let (*~{ocaml}*) stringFromIntegerHex i =
- if i < 0 then
- "-" ^ stringFromNaturalHex (naturalFromInteger i)
- else
- stringFromNaturalHex (naturalFromInteger i)
-
-
-let stringFromAddress (Address bs i) =
- let i' = integer_of_byte_list bs in
- if i=i' then
-(*TODO: ideally this should be made to match the src/pp.ml pp_address; the following very roughly matches what's used in the ppcmem UI, enough to make exceptions readable *)
- if i < 65535 then
- show i
- else
- stringFromIntegerHex i
- else
- "stringFromAddress bytes and integer mismatch"
-
-instance (Show address)
- let show = stringFromAddress
-end
-
-let stringFromByte_lifted bl =
- match byte_of_byte_lifted bl with
- | Nothing -> "u?"
- | Just (Byte bits) ->
- let i = integer_of_bit_list bits in
- show i
- end
-
-instance (Show byte_lifted)
- let show = stringFromByte_lifted
-end
-
-(* possible next instruction address options *)
-type nia =
- | NIA_successor
- | NIA_concrete_address of address
- | NIA_LR (* "LR0:61 || 0b00" in Power pseudocode *)
- | NIA_CTR (* "CTR0:61 || 0b00" in Power pseudocode *)
- | NIA_register of reg_name (* the address will be in a register,
- corresponds to AArch64 BLR, BR, RET
- instructions *)
-
-let niaCompare n1 n2 = match (n1,n2) with
- | (NIA_successor, NIA_successor) -> EQ
- | (NIA_successor, _) -> LT
- | (NIA_concrete_address _, NIA_successor) -> GT
- | (NIA_concrete_address a1, NIA_concrete_address a2) -> compare a1 a2
- | (NIA_concrete_address _, _) -> LT
- | (NIA_LR, NIA_successor) -> GT
- | (NIA_LR, NIA_concrete_address _) -> GT
- | (NIA_LR, NIA_LR) -> EQ
- | (NIA_LR, _) -> LT
- | (NIA_CTR, NIA_successor) -> GT
- | (NIA_CTR, NIA_concrete_address _) -> GT
- | (NIA_CTR, NIA_LR) -> GT
- | (NIA_CTR, NIA_CTR) -> EQ
- | (NIA_CTR, NIA_register _) -> LT
- | (NIA_register _, NIA_successor) -> GT
- | (NIA_register _, NIA_concrete_address _) -> GT
- | (NIA_register _, NIA_LR) -> GT
- | (NIA_register _, NIA_CTR) -> GT
- | (NIA_register r1, NIA_register r2) -> compare r1 r2
- end
-
-instance (Ord nia)
- let compare = niaCompare
- let (<) n1 n2 = (niaCompare n1 n2) = LT
- let (<=) n1 n2 = (niaCompare n1 n2) <> GT
- let (>) n1 n2 = (niaCompare n1 n2) = GT
- let (>=) n1 n2 = (niaCompare n1 n2) <> LT
-end
-
-let stringFromNia = function
- | NIA_successor -> "NIA_successor"
- | NIA_concrete_address a -> "NIA_concrete_address " ^ show a
- | NIA_LR -> "NIA_LR"
- | NIA_CTR -> "NIA_CTR"
- | NIA_register r -> "NIA_register " ^ show r
-end
-
-instance (Show nia)
- let show = stringFromNia
-end
-
-type dia =
- | DIA_none
- | DIA_concrete_address of address
- | DIA_register of reg_name
-
-let diaCompare d1 d2 = match (d1, d2) with
- | (DIA_none, DIA_none) -> EQ
- | (DIA_none, _) -> LT
- | (DIA_concrete_address a1, DIA_none) -> GT
- | (DIA_concrete_address a1, DIA_concrete_address a2) -> compare a1 a2
- | (DIA_concrete_address a1, _) -> LT
- | (DIA_register r1, DIA_register r2) -> compare r1 r2
- | (DIA_register _, _) -> GT
-end
-
-instance (Ord dia)
- let compare = diaCompare
- let (<) n1 n2 = (diaCompare n1 n2) = LT
- let (<=) n1 n2 = (diaCompare n1 n2) <> GT
- let (>) n1 n2 = (diaCompare n1 n2) = GT
- let (>=) n1 n2 = (diaCompare n1 n2) <> LT
-end
-
-let stringFromDia = function
- | DIA_none -> "DIA_none"
- | DIA_concrete_address a -> "DIA_concrete_address " ^ show a
- | DIA_register r -> "DIA_delayed_register " ^ show r
-end
-
-instance (Show dia)
- let show = stringFromDia
-end
diff --git a/src/gen_lib/sail2_deep_shallow_convert.lem b/src/gen_lib/sail2_deep_shallow_convert.lem
index b963e537..2e3543b4 100644
--- a/src/gen_lib/sail2_deep_shallow_convert.lem
+++ b/src/gen_lib/sail2_deep_shallow_convert.lem
@@ -455,17 +455,61 @@ instance (ToFromInterpValue write_kind)
end
+let a64_barrier_domainToInterpValue = function
+ | A64_FullShare ->
+ V_ctor (Id_aux (Id "A64_FullShare") Unknown) (T_id "a64_barrier_domain") (C_Enum 0) (toInterpValue ())
+ | A64_InnerShare ->
+ V_ctor (Id_aux (Id "A64_InnerShare") Unknown) (T_id "a64_barrier_domain") (C_Enum 1) (toInterpValue ())
+ | A64_OuterShare ->
+ V_ctor (Id_aux (Id "A64_OuterShare") Unknown) (T_id "a64_barrier_domain") (C_Enum 2) (toInterpValue ())
+ | A64_NonShare ->
+ V_ctor (Id_aux (Id "A64_NonShare") Unknown) (T_id "a64_barrier_domain") (C_Enum 3) (toInterpValue ())
+end
+let rec a64_barrier_domainFromInterpValue v = match v with
+ | V_ctor (Id_aux (Id "A64_FullShare") _) _ _ v -> A64_FullShare
+ | V_ctor (Id_aux (Id "A64_InnerShare") _) _ _ v -> A64_InnerShare
+ | V_ctor (Id_aux (Id "A64_OuterShare") _) _ _ v -> A64_OuterShare
+ | V_ctor (Id_aux (Id "A64_NonShare") _) _ _ v -> A64_NonShare
+ | V_tuple [v] -> a64_barrier_domainFromInterpValue v
+ | v -> failwith ("fromInterpValue a64_barrier_domain: unexpected value. " ^
+ Interp.debug_print_value v)
+ end
+instance (ToFromInterpValue a64_barrier_domain)
+ let toInterpValue = a64_barrier_domainToInterpValue
+ let fromInterpValue = a64_barrier_domainFromInterpValue
+end
+
+let a64_barrier_typeToInterpValue = function
+ | A64_barrier_all ->
+ V_ctor (Id_aux (Id "A64_barrier_all") Unknown) (T_id "a64_barrier_type") (C_Enum 0) (toInterpValue ())
+ | A64_barrier_LD ->
+ V_ctor (Id_aux (Id "A64_barrier_LD") Unknown) (T_id "a64_barrier_type") (C_Enum 1) (toInterpValue ())
+ | A64_barrier_ST ->
+ V_ctor (Id_aux (Id "A64_barrier_ST") Unknown) (T_id "a64_barrier_type") (C_Enum 2) (toInterpValue ())
+end
+let rec a64_barrier_typeFromInterpValue v = match v with
+ | V_ctor (Id_aux (Id "A64_barrier_all") _) _ _ v -> A64_barrier_all
+ | V_ctor (Id_aux (Id "A64_barrier_LD") _) _ _ v -> A64_barrier_LD
+ | V_ctor (Id_aux (Id "A64_barrier_ST") _) _ _ v -> A64_barrier_ST
+ | V_tuple [v] -> a64_barrier_typeFromInterpValue v
+ | v -> failwith ("fromInterpValue a64_barrier_type: unexpected value. " ^
+ Interp.debug_print_value v)
+ end
+instance (ToFromInterpValue a64_barrier_type)
+ let toInterpValue = a64_barrier_typeToInterpValue
+ let fromInterpValue = a64_barrier_typeFromInterpValue
+end
+
+
let barrier_kindToInterpValue = function
| Barrier_Sync -> V_ctor (Id_aux (Id "Barrier_Sync") Unknown) (T_id "barrier_kind") (C_Enum 0) (toInterpValue ())
| Barrier_LwSync -> V_ctor (Id_aux (Id "Barrier_LwSync") Unknown) (T_id "barrier_kind") (C_Enum 1) (toInterpValue ())
| Barrier_Eieio -> V_ctor (Id_aux (Id "Barrier_Eieio") Unknown) (T_id "barrier_kind") (C_Enum 2) (toInterpValue ())
| Barrier_Isync -> V_ctor (Id_aux (Id "Barrier_Isync") Unknown) (T_id "barrier_kind") (C_Enum 3) (toInterpValue ())
- | Barrier_DMB -> V_ctor (Id_aux (Id "Barrier_DMB") Unknown) (T_id "barrier_kind") (C_Enum 4) (toInterpValue ())
- | Barrier_DMB_ST -> V_ctor (Id_aux (Id "Barrier_DMB_ST") Unknown) (T_id "barrier_kind") (C_Enum 5) (toInterpValue ())
- | Barrier_DMB_LD -> V_ctor (Id_aux (Id "Barrier_DMB_LD") Unknown) (T_id "barrier_kind") (C_Enum 6) (toInterpValue ())
- | Barrier_DSB -> V_ctor (Id_aux (Id "Barrier_DSB") Unknown) (T_id "barrier_kind") (C_Enum 7) (toInterpValue ())
- | Barrier_DSB_ST -> V_ctor (Id_aux (Id "Barrier_DSB_ST") Unknown) (T_id "barrier_kind") (C_Enum 8) (toInterpValue ())
- | Barrier_DSB_LD -> V_ctor (Id_aux (Id "Barrier_DSB_LD") Unknown) (T_id "barrier_kind") (C_Enum 9) (toInterpValue ())
+ | Barrier_DMB (dom,typ) ->
+ V_ctor (Id_aux (Id "Barrier_DMB") Unknown) (T_id "barrier_kind") C_Union (toInterpValue (dom, typ))
+ | Barrier_DSB (dom,typ) ->
+ V_ctor (Id_aux (Id "Barrier_DSB") Unknown) (T_id "barrier_kind") C_Union (toInterpValue (dom, typ))
| Barrier_ISB -> V_ctor (Id_aux (Id "Barrier_ISB") Unknown) (T_id "barrier_kind") (C_Enum 10) (toInterpValue ())
| Barrier_TM_COMMIT -> V_ctor (Id_aux (Id "Barrier_TM_COMMIT") Unknown) (T_id "barrier_kind") (C_Enum 11) (toInterpValue ())
| Barrier_MIPS_SYNC -> V_ctor (Id_aux (Id "Barrier_MIPS_SYNC") Unknown) (T_id "barrier_kind") (C_Enum 12) (toInterpValue ())
@@ -482,12 +526,12 @@ let rec barrier_kindFromInterpValue v = match v with
| V_ctor (Id_aux (Id "Barrier_LwSync") _) _ _ v -> Barrier_LwSync
| V_ctor (Id_aux (Id "Barrier_Eieio") _) _ _ v -> Barrier_Eieio
| V_ctor (Id_aux (Id "Barrier_Isync") _) _ _ v -> Barrier_Isync
- | V_ctor (Id_aux (Id "Barrier_DMB") _) _ _ v -> Barrier_DMB
- | V_ctor (Id_aux (Id "Barrier_DMB_ST") _) _ _ v -> Barrier_DMB_ST
- | V_ctor (Id_aux (Id "Barrier_DMB_LD") _) _ _ v -> Barrier_DMB_LD
- | V_ctor (Id_aux (Id "Barrier_DSB") _) _ _ v -> Barrier_DSB
- | V_ctor (Id_aux (Id "Barrier_DSB_ST") _) _ _ v -> Barrier_DSB_ST
- | V_ctor (Id_aux (Id "Barrier_DSB_LD") _) _ _ v -> Barrier_DSB_LD
+ | V_ctor (Id_aux (Id "Barrier_DMB") _) _ _ v ->
+ let (dom, typ) = fromInterpValue v in
+ Barrier_DMB (dom,typ)
+ | V_ctor (Id_aux (Id "Barrier_DSB") _) _ _ v ->
+ let (dom, typ) = fromInterpValue v in
+ Barrier_DSB (dom,typ)
| V_ctor (Id_aux (Id "Barrier_ISB") _) _ _ v -> Barrier_ISB
| V_ctor (Id_aux (Id "Barrier_TM_COMMIT") _) _ _ v -> Barrier_TM_COMMIT
| V_ctor (Id_aux (Id "Barrier_MIPS_SYNC") _) _ _ v -> Barrier_MIPS_SYNC
diff --git a/src/lem_interp/0.11/instruction_extractor.lem b/src/lem_interp/0.11/instruction_extractor.lem
deleted file mode 100644
index 11947c17..00000000
--- a/src/lem_interp/0.11/instruction_extractor.lem
+++ /dev/null
@@ -1,163 +0,0 @@
-(*========================================================================*)
-(* Sail *)
-(* *)
-(* Copyright (c) 2013-2017 *)
-(* Kathyrn Gray *)
-(* Shaked Flur *)
-(* Stephen Kell *)
-(* Gabriel Kerneis *)
-(* Robert Norton-Wright *)
-(* Christopher Pulte *)
-(* Peter Sewell *)
-(* Alasdair Armstrong *)
-(* Brian Campbell *)
-(* Thomas Bauereiss *)
-(* Anthony Fox *)
-(* Jon French *)
-(* Dominic Mulligan *)
-(* Stephen Kell *)
-(* Mark Wassell *)
-(* *)
-(* All rights reserved. *)
-(* *)
-(* This software was developed by the University of Cambridge Computer *)
-(* Laboratory as part of the Rigorous Engineering of Mainstream Systems *)
-(* (REMS) project, funded by EPSRC grant EP/K008528/1. *)
-(* *)
-(* Redistribution and use in source and binary forms, with or without *)
-(* modification, are permitted provided that the following conditions *)
-(* are met: *)
-(* 1. Redistributions of source code must retain the above copyright *)
-(* notice, this list of conditions and the following disclaimer. *)
-(* 2. Redistributions in binary form must reproduce the above copyright *)
-(* notice, this list of conditions and the following disclaimer in *)
-(* the documentation and/or other materials provided with the *)
-(* distribution. *)
-(* *)
-(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
-(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
-(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
-(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
-(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
-(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
-(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
-(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
-(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
-(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
-(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
-(* SUCH DAMAGE. *)
-(*========================================================================*)
-
-open import Interp_ast
-open import Interp_utilities
-open import Pervasives
-
-type instr_param_typ =
-| IBit
-| IBitvector of maybe nat
-| IRange of maybe nat
-| IEnum of string * nat
-| IOther
-
-type instruction_form =
-| Instr_form of string * list (string * instr_param_typ) * list base_effect
-| Skipped
-
-val extract_instructions : string -> defs tannot -> list instruction_form
-
-let rec extract_ityp t tag = match (t,tag) with
-(* AA: Hack
- | (T_abbrev _ t,_) -> extract_ityp t tag
- | (T_id "bit",_) -> IBit
- | (T_id "bool",_) -> IBit
- | (T_app "vector" (T_args [_; T_arg_nexp (Ne_const len); _; T_arg_typ (T_id "bit")]),_) ->
- IBitvector (Just (natFromInteger len))
- | (T_app "vector" (T_args [_;_;_;T_arg_typ (T_id "bit")]),_) -> IBitvector (Just 64)
- | (T_app "atom" (T_args [T_arg_nexp (Ne_const num)]),_) ->
- IRange (Just (natFromInteger num))
- | (T_app "atom" _,_) -> IRange Nothing
- | (T_app "range" (T_args [_;T_arg_nexp (Ne_const max)]),_) ->
- IRange (Just (natFromInteger max))
- | (T_app "range" _,_) -> IRange Nothing
- | (T_app i (T_args []),Tag_enum max) ->
- IEnum i (natFromInteger max)
- | (T_id i,Tag_enum max) ->
- IEnum i (natFromInteger max)
-*)
- | _ -> IOther
-end
-
-let extract_parm (E_aux e (_,tannot)) =
- match e with
- | E_id (Id_aux (Id i) _) ->
- match tannot with
- | Just(t,tag,_,_,_) -> (i,(extract_ityp t tag))
- | _ -> (i,IOther) end
- | _ ->
- let i = "Unnamed" in
- match tannot with
- | Just(t,tag,_,_,_) -> (i,(extract_ityp t tag))
- | _ -> (i,IOther) end
-end
-
-let rec extract_from_decode decoder =
- match decoder with
- | [] -> []
- | (FCL_aux (FCL_Funcl _ (Pat_aux pexp _)) _)::decoder ->
- let exp = match pexp with Pat_exp _ exp -> exp | Pat_when _ _ exp -> exp end in
- (match exp with
- | E_aux (E_app (Id_aux(Id id) _) parms) (_,(Just (_,Tag_ctor,_,_,_))) ->
- Instr_form id (List.map extract_parm parms) []
- | _ -> Skipped end)::(extract_from_decode decoder)
-end
-
-let rec extract_effects_of_fcl id execute = match execute with
- | [] -> []
- | FCL_aux (FCL_Funcl _ (Pat_aux (Pat_exp (P_aux (P_app (Id_aux (Id i) _) _) _) _) _)) (_,(Just(_,_,_,Effect_aux(Effect_set efs) _,_))) :: executes ->
- if i = id
- then efs
- else extract_effects_of_fcl id executes
- | _::executes -> extract_effects_of_fcl id executes
-end
-
-let rec extract_patt_parm (P_aux p (_,tannot)) =
- let t = match tannot with
- | Just(t,tag,_,_,_) -> extract_ityp t tag
- | _ -> IOther end in
- match p with
- | P_lit lit -> ("",t)
- | P_wild -> ("Unnamed",t)
- | P_as _ (Id_aux (Id id) _) -> (id,t)
- | P_typ typ p -> extract_patt_parm p
- | P_id (Id_aux (Id id) _) -> (id,t)
- | P_app (Id_aux (Id id) _) [] -> (id,t)
- | _ -> ("",t) end
-
-let rec extract_from_execute fcls = match fcls with
- | [] -> []
- | FCL_aux (FCL_Funcl _ (Pat_aux (Pat_exp (P_aux (P_app (Id_aux (Id i) _) parms) _) _) _)) (_,Just(_,_,_,Effect_aux(Effect_set efs) _,_))::fcls ->
- (Instr_form i (List.map extract_patt_parm parms) efs)::extract_from_execute fcls
- | _ :: fcls ->
- (* AA: Find out what breaks this *)
- extract_from_execute fcls
-end
-
-let rec extract_effects instrs execute =
- match instrs with
- | [] -> []
- | Skipped::instrs -> Skipped::(extract_effects instrs execute)
- | (Instr_form id parms [])::instrs ->
- (Instr_form id parms (extract_effects_of_fcl id execute))::(extract_effects instrs execute)
-end
-
-let extract_instructions_old decode_name execute_name defs =
- let (Just decoder) = find_function defs (Id_aux (Id decode_name) Unknown) in
- let (Just executer) = find_function defs (Id_aux (Id execute_name) Unknown) in
- let instr_no_effects = extract_from_decode decoder in
- let instructions = extract_effects instr_no_effects executer in
- instructions
-
-let extract_instructions execute_name defs =
- let (Just executer) = find_function defs (Id_aux (Id execute_name) Unknown) in
- let instructions = extract_from_execute executer in
- instructions
diff --git a/src/lem_interp/0.11/interp.lem b/src/lem_interp/0.11/interp.lem
deleted file mode 100644
index 431c1a08..00000000
--- a/src/lem_interp/0.11/interp.lem
+++ /dev/null
@@ -1,3407 +0,0 @@
-(*========================================================================*)
-(* Sail *)
-(* *)
-(* Copyright (c) 2013-2017 *)
-(* Kathyrn Gray *)
-(* Shaked Flur *)
-(* Stephen Kell *)
-(* Gabriel Kerneis *)
-(* Robert Norton-Wright *)
-(* Christopher Pulte *)
-(* Peter Sewell *)
-(* Alasdair Armstrong *)
-(* Brian Campbell *)
-(* Thomas Bauereiss *)
-(* Anthony Fox *)
-(* Jon French *)
-(* Dominic Mulligan *)
-(* Stephen Kell *)
-(* Mark Wassell *)
-(* *)
-(* All rights reserved. *)
-(* *)
-(* This software was developed by the University of Cambridge Computer *)
-(* Laboratory as part of the Rigorous Engineering of Mainstream Systems *)
-(* (REMS) project, funded by EPSRC grant EP/K008528/1. *)
-(* *)
-(* Redistribution and use in source and binary forms, with or without *)
-(* modification, are permitted provided that the following conditions *)
-(* are met: *)
-(* 1. Redistributions of source code must retain the above copyright *)
-(* notice, this list of conditions and the following disclaimer. *)
-(* 2. Redistributions in binary form must reproduce the above copyright *)
-(* notice, this list of conditions and the following disclaimer in *)
-(* the documentation and/or other materials provided with the *)
-(* distribution. *)
-(* *)
-(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
-(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
-(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
-(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
-(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
-(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
-(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
-(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
-(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
-(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
-(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
-(* SUCH DAMAGE. *)
-(*========================================================================*)
-
-open import Pervasives
-import Map
-import Map_extra (* For 'find' instead of using lookup and maybe types, as we know it cannot fail *)
-import Set_extra (* For 'to_list' because map only goes to set *)
-import List_extra (* For 'nth' and 'head' where we know that they cannot fail *)
-open import Show
-open import Show_extra (* for 'show' to convert nat to string) *)
-open import String_extra (* for chr *)
-import Assert_extra (*For failwith when partiality is known to be unreachable*)
-
-open import Sail_impl_base
-open import Interp_ast
-open import Interp_utilities
-open import Instruction_extractor
-
-(* TODO: upstream into Lem *)
-val stringFromTriple : forall 'a 'b 'c. ('a -> string) -> ('b -> string) -> ('c -> string) -> ('a * 'b * 'c) -> string
-let stringFromTriple showX showY showZ (x,y,z) =
- "(" ^ showX x ^ ", " ^ showY y ^ ", " ^ showZ z ^ ")"
-
-instance forall 'a 'b 'c. Show 'a, Show 'b, Show 'c => (Show ('a * 'b * 'c))
- let show = stringFromTriple show show show
-end
-
-val debug_print : string -> unit
-declare ocaml target_rep function debug_print s = `Printf.eprintf` "%s" s
-
-val intern_annot : tannot -> tannot
-let intern_annot annot =
- match annot with
- | Just (t,_,ncs,effect,rec_effect) ->
- Just (t,Tag_empty,ncs,pure,rec_effect)
- | Nothing -> Nothing
- end
-
-let val_annot typ = Just(typ,Tag_empty,[],pure,pure)
-
-let ctor_annot typ = Just(typ,Tag_ctor,[],pure,pure)
-
-let enum_annot typ max = Just(typ,Tag_enum max,[],pure,pure)
-
-let non_det_annot annot maybe_id = match annot with
- | Just(t,_,cs,ef,efr) -> Just(t,Tag_unknown maybe_id,cs,ef,efr)
- | _ -> Nothing
-end
-
-let is_inc = function | IInc -> true | _ -> false end
-
-let id_of_string s = (Id_aux (Id s) Unknown)
-
-
-let rec {ocaml} string_of_reg_form r = match r with
- | Form_Reg id _ _ -> get_id id
- | Form_SubReg id reg_form _ -> (string_of_reg_form reg_form) ^ "." ^ (get_id id)
-end
-
-let rec {ocaml} string_of_value v = match v with
- | V_boxref nat t -> "$#" ^ (show nat) ^ "$"
- | V_lit (L_aux lit _) ->
- (match lit with
- | L_unit -> "()"
- | L_zero -> "0"
- | L_one -> "1"
- | L_true -> "true"
- | L_false -> "false"
- | L_num num -> show num
- | L_hex hex -> "0x" ^ hex
- | L_bin bin -> "0b" ^ bin
- | L_undef -> "undefined"
- | L_string str-> "\"" ^ str ^ "\"" end)
- | V_tuple vals -> "(" ^ (list_to_string string_of_value "," vals) ^ ")"
- | V_list vals -> "[||" ^ (list_to_string string_of_value "," vals) ^ "||]"
- | V_vector i inc vals ->
- let default_format _ = "[" ^ (list_to_string string_of_value "," vals) ^ "]" in
- let to_bin () = (*"("^show i ^") "^ *)"0b" ^
- (List.foldr
- (fun v rst ->
- (match v with
- | V_lit (L_aux l _) ->
- (match l with | L_one -> "1" | L_zero -> "0" | L_undef -> "u"
- | _ -> Assert_extra.failwith "to_bin called with non-bin lits" end)
- | V_unknown -> "?"
- | _ -> Assert_extra.failwith "to_bin called with non-bin values" end) ^rst) "" vals) in
- match vals with
- | [] -> default_format ()
- | v::vs ->
- match v with
- | V_lit (L_aux L_zero _) -> to_bin()
- | V_lit (L_aux L_one _) -> to_bin()
- | _ -> default_format() end end
- | V_vector_sparse start stop inc vals default ->
- "[" ^ (list_to_string (fun (i,v) -> (show i) ^ " = " ^ (string_of_value v)) "," vals) ^ "]:" ^
- show start ^ "-" ^show stop ^ "(default of " ^ (string_of_value default) ^ ")"
- | V_record t vals ->
- "{" ^ (list_to_string (fun (id,v) -> (get_id id) ^ "=" ^ (string_of_value v)) ";" vals) ^ "}"
- | V_ctor id t _ value -> (get_id id) ^ " " ^ string_of_value value
- | V_unknown -> "Unknown"
- | V_register r -> string_of_reg_form r
- | V_register_alias _ _ -> "register_as_alias"
- | V_track v rs -> "tainted by {" ^ (list_to_string string_of_reg_form "," []) ^ "} --" ^ (string_of_value v)
-end
-let ~{ocaml} string_of_value _ = ""
-
-val debug_print_value_list : list string -> string
-let rec debug_print_value_list vs = match vs with
- | [] -> ""
- | [v] -> v
- | v :: vs -> v ^ ";" ^ debug_print_value_list vs
-end
-val debug_print_value : value -> string
-let rec debug_print_value v = match v with
- | V_boxref n t -> "V_boxref " ^ (show n) ^ " t"
- | V_lit (L_aux lit _) ->
- "V_lit " ^
- (match lit with
- | L_unit -> "L_unit"
- | L_zero -> "L_zero"
- | L_one -> "L_one"
- | L_true -> "L_true"
- | L_false -> "L_false"
- | L_num num -> "(Lnum " ^ (show num) ^ ")"
- | L_hex hex -> "(L_hex " ^ hex ^ ")"
- | L_bin bin -> "(L_bin " ^ bin ^ ")"
- | L_undef -> "L_undef"
- | L_string str-> "(L_string " ^ str ^ ")" end)
- | V_tuple vals ->
- "V_tuple [" ^ debug_print_value_list (List.map debug_print_value vals) ^ "]"
- | V_list vals ->
- "V_list [" ^ debug_print_value_list (List.map debug_print_value vals) ^ "]"
- | V_vector i inc vals ->
- "V_vector " ^ (show i) ^
- " " ^ (if inc = IInc then "IInc" else "IDec") ^
- " [" ^ debug_print_value_list (List.map debug_print_value vals) ^ "]"
- | V_vector_sparse start stop inc vals default ->
- let ppindexval (i,v) = (show i) ^ " = " ^ (debug_print_value v) in
- let valspp = debug_print_value_list (List.map ppindexval vals) in
- "V_vector " ^ (show start) ^ " " ^ (show stop) ^ " " ^
- (if inc = IInc then "IInc" else "IDec") ^
- " [" ^ valspp ^ "] (" ^ debug_print_value default ^ ")"
- | V_record t vals ->
- let ppidval (id,v) = "(" ^ (get_id id) ^ "," ^ debug_print_value v ^ ")" in
- "V_record t [" ^ debug_print_value_list (List.map ppidval vals) ^ "]"
- | V_ctor id t k v' ->
- "V_ctor " ^ (get_id id) ^ " t " ^
- (match k with | C_Enum n -> "(C_Enum " ^ show n ^ ")"
- | C_Union -> "C_Union" end) ^
- "(" ^ debug_print_value v' ^ ")"
- | V_unknown -> "V_unknown"
- | V_register r -> "V_register (" ^ string_of_reg_form r ^ ")"
- | V_register_alias _ _ -> "V_register_alias _ _"
- | V_track v rs -> "V_track (" ^ debug_print_value v ^ ") _"
- end
-
-instance (Show value)
- let show v = debug_print_value v
-end
-
-let rec {coq;ocaml} id_value_eq strict (i, v) (i', v') = i = i' && value_eq strict v v'
-and value_eq strict left right =
- match (left, right) with
- | (V_lit l, V_lit l') -> lit_eq l l'
- | (V_boxref n t, V_boxref m t') -> n = m && t = t'
- | (V_tuple l, V_tuple l') -> listEqualBy (value_eq strict) l l'
- | (V_list l, V_list l') -> listEqualBy (value_eq strict) l l'
- | (V_vector n b l, V_vector m b' l') -> b = b' && listEqualBy (value_eq strict) l l'
- | (V_vector_sparse n o b l v, V_vector_sparse m p b' l' v') ->
- n=m && o=p && b=b' &&
- listEqualBy (fun (i,v) (i',v') -> i=i' && (value_eq strict v v')) l l' && value_eq strict v v'
- | (V_record t l, V_record t' l') ->
- t = t' &&
- listEqualBy (id_value_eq strict) l l'
- | (V_ctor i t ckind v, V_ctor i' t' ckind' v') -> t = t' && ckind=ckind' && id_value_eq strict (i, v) (i', v')
- | (V_ctor _ _ (C_Enum i) _,V_lit (L_aux (L_num j) _)) -> i = (natFromInteger j)
- | (V_lit (L_aux (L_num j) _), V_ctor _ _ (C_Enum i) _) -> i = (natFromInteger j)
- | (V_unknown,V_unknown) -> true
- | (V_unknown,_) -> if strict then false else true
- | (_,V_unknown) -> if strict then false else true
- | (V_track v1 ts1, V_track v2 ts2) ->
- if strict
- then value_eq strict v1 v2 && ts1 = ts2
- else value_eq strict v1 v2
- | (V_track v _, v2) -> if strict then false else value_eq strict v v2
- | (v,V_track v2 _) -> if strict then false else value_eq strict v v2
- | (_, _) -> false
- end
-let {isabelle;hol} id_value_eq _ x y = unsafe_structural_equality x y
-let {isabelle;hol} value_eq _ x y = unsafe_structural_equality x y
-
-let {coq;ocaml} value_ineq n1 n2 = not (value_eq false n1 n2)
-let {isabelle;hol} value_ineq = unsafe_structural_inequality
-
-instance (Eq value)
- let (=) = value_eq false
- let (<>) = value_ineq
-end
-
-let reg_start_pos reg =
- match reg with
- | Form_Reg _ (Just(typ,_,_,_,_)) _ ->
- let start_from_vec targs = match targs with
- | [Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant s) _)) _;_;_;_] -> natFromInteger s
- | [Typ_arg_aux (Typ_arg_nexp _) _; Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant s) _)) _; Typ_arg_aux (Typ_arg_order Odec) _; _] -> (natFromInteger s) - 1
- | [_; _; Typ_arg_aux (Typ_arg_order Oinc) _; _] -> 0
- | _ -> Assert_extra.failwith "vector type not well formed"
- end in
- let start_from_reg targs = match targs with
- | [Typ_arg_aux (Typ_arg_typ (Typ_aux (Typ_app (Id_aux (Id "vector") _) targs) _)) _] -> start_from_vec targs
- | _ -> Assert_extra.failwith "register not of type vector"
- end in
- match typ with
- | Typ_aux (Typ_app id targs) _ ->
- if get_id id = "vector" then start_from_vec targs
- else if get_id id = "register" then start_from_reg targs
- else Assert_extra.failwith "register abbrev not register or vector"
- | _ -> Assert_extra.failwith "register abbrev not register or vector"
- end
- | _ -> Assert_extra.failwith "reg_start_pos found unexpected sub reg, or reg without a type"
-end
-
-let reg_size reg =
- match reg with
- | Form_Reg _ (Just(typ,_,_,_,_)) _ ->
- let end_from_vec targs = match targs with
- | [_;Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant s) _)) _;_;_] -> natFromInteger s
- | _ -> Assert_extra.failwith "register vector type not well formed"
- end in
- let end_from_reg targs = match targs with
- | [Typ_arg_aux (Typ_arg_typ (Typ_aux (Typ_app (Id_aux (Id "vector") _) targs) _)) _] -> end_from_vec targs
- | _ -> Assert_extra.failwith "register does not contain vector"
- end in
- match typ with
- | Typ_aux (Typ_app id targs) _ ->
- if get_id id = "vector" then end_from_vec targs
- else if get_id id = "register" then end_from_reg targs
- else Assert_extra.failwith "register type is none of vector, register, or abbrev"
- | _ -> Assert_extra.failwith "register type is none of vector, register, or abbrev"
- end
- | _ -> Assert_extra.failwith "reg_size given unexpected sub reg or reg without a type"
-end
-
-(*Constant unit value, for use in interpreter *)
-let unit_ty = Typ_aux (Typ_id (Id_aux (Id "unit") Unknown)) Unknown
-let unitv = V_lit (L_aux L_unit Unknown)
-let unit_e = E_aux (E_lit (L_aux L_unit Unknown)) (Unknown, val_annot unit_ty)
-
-(* Store for local memory of ref cells, string stores the name of the function the memory is being created for*)
-type lmem = LMem of string * nat * map nat value * set nat
-
-(* Environment for bindings *)
-type env = map string value
-(* Environment for lexical bindings, nat is a counter to build new unique variables when necessary *)
-type lenv = LEnv of nat * env
-
-let emem name = LMem name 1 Map.empty Set.empty
-let eenv = LEnv 1 Map.empty
-
-let rec list_to_string sep format = function
- | [] -> ""
- | [i] -> format i
- | i::ls -> (format i) ^ sep ^ list_to_string sep format ls
-end
-
-let env_to_string (LEnv c env) =
- "(LEnv " ^ show c ^ " [" ^
- (list_to_string ", " (fun (k,v) -> k ^ " -> " ^ (string_of_value v)) (Map_extra.toList env)) ^
- "])"
-
-instance (Show lenv)
- let show env = env_to_string env
-end
-
-let mem_to_string (LMem f c mem _) =
- "(LMem " ^ f ^ " " ^ show c ^
- " [" ^ (list_to_string ", " (fun (k,v) -> show k ^ " -> " ^ (string_of_value v)) (Map_extra.toList mem)) ^ "])"
-
-instance (Show lmem)
- let show mem = mem_to_string mem
-end
-
-type sub_reg_map = map string index_range
-
-(*top_level is a tuple of
- (function definitions environment,
- all extracted instructions (where possible),
- default direction
- letbound and enum values,
- register values,
- Typedef union constructors,
- sub register mappings, and register aliases) *)
-type top_level =
- | Env of map string (list (funcl tannot)) (*function definitions environment*)
- * list instruction_form (* extracted instructions (where extractable) *)
- * i_direction (*default direction*)
- * env (*letbound and enum values*)
- * env (*register values*)
- * map string typ (*typedef union constructors *)
- * map string sub_reg_map (*sub register mappings*)
- * map string (alias_spec tannot) (*register aliases*)
- * bool (* debug? *)
-
-type action =
- | Read_reg of reg_form * maybe (nat * nat)
- | Write_reg of reg_form * maybe (nat * nat) * value
- | Read_mem of id * value * maybe (nat * nat)
- | Read_mem_tagged of id * value * maybe (nat * nat)
- | Write_mem of id * value * maybe (nat * nat) * value
- | Write_ea of id * value
- | Write_memv of id * value * value
- | Excl_res of id
- | Write_memv_tagged of id * value * value * value
- | Barrier of id * value
- | Footprint of id * value
- | Nondet of list (exp tannot) * tag
- | Call_extern of string * value
- | Return of value
- | Exit of (exp tannot)
- (* For the error case of a failed assert, carries up an optional error message*)
- | Fail of value
- (* For stepper, no action needed. String is function called, value is parameter where applicable *)
- | Step of l * maybe string * maybe value
-
-(* Inverted call stack, where the frame with a Top stack waits for an action to resolve and
- all other frames for their inner stack *)
-type stack =
- | Top
- | Hole_frame of id * exp tannot * top_level * lenv * lmem * stack (* Stack frame waiting for a value *)
- | Thunk_frame of exp tannot * top_level * lenv * lmem * stack (* Paused stack frame *)
-
-(*Internal representation of outcomes from running the interpreter.
- Actions request an external party to resolve a request *)
-type outcome =
- | Value of value
- | Action of action * stack
- | Error of l * string
-
-let string_of_id id' =
- (match id' with
- | Id_aux id _ ->
- (match id with
- | Id s -> s
- | DeIid s -> s
- end)
- end)
-
-instance (Show id)
- let show = string_of_id
-end
-
-let string_of_kid kid' =
- (match kid' with
- | Kid_aux kid _ ->
- (match kid with
- | Var s -> s
- end)
- end)
-
-instance (Show kid)
- let show = string_of_kid
-end
-
-let string_of_reg_id (RI_aux (RI_id id ) _) = string_of_id id
-
-instance forall 'a. (Show reg_id 'a)
- let show = string_of_reg_id
-end
-
-let rec string_of_typ typ' =
- (match typ' with
- | Typ_aux typ _ ->
- (match typ with
- | Typ_wild -> "(Typ_wild)"
- | Typ_id id -> "(Typ_id " ^ (string_of_id id) ^ ")"
- | Typ_var kid -> "(Typ_var " ^ (string_of_kid kid) ^ ")"
- | Typ_fn typ1 typ2 eff -> "(Typ_fn _ _ _)"
- | Typ_tup typs -> "(Typ_tup [" ^ String.concat "; " (List.map string_of_typ typs) ^ "])"
- | Typ_app id args -> "(Typ_app " ^ string_of_id id ^ " _)"
- end)
- end)
-
-instance (Show typ)
- let show = string_of_typ
-end
-
-let rec string_of_lexp l' =
- (match l' with
- | LEXP_aux l _ ->
- (match l with
- | LEXP_id id -> "(LEXP_id " ^ string_of_id id ^ ")"
- | LEXP_memory id exps -> "(LEXP_memory " ^ string_of_id id ^ " _)"
- | LEXP_cast typ id -> "(LEXP_cast " ^ string_of_typ typ ^ " " ^ string_of_id id ^ ")"
- | LEXP_tup lexps -> "(LEXP_tup [" ^ String.concat "; " (List.map string_of_lexp lexps) ^ "])"
- | LEXP_vector lexps exps -> "(LEXP_vector _ _)"
- | LEXP_vector_range lexp exp1 exp2 -> "(LEXP_vector_range _ _ _)"
- | LEXP_field lexp id -> "(LEXP_field " ^ string_of_lexp lexp ^ "." ^ string_of_id id ^ ")"
- end)
- end)
-
-instance forall 'a. (Show lexp 'a)
- let show = string_of_lexp
-end
-
-let string_of_lit l' =
- (match l' with
- | L_aux l _ ->
- (match l with
- | L_unit -> "()"
- | L_zero -> "0"
- | L_one -> "1"
- | L_true -> "true"
- | L_false -> "false"
- | L_num n -> "0d" ^ (show n)
- | L_hex s -> "0x" ^ s
- | L_bin s -> "0b" ^ s
- | L_undef -> "undef"
- | L_string s -> "\"" ^ s ^ "\""
- end)
- end)
-
-instance (Show lit)
- let show = string_of_lit
-end
-
-let string_of_order o' =
- (match o' with
- | Ord_aux o _ ->
- (match o with
- | Ord_var kid -> string_of_kid kid
- | Ord_inc -> "inc"
- | Ord_dec -> "dec"
- end)
- end)
-
-instance (Show order)
- let show = string_of_order
-end
-
-let rec string_of_exp e' =
- (match e' with
- | E_aux e _ ->
- (match e with
- | E_block exps -> "(E_block [" ^ String.concat "; " (List.map string_of_exp exps) ^ "])"
- | E_nondet exps -> "(E_nondet [" ^ String.concat "; " (List.map string_of_exp exps) ^ "])"
- | E_id id -> "(E_id \"" ^ string_of_id id ^ "\")"
- | E_lit lit -> "(E_lit " ^ string_of_lit lit ^ ")"
- | E_cast typ exp -> "(E_cast " ^ string_of_typ typ ^ " " ^ string_of_exp exp ^ ")"
- | E_app id exps -> "(E_app " ^ string_of_id id ^ " [" ^ String.concat "; " (List.map string_of_exp exps) ^ "])"
- | E_app_infix exp1 id exp2 -> "(E_app_infix " ^ string_of_exp exp1 ^ " " ^ string_of_id id ^ " " ^ string_of_exp exp2 ^ ")"
- | E_tuple exps -> "(E_tuple [" ^ String.concat "; " (List.map string_of_exp exps) ^ "])"
- | E_if cond thn els -> "(E_if " ^ (string_of_exp cond) ^ " ? " ^ (string_of_exp thn) ^ " : " ^ (string_of_exp els) ^ ")"
- | E_for id from to_ by order exp -> "(E_for " ^ string_of_id id ^ " " ^ string_of_exp from ^ " " ^ string_of_exp to_ ^ " " ^ string_of_exp by ^ " " ^ string_of_order order ^ " " ^ string_of_exp exp ^ ")"
- | E_vector exps -> "(E_vector [" ^ String.concat "; " (List.map string_of_exp exps) ^ "])"
- | E_vector_access exp1 exp2 -> "(E_vector_access " ^ string_of_exp exp1 ^ " " ^ string_of_exp exp2 ^ ")"
- | E_vector_subrange exp1 exp2 exp3 -> "(E_vector_subrange " ^ string_of_exp exp1 ^ " " ^ string_of_exp exp2 ^ " " ^ string_of_exp exp3 ^ ")"
- | E_vector_update _ _ _ -> "(E_vector_update)"
- | E_vector_update_subrange _ _ _ _ -> "(E_vector_update_subrange)"
- | E_vector_append exp1 exp2 -> "(E_vector_append " ^ string_of_exp exp1 ^ " " ^ string_of_exp exp2 ^ ")"
- | E_list exps -> "(E_list [" ^ String.concat "; " (List.map string_of_exp exps) ^ "])"
- | E_cons exp1 exp2 -> "(E_cons " ^ string_of_exp exp1 ^ " :: " ^ string_of_exp exp2 ^ ")"
- | E_record _ -> "(E_record)"
- | E_record_update _ _ -> "(E_record_update)"
- | E_field _ _ -> "(E_field)"
- | E_case _ _ -> "(E_case)"
- | E_let _ _ -> "(E_let)"
- | E_assign lexp exp -> "(E_assign " ^ string_of_lexp lexp ^ " := " ^ string_of_exp exp ^ ")"
- | E_sizeof _ -> "(E_sizeof _)"
- | E_exit exp -> "(E_exit " ^ string_of_exp exp ^ ")"
- | E_return exp -> "(E_return " ^ string_of_exp exp ^ ")"
- | E_assert cond msg -> "(E_assert " ^ string_of_exp cond ^ " " ^ string_of_exp msg ^ ")"
- | E_internal_cast _ _ -> "(E_internal_cast _ _)"
- | E_internal_exp _ -> "(E_internal_exp _)"
- | E_sizeof_internal _ -> "(E_size _)"
- | E_internal_exp_user _ _ -> "(E_internal_exp_user _ _)"
- | E_comment _ -> "(E_comment _)"
- | E_comment_struc _ -> "(E_comment_struc _)"
- | E_internal_let _ _ _ -> "(E_internal_let _ _ _)"
- | E_internal_plet _ _ _ -> "(E_internal_plet _ _ _)"
- | E_internal_return _ -> "(E_internal_return _)"
- | E_internal_value value -> "(E_internal_value " ^ debug_print_value value ^ ")"
- end)
- end)
-
-instance forall 'a. (Show (exp 'a))
- let show = string_of_exp
-end
-
-let string_of_alias_spec (AL_aux _as _) =
- (match _as with
- | AL_subreg reg_id id -> "(AL_subreg " ^ (show reg_id) ^ " " ^ (show id) ^ ")"
- | AL_bit reg_id exp -> "(AL_bit " ^ (show reg_id) ^ " " ^ (show exp) ^ ")"
- | AL_slice reg_id exp1 exp2 -> "(AL_slice " ^ (show reg_id) ^ " " ^ (show exp1) ^ " " ^ (show exp2) ^ ")"
- | AL_concat reg_id1 reg_id2 -> "(AL_concat " ^ (show reg_id1) ^ " " ^ (show reg_id2) ^ ")"
- end)
-
-instance forall 'a. (Show alias_spec 'a)
- let show = string_of_alias_spec
-end
-
-let string_of_quant_item (QI_aux qi _) =
- (match qi with
- | QI_id kinded_id -> "(QI_id _)"
- | QI_const nc -> "(QI_const _)"
- end)
-
-instance (Show quant_item)
- let show = string_of_quant_item
-end
-
-let string_of_typquant (TypQ_aux tq _) =
- (match tq with
- | TypQ_tq qis -> "(TypQ_tq [" ^ (String.concat "; " (List.map show qis)) ^ "]"
- | TypQ_no_forall -> "TypQ_no_forall"
- end)
-
-instance (Show typquant)
- let show = string_of_typquant
-end
-
-let string_of_typschm (TypSchm_aux (TypSchm_ts typquant typ) _) =
- "(TypSchm " ^ (show typquant) ^ " " ^ (show typ) ^ ")"
-
-instance (Show typschm)
- let show = string_of_typschm
-end
-
-let rec string_of_pat (P_aux pat _) =
- (match pat with
- | P_lit lit -> "(P_lit " ^ show lit ^ ")"
- | P_wild -> "P_wild"
- | P_as pat' id -> "(P_as " ^ string_of_pat pat' ^ " " ^ show id ^ ")"
- | P_typ typ pat' -> "(P_typ" ^ show typ ^ " " ^ string_of_pat pat' ^ ")"
- | P_id id -> "(P_id " ^ show id ^ ")"
- | P_app id pats -> "(P_app " ^ show id ^ " [" ^ String.concat "; " (List.map string_of_pat pats) ^ "])"
- | P_record _ _ -> "(P_record _ _)"
- | P_vector pats -> "(P_vector [" ^ String.concat "; " (List.map string_of_pat pats) ^ "])"
- | P_vector_concat pats -> "(P_vector_concat [" ^ String.concat "; " (List.map string_of_pat pats) ^ "])"
- | P_tup pats -> "(P_tup [" ^ String.concat "; " (List.map string_of_pat pats) ^ "])"
- | P_list pats -> "(P_list [" ^ String.concat "; " (List.map string_of_pat pats) ^ "])"
- end)
-
-instance forall 'a. (Show pat 'a)
- let show = string_of_pat
-end
-
-let string_of_letbind (LB_aux lb _) =
- (match lb with
- | LB_val pat exp -> "(LB_val " ^ (show pat) ^ " " ^ (show exp) ^ ")"
- end)
-
-instance forall 'a. (Show letbind 'a)
- let show = string_of_letbind
-end
-
-type interp_mode = <| eager_eval : bool; track_values : bool; track_lmem : bool; debug : bool; debug_indent : string |>
-
-let indent_mode mode = if mode.debug then <| mode with debug_indent = " " ^ mode.debug_indent |> else mode
-
-val debug_fun_enter : interp_mode -> string -> list string -> unit
-let debug_fun_enter mode name args =
- if mode.debug then
- debug_print (mode.debug_indent ^ ":: " ^ name ^ " args: [" ^ (String.concat "; " args) ^ "]\n")
- else
- ()
-
-val debug_fun_exit : forall 'a. Show 'a => interp_mode -> string -> 'a -> unit
-let debug_fun_exit mode name retval =
- if mode.debug then
- debug_print (mode.debug_indent ^ "=> " ^ name ^ " returns: " ^ (show retval) ^ "\n")
- else
- ()
-
-(* Evaluates global let binds and prepares the context for individual expression evaluation in the current model *)
-val to_top_env : bool -> (i_direction -> outcome -> maybe value) -> defs tannot -> (maybe outcome * top_level)
-val get_default_direction : top_level -> i_direction
-
-(* interprets the exp sequentially in the presence of a set of top level definitions and returns a value, a memory request, or other external action *)
-val interp :interp_mode -> (i_direction -> outcome -> maybe value) -> defs tannot -> exp tannot -> (outcome * lmem * lenv)
-
-(* Takes a paused partially evaluated expression, puts the value into the environment, and runs again *)
-val resume : interp_mode -> stack -> maybe value -> (outcome * lmem * lenv)
-
-(* Internal definitions to setup top_level *)
-val to_fdefs : defs tannot -> map string (list (funcl tannot))
-let rec to_fdefs (Defs defs) =
- match defs with
- | [] -> Map.empty
- | def::defs ->
- match def with
- | DEF_fundef f -> (match f with
- | FD_aux (FD_function _ _ _ fcls) _ ->
- match fcls with
- | [] -> to_fdefs (Defs defs)
- | (FCL_aux (FCL_Funcl name _) _)::_ ->
- Map.insert (get_id name) fcls (to_fdefs (Defs defs)) end end)
- | _ -> to_fdefs (Defs defs) end end
-
-val to_register_fields : defs tannot -> map string (map string index_range)
-let rec to_register_fields (Defs defs) =
- match defs with
- | [ ] -> Map.empty
- | def::defs ->
- match def with
- | DEF_type (TD_aux (TD_register id n1 n2 indexes) l') ->
- Map.insert (get_id id)
- (List.foldr (fun (a,b) imap -> Map.insert (get_id b) a imap) Map.empty indexes)
- (to_register_fields (Defs defs))
- | _ -> to_register_fields (Defs defs)
- end
- end
-
-val to_registers : i_direction -> defs tannot -> env
-let rec to_registers dd (Defs defs) =
- match defs with
- | [ ] -> Map.empty
- | def::defs ->
- match def with
- | DEF_reg_dec (DEC_aux (DEC_reg typ id) (l,tannot)) ->
- let dir = match tannot with
- | Nothing -> dd
- | Just(t, _, _, _,_) -> dd (*TODO, lets pull the direction out properly*)
- end in
- Map.insert (get_id id) (V_register(Form_Reg id tannot dir)) (to_registers dd (Defs defs))
- | DEF_reg_dec (DEC_aux (DEC_alias id aspec) (l,tannot)) ->
- Map.insert (get_id id) (V_register_alias aspec tannot) (to_registers dd (Defs defs))
- | _ -> to_registers dd (Defs defs)
- end
- end
-
-val to_aliases : defs tannot -> map string (alias_spec tannot)
-let rec to_aliases (Defs defs) =
- match defs with
- | [] -> Map.empty
- | def::defs ->
- match def with
- | DEF_reg_dec (DEC_aux (DEC_alias id aspec) _) ->
- Map.insert (get_id id) aspec (to_aliases (Defs defs))
- | DEF_reg_dec (DEC_aux (DEC_typ_alias typ id aspec) _) ->
- Map.insert (get_id id) aspec (to_aliases (Defs defs))
- | _ -> to_aliases (Defs defs)
- end
- end
-
-val to_data_constructors : defs tannot -> map string typ
-let rec to_data_constructors (Defs defs) =
- match defs with
- | [] ->
- (*Prime environment with built-in constructors*)
- Map.insert "Some" (Typ_aux (Typ_var (Kid_aux (Var "a") Unknown)) Unknown)
- (Map.insert "None" unit_t Map.empty)
- | def :: defs ->
- match def with
- | DEF_type (TD_aux t _)->
- match t with
- | TD_variant id _ tq tid_list _ ->
- (List.foldr
- (fun (Tu_aux t _) map ->
- match t with
- | (Tu_ty_id x y) -> Map.insert (get_id y) x map
- | Tu_id x -> Map.insert (get_id x) unit_t map end)
- (to_data_constructors (Defs defs))) tid_list
- | _ -> to_data_constructors (Defs defs) end
- | _ -> to_data_constructors (Defs defs) end
- end
-
-(*Memory and environment helper functions*)
-val env_from_list : list (id * value) -> env
-let env_from_list ls = List.foldr (fun (id,v) env -> Map.insert (get_id id) v env) Map.empty ls
-
-val in_env :forall 'a. map string 'a -> string -> maybe 'a
-let in_env env id = Map.lookup id env
-
-val in_lenv : lenv -> id -> value
-let in_lenv (LEnv _ env) id =
- match in_env env (get_id id) with
- | Nothing -> V_unknown
- | Just v -> v
-end
-
-(*Prefer entries in the first when in conflict*)
-val union_env : lenv -> lenv -> lenv
-let union_env (LEnv i1 env1) (LEnv i2 env2) =
- let l = if i1 < i2 then i2 else i1 in
- LEnv l (Map.(union) env2 env1)
-
-val fresh_var : lenv -> (id * lenv)
-let fresh_var (LEnv i env) =
- let lenv = (LEnv (i+1) env) in
- ((Id_aux (Id ((show i) ^ "var")) Interp_ast.Unknown), lenv)
-
-val add_to_env : (id * value) -> lenv -> lenv
-let add_to_env (id, entry) (LEnv i env) = (LEnv i (Map.insert (get_id id) entry env))
-
-val in_mem : lmem -> nat -> value
-let in_mem (LMem _ _ m _) n =
- Map_extra.find n m
- (* Map.lookup n m *)
-
-val update_mem : bool -> lmem -> nat -> value -> lmem
-let update_mem track (LMem owner c m s) loc value =
- let m' = Map.delete loc m in
- let m' = Map.insert loc value m' in
- let s' = if track then Set.insert loc s else s in
- LMem owner c m' s'
-
-val clear_updates : lmem -> lmem
-let clear_updates (LMem owner c m _) = LMem owner c m Set.empty
-
-(*Value helper functions*)
-
-val is_lit_vector : lit -> bool
-let is_lit_vector (L_aux l _) =
- match l with
- | L_bin _ -> true
- | L_hex _ -> true
- | _ -> false
-end
-
-val litV_to_vec : lit -> i_direction -> value
-let litV_to_vec (L_aux lit l) (dir: i_direction) =
- match lit with
- | L_hex s ->
- let to_v b = V_lit (L_aux b l) in
- let hexes = List.map to_v
- (List.concat
- (List.map
- (fun s -> match s with
- | #'0' -> [L_zero;L_zero;L_zero;L_zero]
- | #'1' -> [L_zero;L_zero;L_zero;L_one ]
- | #'2' -> [L_zero;L_zero;L_one ;L_zero]
- | #'3' -> [L_zero;L_zero;L_one ;L_one ]
- | #'4' -> [L_zero;L_one ;L_zero;L_zero]
- | #'5' -> [L_zero;L_one ;L_zero;L_one ]
- | #'6' -> [L_zero;L_one ;L_one ;L_zero]
- | #'7' -> [L_zero;L_one ;L_one ;L_one ]
- | #'8' -> [L_one ;L_zero;L_zero;L_zero]
- | #'9' -> [L_one ;L_zero;L_zero;L_one ]
- | #'A' -> [L_one ;L_zero;L_one ;L_zero]
- | #'B' -> [L_one ;L_zero;L_one ;L_one ]
- | #'C' -> [L_one ;L_one ;L_zero;L_zero]
- | #'D' -> [L_one ;L_one ;L_zero;L_one ]
- | #'E' -> [L_one ;L_one ;L_one ;L_zero]
- | #'F' -> [L_one ;L_one ;L_one ;L_one ]
- | #'a' -> [L_one ;L_zero;L_one ;L_zero]
- | #'b' -> [L_one ;L_zero;L_one ;L_one ]
- | #'c' -> [L_one ;L_one ;L_zero;L_zero]
- | #'d' -> [L_one ;L_one ;L_zero;L_one ]
- | #'e' -> [L_one ;L_one ;L_one ;L_zero]
- | #'f' -> [L_one ;L_one ;L_one ;L_one ]
- | _ -> Assert_extra.failwith "Lexer did not restrict to valid hex" end)
- (String.toCharList s))) in
- V_vector (if is_inc(dir) then 0 else ((List.length hexes) - 1)) dir hexes
- | L_bin s ->
- let bits = List.map
- (fun s -> match s with
- | #'0' -> (V_lit (L_aux L_zero l))
- | #'1' -> (V_lit (L_aux L_one l))
- | _ -> Assert_extra.failwith "Lexer did not restrict to valid bin"
- end) (String.toCharList s) in
- V_vector (if is_inc(dir) then 0 else ((List.length bits) -1)) dir bits
- | _ -> Assert_extra.failwith "litV predicate did not restrict to literal vectors"
-end
-
-val list_nth : forall 'a . list 'a -> nat -> 'a
-let list_nth l n = List_extra.nth l n
-
-val list_length : forall 'a . list 'a -> integer
-let list_length l = integerFromNat (List.length l)
-
-val taint: value -> set reg_form -> value
-let rec taint value regs =
- if Set.null regs
- then value
- else match value with
- | V_track value rs -> taint value (regs union rs)
- | V_tuple vals -> V_tuple (List.map (fun v -> taint v regs) vals)
- | _ -> V_track value regs
-end
-
-val retaint: value -> value -> value
-let retaint orig updated =
- match orig with
- | V_track _ rs -> taint updated rs
- | _ -> updated
-end
-
-val detaint: value -> value
-let rec detaint value =
- match value with
- | V_track value _ -> detaint value
- | v -> v
-end
-
-(* the inner lambda is to make Isabelle happier about overlapping patterns *)
-let rec binary_taint thunk = fun vall valr ->
- match (vall,valr) with
- | (V_track vl rl,V_track vr rr) -> taint (binary_taint thunk vl vr) (rl union rr)
- | (V_track vl rl,vr) -> taint (binary_taint thunk vl vr) rl
- | (vl,V_track vr rr) -> taint (binary_taint thunk vl vr) rr
- | (vl,vr) -> thunk vl vr
-end
-
-let rec merge_values v1 v2 =
- if value_eq true v1 v2
- then v1
- else match (v1,v2) with
- | (V_lit l, V_lit l') -> if lit_eq l l' then v1 else V_unknown
- | (V_boxref n t, V_boxref m t') ->
- (*Changes to memory handled by merge_mem*)
- if n = m then v1 else V_unknown
- | (V_tuple l, V_tuple l') ->
- V_tuple (map2 merge_values l l')
- | (V_list l, V_list l') ->
- if (List.length l = List.length l')
- then V_list (map2 merge_values l l')
- else V_unknown
- | (V_vector n b l, V_vector m b' l') ->
- if b = b' && (List.length l = List.length l')
- then V_vector n b (map2 merge_values l l')
- else V_unknown
- | (V_vector_sparse n o b l v, V_vector_sparse m p b' l' v') ->
- if (n=m && o=p && b=b' && listEqualBy (fun (i,_) (i',_) -> i=i') l l')
- then V_vector_sparse n o b (map2 (fun (i,v1) (i',v2) -> (i, merge_values v1 v2)) l l') (merge_values v v')
- else V_unknown
- | (V_record t l, V_record t' l') ->
- (*assumes canonical order for fields in a record*)
- if t = t' && List.length l = length l'
- then V_record t (map2 (fun (i,v1) (_,v2) -> (i, merge_values v1 v2)) l l')
- else V_unknown
- | (V_ctor i t (C_Enum j) v, V_ctor i' t' (C_Enum j') v') ->
- if i = i' then v1 else V_unknown
- | (V_ctor _ _ (C_Enum i) _,V_lit (L_aux (L_num j) _)) -> if i = (natFromInteger j) then v1 else V_unknown
- | (V_lit (L_aux (L_num j) _), V_ctor _ _ (C_Enum i) _) -> if i = (natFromInteger j) then v2 else V_unknown
- | (V_ctor i t ckind v, V_ctor i' t' _ v') ->
- if t = t' && i = i'
- then (V_ctor i t ckind (merge_values v v'))
- else V_unknown
- | (V_unknown,V_unknown) -> V_unknown
- | (V_track v1 ts1, V_track v2 ts2) ->
- taint (merge_values v1 v2) (ts1 union ts2)
- | (V_track v1 ts, v2) -> taint (merge_values v1 v2) ts
- | (v1,V_track v2 ts) -> taint (merge_values v1 v2) ts
- | (_, _) -> V_unknown
-end
-
-val merge_lmems : lmem -> lmem -> lmem
-let merge_lmems ((LMem owner1 c1 mem1 set1) as lmem1) ((LMem owner2 c2 mem2 set2) as lmem2) =
- let diff1 = Set_extra.toList (set1 \ set2) in
- let diff2 = Set_extra.toList (set2 \ set1) in
- let inters = Set_extra.toList (set1 inter set2) in
- let c = max c1 c2 in
- let mem = LMem owner1 c (if c1 >= c2 then mem1 else mem2) Set.empty in
- let diff_mem1 =
- List.foldr
- (fun i mem -> update_mem false mem i
- (match Map.lookup i mem2 with
- | Nothing -> V_unknown
- | Just v -> merge_values (in_mem lmem1 i) v end)) mem diff1 in
- let diff_mem2 =
- List.foldr
- (fun i mem -> update_mem false mem i
- (match Map.lookup i mem1 with
- | Nothing -> V_unknown
- | Just v -> merge_values (in_mem lmem2 i) v end)) diff_mem1 diff2 in
- List.foldr
- (fun i mem -> update_mem false mem i (merge_values (in_mem lmem1 i) (in_mem lmem2 i)))
- diff_mem2 inters
-
-let vector_length v = match (detaint v) with
- | V_vector n inc vals -> List.length vals
- | V_vector_sparse n m inc vals def -> m
- | V_lit _ -> 1
- | _ -> 0
-end
-
-val access_vector : value -> nat -> value
-let access_vector v n =
- retaint v (match (detaint v) with
- | V_unknown -> V_unknown
- | V_lit (L_aux L_undef _) -> v
- | V_lit (L_aux L_zero _) -> v
- | V_lit (L_aux L_one _ ) -> v
- | V_vector m dir vs ->
- list_nth vs (if is_inc(dir) then (n - m) else (m - n))
- | V_vector_sparse _ _ _ vs d ->
- match (List.lookup n vs) with
- | Nothing -> d
- | Just v -> v end
- | _ -> Assert_extra.failwith ("access_vector given unexpected " ^ string_of_value v)
- end )
-
-val from_n_to_n :forall 'a. nat -> nat -> list 'a -> list 'a
-let from_n_to_n from to_ ls = take (to_ - from + 1) (drop from ls)
-
-val slice_sparse_list : (nat -> nat -> bool) -> (nat -> nat) -> list (nat * value) -> nat -> nat -> ((list (nat * value)) * bool)
-let rec slice_sparse_list compare update_n vals n1 n2 =
- let sl = slice_sparse_list compare update_n in
- if (n1 = n2) && (vals = [])
- then ([],true)
- else if (n1=n2)
- then ([],false)
- else match vals with
- | [] -> ([],true)
- | (i,v)::vals ->
- if n1 = i
- then let (rest,still_sparse) = (sl vals (update_n n1) n2) in ((i,v)::rest,still_sparse)
- else if (compare n1 i)
- then (sl vals (update_n n1) n2)
- else let (rest,_) = (sl vals (update_n i) n2) in ((i,v)::rest,true)
- end
-
-val slice_vector : value -> nat -> nat -> value
-let slice_vector v n1 n2 =
- retaint v (match detaint v with
- | V_vector m dir vs ->
- if is_inc(dir)
- then V_vector n1 dir (from_n_to_n (n1 - m) (n2 - m) vs)
- else V_vector n1 dir (from_n_to_n (m - n1) (m - n2) vs)
- | V_vector_sparse m n dir vs d ->
- let (slice, still_sparse) =
- if is_inc(dir)
- then slice_sparse_list (>) (fun i -> i + 1) vs n1 n2
- else slice_sparse_list (<) (fun i -> i - 1) vs n1 n2 in
- if still_sparse && is_inc(dir)
- then V_vector_sparse n1 (n2 - n1) dir slice d
- else if is_inc(dir) then V_vector 0 dir (List.map snd slice)
- else if still_sparse then V_vector_sparse n1 (n1 - n2) dir slice d
- else V_vector n1 dir (List.map snd slice)
- | _ -> Assert_extra.failwith ("slice_vector given unexpected " ^ string_of_value v)
- end )
-
-val update_field_list : list (id * value) -> env -> list (id * value)
-let rec update_field_list base updates =
- match base with
- | [] -> []
- | (id,v)::bs -> match in_env updates (get_id id) with
- | Just v -> (id,v)::(update_field_list bs updates)
- | Nothing -> (id,v)::(update_field_list bs updates) end
-end
-
-val fupdate_record : value -> value -> value
-let fupdate_record base updates =
- let fupdate_record_helper base updates =
- (match (base,updates) with
- | (V_record t bs,V_record _ us) -> V_record t (update_field_list bs (env_from_list us))
- | _ ->
- Assert_extra.failwith ("fupdate_record given unexpected " ^
- string_of_value base ^ " and " ^ (string_of_value updates))
- end) in
- binary_taint fupdate_record_helper base updates
-
-val fupdate_sparse : (nat -> nat -> bool) -> list (nat*value) -> nat -> value -> list (nat*value)
-let rec fupdate_sparse comes_after vs n vexp =
- match vs with
- | [] -> [(n,vexp)]
- | (i,v)::vs ->
- if i = n then (i,vexp)::vs
- else if (comes_after i n) then (n,vexp)::(i,v)::vs
- else (i,v)::(fupdate_sparse comes_after vs n vexp)
-end
-
-val fupdate_vec : value -> nat -> value -> value
-let fupdate_vec v n vexp =
- let tainted = binary_taint (fun v _ -> v) v vexp in
- retaint tainted
- (match detaint v with
- | V_vector m dir vals ->
- V_vector m dir (List.update vals (if is_inc(dir) then (n-m) else (m-n)) vexp)
- | V_vector_sparse m o dir vals d ->
- V_vector_sparse m o dir (fupdate_sparse (if is_inc(dir) then (>) else (<)) vals n vexp) d
- | _ -> Assert_extra.failwith ("fupdate_vec given unexpected " ^ string_of_value v)
- end)
-
-val replace_is : forall 'a. list 'a -> list 'a -> nat -> nat -> nat -> list 'a
-let rec replace_is ls vs base start stop =
- match (ls,vs) with
- | ([],_) -> []
- | (ls,[]) -> ls
- | (l::ls,v::vs) ->
- if base >= start then
- if start >= stop then v::ls
- else v::(replace_is ls vs (base + 1) (start + 1) stop)
- else l::(replace_is ls (v::vs) (base+1) start stop)
- end
-
-val replace_sparse : (nat -> nat -> bool) -> list (nat * value) -> list (nat * value) -> list (nat * value)
-let rec replace_sparse compare vals reps =
- match (vals,reps) with
- | ([],rs) -> rs
- | (vs,[]) -> vs
- | ((i1,v)::vs,(i2,r)::rs) ->
- if i1 = i2 then (i2,r)::(replace_sparse compare vs rs)
- else if (compare i1 i2)
- then (i1,v)::(replace_sparse compare vs ((i2,r)::rs))
- else (i2,r)::(replace_sparse compare ((i1,v)::vs) rs)
-end
-
-val fupdate_vector_slice : value -> value -> nat -> nat -> value
-let fupdate_vector_slice vec replace start stop =
- let fupdate_vec_help vec replace =
- (match (vec,replace) with
- | (V_vector m dir vals,V_vector r_m dir' reps) ->
- V_vector m dir
- (replace_is vals
- (if dir=dir' then reps else (List.reverse reps))
- 0 (if is_inc(dir) then (start-m) else (m-start)) (if is_inc(dir) then (stop-m) else (m-stop)))
- | (V_vector m dir vals, V_unknown) ->
- V_vector m dir
- (replace_is vals
- (List.replicate (if is_inc(dir) then (stop-start) else (start-stop)) V_unknown)
- 0 (if is_inc(dir) then (start-m) else (m-start)) (if is_inc(dir) then (stop-m) else (m-stop)))
- | (V_vector_sparse m n dir vals d,V_vector _ _ reps) ->
- let (_,repsi) = List.foldl (fun (i,rs) r -> ((if is_inc(dir) then i+1 else i-1), (i,r)::rs)) (start,[]) reps in
- (V_vector_sparse m n dir (replace_sparse (if is_inc(dir) then (<) else (>)) vals (List.reverse repsi)) d)
- | (V_vector_sparse m n dir vals d, V_unknown) ->
- let (_,repsi) = List.foldl (fun (i,rs) r -> ((if is_inc(dir) then i+1 else i-1), (i,r)::rs)) (start,[])
- (List.replicate (if is_inc(dir) then (stop-start) else (start-stop)) V_unknown) in
- (V_vector_sparse m n dir (replace_sparse (if is_inc(dir) then (<) else (>)) vals (List.reverse repsi)) d)
- | (V_unknown,_) -> V_unknown
- | _ -> Assert_extra.failwith ("fupdate vector slice given " ^ (string_of_value vec)
- ^ " and " ^ (string_of_value replace))
- end) in
- binary_taint fupdate_vec_help vec replace
-
-val update_vector_slice : bool -> value -> value -> nat -> nat -> lmem -> lmem
-let update_vector_slice track vector value start stop mem =
- match (detaint vector,detaint value) with
- | ((V_boxref n t), v) ->
- update_mem track mem n (fupdate_vector_slice (in_mem mem n) (retaint value v) start stop)
- | ((V_vector m _ vs),(V_vector n _ vals)) ->
- let (V_vector m' _ vs') = slice_vector vector start stop in
- foldr2 (fun vbox v mem -> match vbox with
- | V_boxref n t -> update_mem track mem n v end)
- mem vs' vals
- | ((V_vector m dir vs),(V_vector_sparse n o _ vals d)) ->
- let (m',vs') = match slice_vector vector start stop with
- | (V_vector m' _ vs') -> (m',vs')
- | _ -> Assert_extra.failwith "slice_vector did not return vector" end in
- let (_,mem) = foldr (fun vbox (i,mem) ->
- match vbox with
- | V_boxref n t ->
- (if is_inc(dir) then i+1 else i-1,
- update_mem track mem n (match List.lookup i vals with
- | Nothing -> d
- | Just v -> v end))
- | _ -> Assert_extra.failwith "Internal error: update_vector_slice not of boxes"
- end) (m,mem) vs' in
- mem
- | ((V_vector m _ vs),v) ->
- let (m',vs') = match slice_vector vector start stop with
- | (V_vector m' _ vs') -> (m',vs')
- | _ -> Assert_extra.failwith "slice vector didn't return vector" end in
- List.foldr (fun vbox mem -> match vbox with
- | V_boxref n t -> update_mem track mem n v
- | _ -> Assert_extra.failwith "update_vector_slice not of boxes" end)
- mem vs'
- | _ -> Assert_extra.failwith ("update_vector_slice given unexpected " ^ string_of_value vector
- ^ " and " ^ string_of_value value)
-end
-
-let update_vector_start default_dir new_start expected_size v =
- retaint v
- (match detaint v with
- | V_lit (L_aux L_zero _) -> V_vector new_start default_dir [v]
- | V_lit (L_aux L_one _) -> V_vector new_start default_dir [v]
- | V_vector m inc vs -> V_vector new_start inc vs (*Note, may need to shrink and check if still sparse *)
- | V_vector_sparse m n dir vals d -> V_vector_sparse new_start n dir vals d
- | V_unknown -> V_vector new_start default_dir (List.replicate expected_size V_unknown)
- | V_lit (L_aux L_undef _) -> V_vector new_start default_dir (List.replicate expected_size v)
- | _ -> Assert_extra.failwith ("update_vector_start given unexpected " ^ string_of_value v)
- end)
-
-val in_ctors : list (id * typ) -> id -> maybe typ
-let rec in_ctors ctors id =
- match ctors with
- | [] -> Nothing
- | (cid,typ)::ctors -> if (get_id cid) = (get_id id) then Just typ else in_ctors ctors id
-end
-
-(*Stack manipulation functions *)
-(*Extends expression and context of 'top' stack frame *)
-let add_to_top_frame e_builder stack =
- match stack with
- | Top -> Top
- | Hole_frame id e t_level env mem stack ->
- let (e',env') = (e_builder e env) in Hole_frame id e' t_level env' mem stack
- | Thunk_frame e t_level env mem stack ->
- let (e',env') = (e_builder e env) in Thunk_frame e' t_level env' mem stack
- end
-
-(*Is this the innermost hole*)
-let top_hole stack : bool =
- match stack with
- | Hole_frame _ (E_aux (E_id (Id_aux (Id "0") _)) _) _ _ _ Top -> true
- | _ -> false
-end
-
-let redex_id = id_of_string "0"
-let mk_hole l annot t_level l_env l_mem =
- Hole_frame redex_id (E_aux (E_id redex_id) (l,(intern_annot annot))) t_level l_env l_mem Top
-let mk_thunk l annot t_level l_env l_mem =
- Thunk_frame (E_aux (E_lit (L_aux L_unit l)) (l,(intern_annot annot))) t_level l_env l_mem Top
-
-(*Converts a Hole_frame into a Thunk_frame, pushing to the top of the stack to insert the value at the innermost context *)
-val add_answer_to_stack : stack -> value -> stack
-let rec add_answer_to_stack stack v =
- match stack with
- | Top -> Top
- | Hole_frame id e t_level env mem Top -> Thunk_frame e t_level (add_to_env (id,v) env) mem Top
- | Thunk_frame e t_level env mem Top -> Thunk_frame e t_level env mem Top
- | Hole_frame id e t_level env mem stack -> Hole_frame id e t_level env mem (add_answer_to_stack stack v)
- | Thunk_frame e t_level env mem stack -> Thunk_frame e t_level env mem (add_answer_to_stack stack v)
-end
-
-(*Throws away all but the environment and local memory of the top stack frame, putting given expression in this context *)
-val set_in_context : stack -> exp tannot -> stack
-let rec set_in_context stack e =
- match stack with
- | Top -> Top
- | Hole_frame id oe t_level env mem Top -> Thunk_frame e t_level env mem Top
- | Thunk_frame oe t_level env mem Top -> Thunk_frame e t_level env mem Top
- | Hole_frame _ _ _ _ _ s -> set_in_context s e
- | Thunk_frame _ _ _ _ s -> set_in_context s e
-end
-
-let get_stack_state stack =
- match stack with
- | Top -> Assert_extra.failwith "Top reached in extracting stack state"
- | Hole_frame id exp top_level lenv lmem stack -> (lenv,lmem)
- | Thunk_frame exp top_level lenv lmem stack -> (lenv,lmem)
-end
-
-let rec update_stack_state stack ((LMem name c mem _) as lmem) =
- match stack with
- | Top -> Top
- | Hole_frame id oe t_level env (LMem _ _ _ s) Top ->
- (match Map.lookup (0 : nat) mem with
- | Nothing -> Thunk_frame oe t_level (add_to_env (id,V_unknown) env) (LMem name c mem s) Top
- | Just v -> Thunk_frame oe t_level (add_to_env (id, v) env) (LMem name c (Map.delete (0 : nat) mem) s) Top end)
- | Thunk_frame e t_level env _ Top -> Thunk_frame e t_level env lmem Top
- | Hole_frame id e t_level env mem s -> Hole_frame id e t_level env mem (update_stack_state s lmem)
- | Thunk_frame e t_level env mem s -> Thunk_frame e t_level env mem (update_stack_state s lmem)
-end
-
-let rec clear_stack_state stack =
- match stack with
- | Top -> Top
- | Hole_frame id e t_level env lmem Top -> Hole_frame id e t_level env (clear_updates lmem) Top
- | Thunk_frame e t_level env lmem Top -> Thunk_frame e t_level env (clear_updates lmem) Top
- | Hole_frame id e t_level env lmem s -> Hole_frame id e t_level env lmem (clear_stack_state s)
- | Thunk_frame e t_level env lmem s -> Thunk_frame e t_level env lmem (clear_stack_state s)
-end
-
-let rec remove_top_stack_frame stack =
- match stack with
- | Top -> Top
- | Hole_frame _ _ _ _ _ Top -> Top
- | Thunk_frame _ _ _ _ Top -> Top
- | Hole_frame id e t_level env lmem stack -> Hole_frame id e t_level env lmem (remove_top_stack_frame stack)
- | Thunk_frame e t_level env lmem stack -> Thunk_frame e t_level env lmem (remove_top_stack_frame stack)
-end
-
-(*functions for converting in progress evaluation back into expression for building current continuation*)
-let rec combine_typs ts =
- match ts with
- | [] -> mk_typ_var "fresh"
- | [t] -> t
- | t::ts ->
- let t' = combine_typs ts in
- match (t,t') with
- | (_,Typ_aux (Typ_var _) _) -> t
- | ((Typ_aux (Typ_app (Id_aux (Id "range") _)
- [Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant bot1) _)) _; Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant top1) _)) _]) _),
- (Typ_aux (Typ_app (Id_aux (Id "range") _)
- [Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant bot2) _)) _; Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant top2) _)) _]) _)) ->
- let (smallest,largest) =
- if bot1 <= bot2
- then if top1 <= top2 then (bot1, top2) else (bot1, top1)
- else if top1 <= top2 then (bot2, top2) else (bot2, top1) in
- mk_typ_app "range" [Typ_arg_nexp (nconstant smallest); Typ_arg_nexp (nconstant largest)]
- | ((Typ_aux (Typ_app (Id_aux (Id "atom") _) [Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant a1) _)) _]) _),
- (Typ_aux (Typ_app (Id_aux (Id "atom") _) [Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant a2) _)) _]) _)) ->
- if a1 = a2
- then t
- else
- let (smaller,larger) = if a1 < a2 then (a1,a2) else (a2,a1) in
- mk_typ_app "range" [Typ_arg_nexp (nconstant smaller); Typ_arg_nexp (nconstant larger)]
- | (Typ_aux (Typ_app (Id_aux (Id "range") _) [Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant bot) _)) _;
- Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant top) _)) _]) _,
- Typ_aux (Typ_app (Id_aux (Id "atom") _) [Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant a) _)) _]) _) ->
- if bot <= a && a <= top
- then t
- else if bot <= a && top <= a
- then mk_typ_app "range" [Typ_arg_nexp (nconstant bot); Typ_arg_nexp (nconstant a)]
- else mk_typ_app "range" [Typ_arg_nexp (nconstant a); Typ_arg_nexp (nconstant top)]
- | (Typ_aux (Typ_app (Id_aux (Id "atom") _) [Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant a) _)) _]) _,
- Typ_aux (Typ_app (Id_aux (Id "range") _) [Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant bot) _)) _;
- Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant top) _)) _]) _) ->
- if bot <= a && a <= top
- then t
- else if bot <= a && top <= a
- then mk_typ_app "range" [Typ_arg_nexp (nconstant bot); Typ_arg_nexp (nconstant a)]
- else mk_typ_app "range" [Typ_arg_nexp (nconstant a); Typ_arg_nexp (nconstant top)]
- | (Typ_aux (Typ_app (Id_aux (Id "vector") _) [Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant b1) _)) _;
- Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant r1) _)) _;
- Typ_arg_aux (Typ_arg_order (Ord_aux o1 _)) _;
- Typ_arg_aux (Typ_arg_typ t1) _]) _,
- Typ_aux (Typ_app (Id_aux (Id "vector") _) [Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant b2) _)) _;
- Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant r2) _)) _;
- Typ_arg_aux (Typ_arg_order (Ord_aux o2 _)) _;
- Typ_arg_aux (Typ_arg_typ t2) _]) _) ->
- let t = combine_typs [t1;t2] in
- match (o1,o2) with
- | (Ord_inc,Ord_inc) ->
- let larger_start = if b1 < b2 then b2 else b1 in
- let smaller_rise = if r1 < r2 then r1 else r2 in
- mk_typ_app "vector" [Typ_arg_nexp (nconstant larger_start); Typ_arg_nexp (nconstant smaller_rise);
- Typ_arg_order (Ord_aux o1 Unknown); Typ_arg_typ t]
- | (Ord_dec,Ord_dec) ->
- let smaller_start = if b1 < b2 then b1 else b2 in
- let smaller_fall = if r1 < r2 then r2 else r2 in
- mk_typ_app "vector" [Typ_arg_nexp (nconstant smaller_start); Typ_arg_nexp (nconstant smaller_fall);
- Typ_arg_order (Ord_aux o1 Unknown); Typ_arg_typ t]
- | _ -> mk_typ_var "fresh"
- end
- | _ -> t'
- end
- end
-
-let reg_to_t r =
- match r with
- | Form_Reg _ (Just (t,_,_,_,_)) _ -> t
- | _ -> mk_typ_var "fresh"
- end
-
-let rec val_typ v =
- match v with
- | V_boxref n t -> mk_typ_app "reg" [Typ_arg_typ t]
- | V_lit (L_aux lit _) ->
- match lit with
- | L_unit -> mk_typ_id "unit"
- | L_true -> mk_typ_id "bit"
- | L_false -> mk_typ_id "bit"
- | L_one -> mk_typ_id "bit"
- | L_zero -> mk_typ_id "bit"
- | L_string _ -> mk_typ_id "string"
- | L_num n -> mk_typ_app "atom" [Typ_arg_nexp (nconstant n)]
- | L_undef -> mk_typ_var "fresh"
- | L_hex _ -> Assert_extra.failwith "literal hex not removed"
- | L_bin _ -> Assert_extra.failwith "literal bin not removed"
- end
- | V_tuple vals -> mk_typ_tup (List.map val_typ vals)
- | V_vector n dir vals ->
- let ts = List.map val_typ vals in
- let t = combine_typs ts in
- mk_typ_app "vector" [Typ_arg_nexp (nconstant (integerFromNat n)); Typ_arg_nexp (nconstant (list_length vals));
- Typ_arg_order (Ord_aux (if is_inc dir then Ord_inc else Ord_dec) Unknown);
- Typ_arg_typ t]
- | V_vector_sparse n m dir vals d ->
- let ts = List.map val_typ (d::(List.map snd vals)) in
- let t = combine_typs ts in
- mk_typ_app "vector" [Typ_arg_nexp (nconstant (integerFromNat n)); Typ_arg_nexp (nconstant (integerFromNat m));
- Typ_arg_order (Ord_aux (if is_inc dir then Ord_inc else Ord_dec) Unknown);
- Typ_arg_typ t]
- | V_record t ivals -> t
- | V_list vals ->
- let ts = List.map val_typ vals in
- let t = combine_typs ts in
- mk_typ_app "list" [Typ_arg_typ t]
- | V_ctor id t _ vals -> t
- | V_register reg -> reg_to_t reg
- | V_track v _ -> val_typ v
- | V_unknown -> mk_typ_var "fresh"
- | V_register_alias _ _ -> mk_typ_var "fresh"
- end
-
-let rec to_exp mode env v : (exp tannot * lenv) =
- ((E_aux (E_internal_value v) (Interp_ast.Unknown, (val_annot (val_typ v)))), env)
-
-val env_to_let : interp_mode -> lenv -> (exp tannot) -> lenv -> ((exp tannot) * lenv)
-let rec env_to_let_help mode env taint_env = match env with
- | [] -> ([],taint_env)
- | (i,v)::env ->
- let t = (val_typ v) in
- let tan = (val_annot t) in
- let (e,taint_env) = to_exp mode taint_env v in
- let (rest,taint_env) = env_to_let_help mode env taint_env in
- ((((P_aux (P_id (id_of_string i)) (Unknown,tan)),e),t)::rest, taint_env)
-end
-
-let env_to_let mode (LEnv _ env) (E_aux e annot) taint_env =
- match env_to_let_help mode (Set_extra.toList (Map.toSet env)) taint_env with
- | ([],taint_env) -> (E_aux e annot,taint_env)
- | ([((p,e),t)],tain_env) ->
- (E_aux (E_let (LB_aux (LB_val p e) (Unknown,(val_annot t))) e) annot,taint_env)
- | (pts,taint_env) ->
- let ts = List.map snd pts in
- let pes = List.map fst pts in
- let ps = List.map fst pes in
- let es = List.map snd pes in
- let t = mk_typ_tup ts in
- let tan = val_annot t in
- (E_aux (E_let (LB_aux (LB_val (P_aux (P_tup ps) (Unknown,tan))
- (E_aux (E_tuple es) (Unknown,tan))) (Unknown,tan))
- (E_aux e annot))
- annot, taint_env)
-end
-
-let fix_up_nondet typ branches annot =
- match typ with
- | Typ_aux (Typ_id (Id_aux (Id "unit") _)) _ -> (branches, Nothing)
- | _ -> ((List.map
- (fun e -> E_aux (E_assign (LEXP_aux (LEXP_id redex_id) annot) e) annot) branches), Just "0")
-end
-
-(* match_pattern returns a tuple of (pattern_matches? , pattern_passed_due_to_unknown?, env_of_pattern *)
-val match_pattern : top_level -> pat tannot -> value -> bool * bool * lenv
-let rec match_pattern t_level (P_aux p (_, annot)) value_whole =
- let (Env fdefs instrs default_dir lets regs ctors subregs aliases debug) = t_level in
- let (t,tag,cs) = match annot with
- | Just(t,tag,cs,e,_) -> (t,tag,cs)
- | Nothing -> (mk_typ_var "fresh",Tag_empty,[]) end in
- let value = detaint value_whole in
- let taint_pat v = binary_taint (fun v _ -> v) v value_whole in
- match p with
- | P_lit(lit) ->
- if is_lit_vector lit then
- let (n, inc, bits) = match litV_to_vec lit default_dir
- with | V_vector n inc bits -> (n, inc, bits)
- | _ -> Assert_extra.failwith "litV_to_vec failed" end in
- match value with
- | V_lit litv ->
- if is_lit_vector litv then
- let (n', inc', bits') = match litV_to_vec litv default_dir with
- | V_vector n' inc' bits' -> (n', inc', bits')
- | _ -> Assert_extra.failwith "litV_to_vec failed" end in
- if n=n' && inc = inc' then (foldr2 (fun l r rest -> (l = r) && rest) true bits bits',false, eenv)
- else (false,false,eenv)
- else (false,false,eenv)
- | V_vector n' inc' bits' ->
- (foldr2 (fun l r rest -> (l=r) && rest) true bits bits',false,eenv)
- | V_unknown -> (true,true,eenv)
- | _ -> (false,false,eenv) end
- else
- match value with
- | V_lit(litv) -> (lit = litv, false,eenv)
- | V_vector _ _ [V_lit(litv)] -> (lit = litv,false,eenv)
- | V_unknown -> (true,true,eenv)
- | _ -> (false,false,eenv)
- end
- | P_wild -> (true,false,eenv)
- | P_as pat id ->
- let (matched_p,used_unknown,bounds) = match_pattern t_level pat value in
- if matched_p then
- (matched_p,used_unknown,(add_to_env (id,value_whole) bounds))
- else (false,false,eenv)
- | P_typ typ pat -> match_pattern t_level pat value_whole
- | P_id id -> (true, false, (LEnv 0 (Map.fromList [((get_id id),value_whole)])))
- | P_app (Id_aux id _) pats ->
- match value with
- | V_ctor (Id_aux cid _) t ckind (V_tuple vals) ->
- if (id = cid && ((List.length pats) = (List.length vals)))
- then foldr2
- (fun pat value (matched_p,used_unknown,bounds) ->
- if matched_p then
- let (matched_p,used_unknown',new_bounds) = match_pattern t_level pat (taint_pat value) in
- (matched_p, (used_unknown || used_unknown'), (union_env new_bounds bounds))
- else (false,false,eenv)) (true,false,eenv) pats vals
- else (false,false,eenv)
- | V_ctor (Id_aux cid _) t ckind (V_track (V_tuple vals) r) ->
- if (id = cid && ((List.length pats) = (List.length vals)))
- then foldr2
- (fun pat value (matched_p,used_unknown,bounds) ->
- if matched_p then
- let (matched_p,used_unknown',new_bounds) = match_pattern t_level pat (taint value r) in
- (matched_p, (used_unknown || used_unknown'), (union_env new_bounds bounds))
- else (false,false,eenv)) (true,false,eenv) pats vals
- else (false,false,eenv)
- | V_ctor (Id_aux cid _) t ckind v ->
- if id = cid
- then (match (pats,detaint v) with
- | ([],(V_lit (L_aux L_unit _))) -> (true,false,eenv)
- | ([P_aux (P_lit (L_aux L_unit _)) _],(V_lit (L_aux L_unit _))) -> (true,false,eenv)
- | ([p],_) -> match_pattern t_level p v
- | _ -> (false,false,eenv) end)
- else (false,false,eenv)
- | V_lit (L_aux (L_num i) _) ->
- match tag with
- | Tag_enum _ ->
- match Map.lookup (get_id (Id_aux id Unknown)) lets with
- | Just(V_ctor _ t (C_Enum j) _) ->
- if i = (integerFromNat j) then (true,false,eenv)
- else (false,false,eenv)
- | _ -> (false,false,eenv) end
- | _ -> (false,false,eenv) end
- | V_unknown -> (true,true,eenv)
- | _ -> (false,false,eenv) end
- | P_record fpats _ ->
- match value with
- | V_record t fvals ->
- let fvals_env = env_from_list fvals in
- List.foldr
- (fun (FP_aux (FP_Fpat id pat) _) (matched_p,used_unknown,bounds) ->
- if matched_p then
- let (matched_p,used_unknown',new_bounds) = match in_env fvals_env (get_id id) with
- | Nothing -> (false,false,eenv)
- | Just v -> match_pattern t_level pat v end in
- (matched_p, (used_unknown || used_unknown'), (union_env new_bounds bounds))
- else (false,false,eenv)) (true,false,eenv) fpats
- | V_unknown -> (true,true,eenv)
- | _ -> (false,false,eenv)
- end
- | P_vector pats ->
- match value with
- | V_vector n dir vals ->
- if ((List.length vals) = (List.length pats))
- then foldr2
- (fun pat value (matched_p,used_unknown,bounds) ->
- if matched_p then
- let (matched_p,used_unknown',new_bounds) = match_pattern t_level pat (taint_pat value) in
- (matched_p, (used_unknown||used_unknown'), (union_env new_bounds bounds))
- else (false,false,eenv))
- (true,false,eenv) pats vals
- else (false,false,eenv)
- | V_vector_sparse n m dir vals d ->
- if (m = (List.length pats))
- then let (_,matched_p,used_unknown,bounds) =
- foldr
- (fun pat (i,matched_p,used_unknown,bounds) ->
- if matched_p
- then let (matched_p,used_unknown',new_bounds) =
- match_pattern t_level pat (match List.lookup i vals with
- | Nothing -> d
- | Just v -> (taint_pat v) end) in
- ((if is_inc(dir) then i+1 else i-1),
- matched_p,used_unknown||used_unknown',(union_env new_bounds bounds))
- else (i,false,false,eenv)) (n,true,false,eenv) pats in
- (matched_p,used_unknown,bounds)
- else (false,false,eenv)
- | V_unknown -> (true,true,eenv)
- | _ -> (false,false,eenv)
- end
- | P_vector_concat pats ->
- match value with
- | V_vector n dir vals ->
- let (matched_p,used_unknown,bounds,remaining_vals) = vec_concat_match_top t_level pats vals dir in
- (*List.foldl
- (fun (matched_p,used_unknown,bounds,r_vals) (P_aux pat (l,Just(t,_,_,_))) ->
- let (matched_p,used_unknown',bounds',matcheds,r_vals) = vec_concat_match_plev t_level pat r_vals inc l t in
- (matched_p,(used_unknown || used_unknown'),(union_env bounds' bounds),r_vals)) (true,false,eenv,vals) pats in*)
- if matched_p && ([] = remaining_vals) then (matched_p,used_unknown,bounds) else (false,false,eenv)
- | V_unknown -> (true,true,eenv)
- | _ -> (false,false, eenv)
- end
- | P_tup(pats) ->
- match value with
- | V_tuple(vals) ->
- if ((List.length pats)= (List.length vals))
- then foldr2
- (fun pat v (matched_p,used_unknown,bounds) -> if matched_p then
- let (matched_p,used_unknown',new_bounds) = match_pattern t_level pat (taint_pat v) in
- (matched_p,used_unknown ||used_unknown', (union_env new_bounds bounds))
- else (false,false,eenv))
- (true,false,eenv) pats vals
- else (false,false,eenv)
- | V_unknown -> (true,true,eenv)
- | _ -> (false,false,eenv)
- end
- | P_list(pats) ->
- match value with
- | V_list(vals) ->
- if ((List.length pats)= (List.length vals))
- then foldr2
- (fun pat v (matched_p,used_unknown,bounds) -> if matched_p then
- let (matched_p,used_unknown',new_bounds) = match_pattern t_level pat (taint_pat v) in
- (matched_p,used_unknown|| used_unknown', (union_env new_bounds bounds))
- else (false,false,eenv))
- (true,false,eenv) pats vals
- else (false,false,eenv)
- | V_unknown -> (true,true,eenv)
- | _ -> (false,false,eenv) end
- end
-
-and vec_concat_match_top t_level pats r_vals dir : ((*matched_p*) bool * (*used_unknown*) bool * lenv * (list value)) =
- match pats with
- | [] -> (true,false,eenv,r_vals)
- | [(P_aux p (l,Just(t,_,_,_,_)))] ->
- let (matched_p,used_unknown,bounds,_,r_vals) = vec_concat_match_plev t_level p r_vals dir l true t in
- (matched_p,used_unknown,bounds,r_vals)
- | (P_aux p (l,Just(t,_,_,_,_)))::pats ->
- let (matched_p,used_unknown,bounds,matcheds,r_vals) = vec_concat_match_plev t_level p r_vals dir l false t in
- if matched_p then
- let (matched_p',used_unknown',bounds',r_vals) = vec_concat_match_top t_level pats r_vals dir in
- (matched_p',(used_unknown || used_unknown'),union_env bounds' bounds, r_vals)
- else (false,false,eenv,r_vals)
- | _ -> Assert_extra.failwith "Type annotation illformed"
-end
-
-and vec_concat_match_plev t_level pat r_vals dir l last_pat t =
- match pat with
- | P_lit (L_aux (L_bin bin_string) l') ->
- let bin_chars = toCharList bin_string in
- let binpats = List.map
- (fun b -> P_aux (match b with
- | #'0' -> P_lit (L_aux L_zero l')
- | #'1' -> P_lit (L_aux L_one l')
- | _ -> Assert_extra.failwith "bin not 0 or 1" end) (l',Nothing)) bin_chars in
- vec_concat_match t_level binpats r_vals
- | P_vector pats -> vec_concat_match t_level pats r_vals
- | P_id id ->
- (match t with
- | Typ_aux (Typ_app (Id_aux (Id "vector") _) [_;Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant i) _)) _;_;_]) _ ->
- let wilds = List.genlist (fun _ -> P_aux P_wild (l,Nothing)) (natFromInteger i) in
- let (matched_p,used_unknown,bounds,matcheds,r_vals) = vec_concat_match t_level wilds r_vals in
- if matched_p
- then (matched_p, used_unknown,
- (add_to_env (id,(V_vector (if is_inc(dir) then 0 else ((List.length matcheds) - 1)) dir matcheds))
- bounds),
- matcheds,r_vals)
- else (false,false,eenv,[],[])
- | Typ_aux (Typ_app (Id_aux (Id "vector") _) [_;Typ_arg_aux (Typ_arg_nexp nc) _;_;_]) _ ->
- if last_pat
- then
- (true,false,
- (add_to_env (id,(V_vector (if is_inc(dir) then 0 else ((List.length r_vals) - 1)) dir r_vals)) eenv),
- r_vals,[])
- else (false,false,eenv,[],[]) (*TODO use some constraint bounds here*)
- | _ ->
- if last_pat
- then
- (true,false,
- (add_to_env (id,(V_vector (if is_inc(dir) then 0 else ((List.length r_vals) -1 )) dir r_vals)) eenv),
- r_vals,[])
- else (false,false,eenv,[],[]) end)
- | P_wild -> (match t with
- | Typ_aux (Typ_app (Id_aux (Id "vector") _) [_;Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant i) _)) _;_;_]) _ ->
- let wilds = List.genlist (fun _ -> P_aux P_wild (l,Nothing)) (natFromInteger i) in
- vec_concat_match t_level wilds r_vals
- | Typ_aux (Typ_app (Id_aux (Id "vector") _) [_;Typ_arg_aux (Typ_arg_nexp nc) _;_;_]) _ ->
- if last_pat
- then
- (true,false,eenv,r_vals,[])
- else (false,false,eenv,[],[]) (*TODO use some constraint bounds here*)
- | _ ->
- if last_pat
- then
- (true,false,eenv,r_vals,[])
- else (false,false,eenv,[],[]) end)
- | P_as (P_aux pat (l',Just(t',_,_,_,_))) id ->
- let (matched_p, used_unknown, bounds,matcheds,r_vals) =
- vec_concat_match_plev t_level pat r_vals dir l last_pat t' in
- if matched_p
- then (matched_p, used_unknown,
- (add_to_env (id,V_vector (if is_inc(dir) then 0 else (List.length matcheds)) dir matcheds) bounds),
- matcheds,r_vals)
- else (false,false,eenv,[],[])
- | P_typ _ (P_aux p (l',Just(t',_,_,_,_))) -> vec_concat_match_plev t_level p r_vals dir l last_pat t
- | _ -> (false,false,eenv,[],[]) end
- (*TODO Need to support indexed here, skipping intermediate numbers but consumming r_vals, and as *)
-
-and vec_concat_match t_level pats r_vals =
- match pats with
- | [] -> (true,false,eenv,[],r_vals)
- | pat::pats -> match r_vals with
- | [] -> (false,false,eenv,[],[])
- | r::r_vals ->
- let (matched_p,used_unknown,new_bounds) = match_pattern t_level pat r in
- if matched_p then
- let (matched_p,used_unknown',bounds,matcheds,r_vals) = vec_concat_match t_level pats r_vals in
- (matched_p, used_unknown||used_unknown',(union_env new_bounds bounds),r :: matcheds,r_vals)
- else (false,false,eenv,[],[]) end
- end
-
-
-(* Returns all matches using Unknown until either there are no more matches or a pattern matches with no Unknowns used *)
-val find_funcl : top_level -> list (funcl tannot) -> value -> list (lenv * bool * (exp tannot))
-let rec find_funcl t_level funcls value =
- match funcls with
- | [] -> []
- | (FCL_aux (FCL_Funcl id (Pat_aux (Pat_exp pat exp) _)) _)::funcls ->
- let (is_matching,used_unknown,env) = match_pattern t_level pat value in
- if (is_matching && used_unknown)
- then (env,used_unknown,exp)::(find_funcl t_level funcls value)
- else if is_matching then [(env,used_unknown,exp)]
- else find_funcl t_level funcls value
- end
-
-(*see above comment*)
-val find_case : top_level -> list (pexp tannot) -> value -> list (lenv * bool * (exp tannot))
-let rec find_case t_level pexps value =
- match pexps with
- | [] -> []
- | (Pat_aux (Pat_exp p e) _)::pexps ->
- let (is_matching,used_unknown,env) = match_pattern t_level p value in
- if (is_matching && used_unknown)
- then (env,used_unknown,e)::find_case t_level pexps value
- else if is_matching then [(env,used_unknown,e)]
- else find_case t_level pexps value
- end
-
-val interp_main : interp_mode -> top_level -> lenv -> lmem -> (exp tannot) -> (outcome * lmem * lenv)
-val exp_list : interp_mode -> top_level -> ((list (exp tannot)) -> lenv -> ((exp tannot) * lenv)) -> (list value -> value) -> lenv -> lmem -> list value -> list (exp tannot) -> (outcome * lmem * lenv)
-val interp_lbind : interp_mode -> top_level -> lenv -> lmem -> (letbind tannot) -> ((outcome * lmem * lenv) * (maybe ((exp tannot) -> (letbind tannot))))
-val interp_alias_read : interp_mode -> top_level -> lenv -> lmem -> (alias_spec tannot) -> (outcome * lmem * lenv)
-
-let resolve_outcome to_match value_thunk action_thunk =
- match to_match with
- | (Value v,lm,le) -> value_thunk v lm le
- | (Action action stack,lm,le) -> (action_thunk (Action action stack), lm,le)
- | (Error l s,lm,le) -> (Error l s,lm,le)
-end
-
-let string_of_action a =
- (match a with
- | Read_reg r _ -> "(Read_reg " ^ string_of_reg_form r ^ " _)"
- | Write_reg r _ _ -> "(Write_reg " ^ string_of_reg_form r ^ " _ _)"
- | Read_mem id v _ -> "(Read_mem " ^ string_of_id id ^ " " ^ debug_print_value v ^ " _)"
- | Read_mem_tagged id v _ -> "(Read_mem_tagged " ^ string_of_id id ^ " " ^ debug_print_value v ^ " _)"
- | Write_mem _ _ _ _ -> "(Write_mem _ _ _ _)"
- | Write_ea id v -> "(Write_ea " ^ string_of_id id ^ " " ^ debug_print_value v ^ " _)"
- | Write_memv _ _ _ -> "(Write_memv _ _ _)"
- | Excl_res id -> "(Excl_res " ^ string_of_id id ^ ")"
- | Write_memv_tagged _ _ _ _ -> "(Write_memv_tagged _ _ _ _)"
- | Barrier id v -> "(Barrier " ^ string_of_id id ^ " " ^ debug_print_value v ^ ")"
- | Footprint id v -> "(Footprint " ^ string_of_id id ^ " " ^ debug_print_value v ^ ")"
- | Nondet exps _ -> "(Nondet [" ^ String.concat "; " (List.map string_of_exp exps) ^ "] _)"
- | Call_extern s v -> "(Call_extern \"" ^ s ^ "\" " ^ debug_print_value v ^ ")"
- | Return v -> "(Return " ^ debug_print_value v ^ ")"
- | Exit exp -> "(Exit " ^ string_of_exp exp ^ ")"
- | Fail v -> "(Fail " ^ debug_print_value v ^ ")"
- | Step _ _ _ -> "(Step _ _ _)"
- end)
-
-instance (Show action)
- let show action = string_of_action action
-end
-
-let string_of_outcome outcome =
- (match outcome with
- | Value v -> "(Value " ^ debug_print_value v ^ ")"
- | Action a _ -> "(Action " ^ string_of_action a ^ " _)"
- | Error _ s -> "(Error _ \"" ^ s ^ "\")"
- end)
-
-instance (Show outcome)
- let show outcome = string_of_outcome outcome
-end
-
-let update_stack o fn = match o with
- | Action act stack -> Action act (fn stack)
- | _ -> o
-end
-
-let debug_out fn value e tl lm le =
- (Action (Step (get_exp_l e) fn value) (Thunk_frame e tl le lm Top),lm,le)
-
-let to_exps mode env vals =
- List.foldr (fun v (es,env) -> let (e,env') = to_exp mode env v in (e::es, union_env env' env)) ([],env) vals
-
-let get_num v = match v with
- | V_lit (L_aux (L_num n) _) -> n
- | _ -> 0 end
-
-(*Interpret a list of expressions, tracking local state but evaluating in the same scope (i.e. not tracking env) *)
-let rec __exp_list mode t_level build_e build_v l_env l_mem vals exps =
- match exps with
- | [ ] -> (Value (build_v vals), l_mem, l_env)
- | e::exps ->
- resolve_outcome (interp_main mode t_level l_env l_mem e)
- (fun value lm le -> exp_list mode t_level build_e build_v l_env lm (vals++[value]) exps)
- (fun a -> update_stack a (add_to_top_frame
- (fun e env ->
- let (es,env') = to_exps mode env vals in
- let (e,env'') = build_e (es++(e::exps)) env' in
- (e,env''))))
- end
-
-and exp_list mode t_level build_e build_v l_env l_mem vals exps =
- let _ = debug_fun_enter mode "exp_list" [show vals; show exps] in
- let retval = __exp_list (indent_mode mode) t_level build_e build_v l_env l_mem vals exps in
- let _ = debug_fun_exit mode "exp_list" retval in
- retval
-
-and __interp_main mode t_level l_env l_mem (E_aux exp (l,annot)) =
- let (Env fdefs instrs default_dir lets regs ctors subregs aliases debug) = t_level in
- let (typ,tag,ncs,effect,reffect) = match annot with
- | Nothing ->
- (mk_typ_var "fresh_v", Tag_empty,[],(Effect_aux (Effect_set []) Unknown),(Effect_aux (Effect_set []) Unknown))
- | Just(t, tag, ncs, ef,efr) -> (t,tag,ncs,ef,efr) end in
- match exp with
- | E_internal_value v -> (Value v, l_mem, l_env)
- | E_lit lit ->
- if is_lit_vector lit
- then let is_inc = (match typ with
- | Typ_aux (Typ_app (Id_aux (Id "vector") _) [_;_;Typ_arg_aux (Typ_arg_order (Ord_aux Ord_inc _)) _;_]) _ -> IInc | _ -> IDec end) in
- (Value (litV_to_vec lit is_inc),l_mem,l_env)
- else (Value (V_lit (match lit with
- | L_aux L_false loc -> L_aux L_zero loc
- | L_aux L_true loc -> L_aux L_one loc
- | _ -> lit end)), l_mem,l_env)
- | E_comment _ -> (Value unitv, l_mem,l_env)
- | E_comment_struc _ -> (Value unitv, l_mem, l_env)
- | E_cast ((Typ_aux typ _) as ctyp) exp ->
- (*Cast is either a no-op, a signal to read a register, or a signal to change the start of a vector *)
- resolve_outcome
- (interp_main mode t_level l_env l_mem exp)
- (fun v lm le ->
- (* Potentially use cast to change vector start position *)
- let conditional_update_vstart () =
- match typ with
- | Typ_app (Id_aux (Id "vector") _) [Typ_arg_aux (Typ_arg_nexp(Nexp_aux (Nexp_constant i) _)) _;_;_;_] ->
- let i = natFromInteger i in
- match (detaint v) with
- | V_vector start dir vs ->
- if start = i then (Value v,lm,le) else (Value (update_vector_start dir i 1 v),lm,le)
- | _ -> (Value v,lm,le) end
- | (Typ_var (Kid_aux (Var "length") _))->
- match (detaint v) with
- | V_vector start dir vs ->
- let i = (List.length vs) - 1 in
- if start = i then (Value v,lm,le) else (Value (update_vector_start dir i 1 v),lm,le)
- | _ -> (Value v,lm,le) end
- | _ -> (Value v,lm,le) end in
- (match (tag,detaint v) with
- (*Cast is telling us to read a register*)
- | (Tag_extern _, V_register regform) ->
- (Action (Read_reg regform Nothing) (mk_hole l (val_annot (reg_to_t regform)) t_level le lm), lm,le)
- (*Cast is changing vector start position, potentially*)
- | (_,v) -> conditional_update_vstart () end))
- (fun a -> update_stack a (add_to_top_frame (fun e env -> (E_aux (E_cast ctyp e) (l,annot), env))))
- | E_id id ->
- let name = get_id id in
- match tag with
- | Tag_empty ->
- match in_lenv l_env id with
- | V_boxref n t -> (Value (in_mem l_mem n),l_mem,l_env)
- | value -> (Value value,l_mem,l_env) end
- | Tag_global ->
- match in_env lets name with
- | Just(value) -> (Value value, l_mem,l_env)
- | Nothing ->
- (match in_env regs name with
- | Just(value) -> (Value value, l_mem,l_env)
- | Nothing -> (Error l ("Internal error: " ^ name ^ " unbound on Tag_global"),l_mem,l_env) end) end
- | Tag_enum _ ->
- match in_env lets name with
- | Just(value) -> (Value value,l_mem,l_env)
- | Nothing -> (Error l ("Internal error: " ^ name ^ " unbound on Tag_enum "), l_mem,l_env)
- end
- | Tag_extern _ -> (* update with id here when it's never just "register" *)
- let regf = match in_lenv l_env id with (* Check for local treatment of a register as a value *)
- | V_register regform -> regform
- | _ ->
- match in_env regs name with (* Register isn't a local value, so pull from global environment *)
- | Just(V_register regform) -> regform
- | _ -> Form_Reg id annot default_dir end end in
- (Action (Read_reg regf Nothing) (mk_hole l annot t_level l_env l_mem), l_mem, l_env)
- | Tag_alias ->
- match in_env aliases name with
- | Just aspec -> interp_alias_read mode t_level l_env l_mem aspec
- | _ -> (Error l ("Internal error: alias not found"), l_mem,l_env) end
- | _ ->
- (Error l
- ("Internal error: tag " ^ (string_of_tag tag) ^ " expected empty,enum,alias,or extern for " ^ name),
- l_mem,l_env)
- end
- | E_if cond thn els ->
- resolve_outcome
- (interp_main mode t_level l_env l_mem cond)
- (fun value_whole lm le ->
- let value = detaint value_whole in
- match (value,mode.eager_eval) with
- (*TODO remove booleans here when fully removed elsewhere *)
- | (V_lit(L_aux L_one _),true) -> interp_main mode t_level l_env lm thn
- | (V_lit(L_aux L_one _),false) -> debug_out Nothing Nothing thn t_level lm l_env
- | (V_vector _ _ [(V_lit(L_aux L_one _))],true) -> interp_main mode t_level l_env lm thn
- | (V_vector _ _ [(V_lit(L_aux L_one _))],false) -> debug_out Nothing Nothing thn t_level lm l_env
- | (V_unknown,_) ->
- let (branches,maybe_id) = fix_up_nondet typ [thn;els] (l,annot) in
- interp_main mode t_level l_env lm (E_aux (E_nondet branches) (l,non_det_annot annot maybe_id))
- | (_,true) -> interp_main mode t_level l_env lm els
- | (_,false) -> debug_out Nothing Nothing els t_level lm l_env end)
- (fun a -> update_stack a (add_to_top_frame (fun c env -> (E_aux (E_if c thn els) (l,annot), env))))
- | E_for id from to_ by ((Ord_aux o _) as order) exp ->
- let is_inc = match o with | Ord_inc -> true | _ -> false end in
- resolve_outcome
- (interp_main mode t_level l_env l_mem from)
- (fun from_val_whole lm le ->
- let from_val = detaint from_val_whole in
- let (from_e,env) = to_exp mode le from_val_whole in
- match from_val with
- | V_lit(L_aux(L_num from_num) fl) ->
- resolve_outcome
- (interp_main mode t_level env lm to_)
- (fun to_val_whole lm le ->
- let to_val = detaint to_val_whole in
- let (to_e,env) = to_exp mode le to_val_whole in
- match to_val with
- | V_lit(L_aux (L_num to_num) tl) ->
- resolve_outcome
- (interp_main mode t_level env lm by)
- (fun by_val_whole lm le ->
- let by_val = detaint by_val_whole in
- let (by_e,env) = to_exp mode le by_val_whole in
- match by_val with
- | V_lit (L_aux (L_num by_num) bl) ->
- if ((is_inc && (from_num > to_num)) || (not(is_inc) && (from_num < to_num)))
- then (Value(V_lit (L_aux L_unit l)),lm,le)
- else
- let (ftyp,ttyp,btyp) = (val_typ from_val,val_typ to_val,val_typ by_val) in
- let augment_annot = (fl, val_annot (combine_typs [ftyp;ttyp])) in
- let diff = L_aux (L_num (if is_inc then from_num+by_num else from_num - by_num)) fl in
- let (augment_e,env) = match (from_val_whole,by_val_whole) with
- | (V_lit _, V_lit _) -> ((E_aux (E_lit diff) augment_annot), env)
- | (V_track _ rs, V_lit _) -> to_exp mode env (taint (V_lit diff) rs)
- | (V_lit _, V_track _ rs) -> to_exp mode env (taint (V_lit diff) rs)
- | (V_track _ r1, V_track _ r2) ->
- (to_exp mode env (taint (V_lit diff) (r1 union r2)))
- | _ -> Assert_extra.failwith "For loop from and by values not range" end in
- let e =
- (E_aux
- (E_block
- [(E_aux
- (E_let
- (LB_aux (LB_val (P_aux (P_id id) (fl,val_annot ftyp)) from_e)
- (Unknown,val_annot ftyp))
- exp) (l,annot));
- (E_aux (E_for id augment_e to_e by_e order exp) (l,annot))])
- (l,annot)) in
- if mode.eager_eval
- then interp_main mode t_level env lm e
- else debug_out Nothing Nothing e t_level lm env
- | V_unknown ->
- let e =
- (E_aux
- (E_let
- (LB_aux
- (LB_val (P_aux (P_id id) (fl, val_annot (val_typ from_val))) from_e)
- (fl, val_annot (val_typ from_val)))
- exp) (l,annot)) in
- interp_main mode t_level env lm e
- | _ -> (Error l "internal error: by must be a number",lm,le) end)
- (fun a -> update_stack a
- (add_to_top_frame (fun b env -> (E_aux (E_for id from_e to_e b order exp) (l,annot), env))))
- | V_unknown ->
- let e =
- (E_aux
- (E_let (LB_aux
- (LB_val (P_aux (P_id id) (fl, val_annot (val_typ from_val))) from_e)
- (fl, val_annot (val_typ from_val))) exp) (l,annot)) in
- interp_main mode t_level env lm e
- | _ -> (Error l "internal error: to must be a number",lm,env) end)
- (fun a -> update_stack a
- (add_to_top_frame (fun t env ->
- (E_aux (E_for id from_e t by order exp) (l,annot), env))))
- | V_unknown ->
- let e =
- (E_aux
- (E_let (LB_aux (LB_val (P_aux (P_id id) (Unknown, val_annot (val_typ from_val))) from_e)
- (Unknown, val_annot (val_typ from_val))) exp) (l,annot)) in
- interp_main mode t_level env lm e
- | _ -> (Error l "internal error: from must be a number",lm,le) end)
- (fun a -> update_stack a
- (add_to_top_frame (fun f env -> (E_aux (E_for id f to_ by order exp) (l,annot), env))))
- | E_case exp pats ->
- resolve_outcome
- (interp_main mode t_level l_env l_mem exp)
- (fun v lm le ->
- match find_case t_level pats v with
- | [] -> (Error l ("No matching patterns in case for value " ^ (string_of_value v)),lm,le)
- | [(env,_,exp)] ->
- if mode.eager_eval
- then interp_main mode t_level (union_env env l_env) lm exp
- else debug_out Nothing Nothing exp t_level lm (union_env env l_env)
- | multi_matches ->
- let (lets,taint_env) =
- List.foldr (fun (env,_,exp) (rst,taint_env) ->
- let (e,t_e) = env_to_let mode env exp taint_env in (e::rst,t_e)) ([],l_env) multi_matches in
- let (branches,maybe_id) = fix_up_nondet typ lets (l,annot) in
- interp_main mode t_level taint_env lm (E_aux (E_nondet branches) (l,(non_det_annot annot maybe_id)))
- end)
- (fun a -> update_stack a (add_to_top_frame (fun e env -> (E_aux (E_case e pats) (l,annot), env))))
- | E_record(FES_aux (FES_Fexps fexps _) fes_annot) ->
- let (fields,exps) = List.unzip (List.map (fun (FE_aux (FE_Fexp id exp) _) -> (id,exp)) fexps) in
- exp_list mode t_level
- (fun es env' ->
- ((E_aux
- (E_record
- (FES_aux (FES_Fexps
- (map2 (fun id exp -> (FE_aux (FE_Fexp id exp) (Unknown,Nothing))) fields es)
- false) fes_annot))
- (l,annot)), env'))
- (fun vs -> (V_record typ (List.zip fields vs))) l_env l_mem [] exps
- | E_record_update exp (FES_aux (FES_Fexps fexps _) fes_annot) ->
- resolve_outcome
- (interp_main mode t_level l_env l_mem exp)
- (fun rv lm le -> match rv with
- | V_record t fvs ->
- let (fields,exps) = List.unzip (List.map (fun (FE_aux (FE_Fexp id exp) _) -> (id,exp)) fexps) in
- resolve_outcome
- (exp_list mode t_level
- (fun es env'->
- let (e,env'') = (to_exp mode env' rv) in
- ((E_aux (E_record_update e
- (FES_aux (FES_Fexps
- (map2 (fun id exp -> (FE_aux (FE_Fexp id exp) (Unknown,Nothing)))
- fields es) false) fes_annot))
- (l,annot)), env''))
- (fun vs -> (V_record t (List.zip fields vs))) l_env l_mem [] exps)
- (fun vs lm le -> (Value (fupdate_record rv vs), lm, le))
- (fun a -> a) (*Due to exp_list this won't happen, but we want to functionaly update on Value *)
- | V_unknown -> (Value V_unknown, lm, le)
- | _ -> (Error l "internal error: record update requires record",lm,le) end)
- (fun a -> update_stack a
- (add_to_top_frame
- (fun e env -> (E_aux(E_record_update e (FES_aux(FES_Fexps fexps false) fes_annot)) (l,annot), env))))
- | E_list(exps) ->
- exp_list mode t_level (fun exps env' -> (E_aux (E_list exps) (l,annot),env')) V_list l_env l_mem [] exps
- | E_cons hd tl ->
- resolve_outcome
- (interp_main mode t_level l_env l_mem hd)
- (fun hdv lm le ->
- resolve_outcome
- (interp_main mode t_level l_env lm tl)
- (fun tlv lm le -> match detaint tlv with
- | V_list t -> (Value (retaint tlv (V_list (hdv::t))),lm,le)
- | V_unknown -> (Value (retaint tlv V_unknown),lm,le)
- | _ -> (Error l ("Internal error '::' of non-list value " ^ (string_of_value tlv)),lm,le) end)
- (fun a -> update_stack a
- (add_to_top_frame
- (fun t env -> let (hde,env') = to_exp mode env hdv in (E_aux (E_cons hde t) (l,annot),env')))))
- (fun a -> update_stack a (add_to_top_frame (fun h env -> (E_aux (E_cons h tl) (l,annot), env))))
- | E_field exp id ->
- resolve_outcome
- (interp_main mode t_level l_env l_mem exp)
- (fun value_whole lm le ->
- match detaint value_whole with
- | V_record t fexps ->
- (match in_env (env_from_list fexps) (get_id id) with
- | Just v -> (Value (retaint value_whole v),lm,l_env)
- | Nothing -> (Error l "Internal_error: Field not found in record",lm,le) end)
- | V_register ((Form_Reg _ annot _) as reg_form) ->
- let id' = match annot with
- | Just((Typ_aux (Typ_id (Id_aux (Id id') _)) _),_,_,_,_) -> id'
- | _ -> Assert_extra.failwith "annotation not well formed for field access"
- end in
- (match in_env subregs id' with
- | Just(indexes) ->
- (match in_env indexes (get_id id) with
- | Just ir ->
- let sub_reg = Form_SubReg id reg_form ir in
- (Action (Read_reg sub_reg Nothing)
- (mk_hole l (val_annot (reg_to_t sub_reg)) t_level le lm),lm,le)
- | _ -> (Error l "Internal error: unrecognized read, no id",lm,le) end)
- | Nothing -> (Error l "Internal error: subregs indexes not found", lm, le) end)
- | V_unknown -> (Value (retaint value_whole V_unknown),lm,l_env)
- | _ ->
- (Error l ("Internal error: neither register nor record at field access "
- ^ (string_of_value value_whole)),lm,le) end)
- (fun a ->
- match (exp,a) with
- | (E_aux _ (l,Just(_,Tag_extern _,_,_,_)),
- (Action (Read_reg ((Form_Reg _ (Just((Typ_aux (Typ_id (Id_aux (Id id') _)) _),_,_,_,_)) _) as regf) Nothing) s)) ->
- match in_env subregs id' with
- | Just(indexes) ->
- (match in_env indexes (get_id id) with
- | Just ir ->
- (Action (Read_reg (Form_SubReg id regf ir) Nothing) s)
- | _ -> Error l "Internal error, unrecognized read, no id"
- end)
- | Nothing -> Error l "Internal error, unrecognized read, no reg" end
- | _ -> update_stack a (add_to_top_frame (fun e env -> (E_aux(E_field e id) (l,annot),env))) end)
- | E_vector_access vec i ->
- resolve_outcome
- (interp_main mode t_level l_env l_mem vec)
- (fun vvec lm le ->
- resolve_outcome
- (interp_main mode t_level l_env lm i)
- (fun iv lm le ->
- (match detaint iv with
- | V_unknown -> (Value iv,lm,le)
- | V_lit (L_aux (L_num n) ln) ->
- let n = natFromInteger n in
- let v_access vvec num =
- (match (detaint vvec, detaint num) with
- | (V_vector _ _ _,V_lit _) -> Value (access_vector vvec n)
- | (V_vector_sparse _ _ _ _ _,V_lit _) -> Value (access_vector vvec n)
- | (V_register reg, V_lit _) ->
- Action (Read_reg reg (Just (n,n))) (mk_hole l annot t_level l_env lm)
- | (V_unknown,_) -> Value V_unknown
- | _ -> Assert_extra.failwith
- ("Vector access error: " ^ (string_of_value vvec) ^ "[" ^ (show n) ^ "]")
- end)
- in
- (v_access (retaint iv vvec) iv,lm,le)
- | _ -> (Error l "Vector access not given a number for index",lm,l_env)
- end))
- (fun a -> update_stack a (add_to_top_frame(fun i' env ->
- let (vec_e, env') = to_exp mode env vvec in
- (E_aux (E_vector_access vec_e i') (l,annot), env')))))
- (fun a ->
- update_stack a (add_to_top_frame (fun vec' env ->
- (E_aux (E_vector_access vec' i) (l,annot), env))))
- | E_vector_subrange vec i1 i2 ->
- resolve_outcome
- (interp_main mode t_level l_env l_mem vec)
- (fun vvec lm le ->
- resolve_outcome
- (interp_main mode t_level l_env lm i1)
- (fun i1v lm le ->
- resolve_outcome
- (interp_main mode t_level l_env lm i2)
- (fun i2v lm le ->
- match detaint i1v with
- | V_unknown -> (Value i1v,lm,le)
- | V_lit (L_aux (L_num n1) nl1) ->
- match detaint i2v with
- | V_unknown -> (Value i2v,lm,le)
- | V_lit (L_aux (L_num n2) nl2) ->
- let slice = binary_taint (fun v1 v2 -> V_tuple[v1;v2]) i1v i2v in
- let take_slice vvec =
- let (n1,n2) = (natFromInteger n1,natFromInteger n2) in
- (match detaint vvec with
- | V_vector _ _ _ -> Value (slice_vector vvec n1 n2)
- | V_vector_sparse _ _ _ _ _ -> Value (slice_vector vvec n1 n2)
- | V_unknown ->
- let inc = n1 < n2 in
- Value (retaint vvec (V_vector n1 (if inc then IInc else IDec)
- (List.replicate ((if inc then n1-n2 else n2-n1)+1) V_unknown)))
- | V_register reg ->
- Action (Read_reg reg (Just (n1,n2))) (mk_hole l annot t_level le lm)
- | _ -> (Error l ("Vector slice of non-vector " ^ (string_of_value vvec))) end) in
- ((take_slice (retaint slice vvec)), lm,le)
- | _ -> (Error l "vector subrange did not receive a range value", l_mem, l_env)
- end
- | _ -> (Error l "vector subrange did not receive a range value", l_mem, l_env)
- end)
- (fun a -> update_stack a (add_to_top_frame (fun i2' env ->
- let (vec_e, env') = to_exp mode env vvec in
- let (i1_e, env'') = to_exp mode env' i1v in
- (E_aux (E_vector_subrange vec_e i1_e i2') (l,annot), env'')))))
- (fun a ->
- update_stack a (add_to_top_frame (fun i1' env ->
- let (vec_e, env') = to_exp mode env vvec in
- (E_aux (E_vector_subrange vec_e i1' i2) (l,annot), env')))))
- (fun a ->
- update_stack a (add_to_top_frame (fun vec' env ->
- (E_aux (E_vector_subrange vec' i1 i2) (l,annot), env))))
- | E_vector_update vec i exp ->
- resolve_outcome
- (interp_main mode t_level l_env l_mem vec)
- (fun vvec lm le ->
- resolve_outcome
- (interp_main mode t_level l_env lm i)
- (fun vi lm le ->
- resolve_outcome
- (interp_main mode t_level l_env lm exp)
- (fun vup lm le ->
- (match (detaint vi) with
- | V_lit (L_aux (L_num n1) ln1) ->
- let fvup vi vvec =
- (match vvec with
- | V_vector _ _ _ -> fupdate_vec vvec (natFromInteger n1) vup
- | V_vector_sparse _ _ _ _ _ -> fupdate_vec vvec (natFromInteger n1) vup
- | V_unknown -> V_unknown
- | _ -> Assert_extra.failwith "Update of vector given non-vector"
- end)
- in
- (Value (binary_taint fvup vi vvec),lm,le)
- | V_unknown -> (Value vi,lm,le)
- | _ -> Assert_extra.failwith "Update of vector requires number for access"
- end))
- (fun a -> update_stack a (add_to_top_frame (fun exp' env ->
- let (vec_e, env') = to_exp mode env vvec in
- let (i_e, env'') = to_exp mode env' vi in
- (E_aux (E_vector_update vec_e i_e exp') (l,annot), env'')))))
- (fun a -> update_stack a (add_to_top_frame (fun i' env ->
- let (vec_e, env') = to_exp mode env vvec in
- (E_aux (E_vector_update vec_e i' exp) (l,annot), env')))))
- (fun a -> update_stack a (add_to_top_frame (fun vec' env ->
- (E_aux (E_vector_update vec' i exp) (l,annot), env))))
- | E_vector_update_subrange vec i1 i2 exp ->
- resolve_outcome
- (interp_main mode t_level l_env l_mem vec)
- (fun vvec lm le ->
- resolve_outcome
- (interp_main mode t_level l_env lm i1)
- (fun vi1 lm le ->
- resolve_outcome
- (interp_main mode t_level l_env lm i2)
- (fun vi2 lm le ->
- resolve_outcome
- (interp_main mode t_level l_env lm exp)
- (fun v_rep lm le ->
- (match detaint vi1 with
- | V_unknown -> (Value vi1,lm,le)
- | V_lit (L_aux (L_num n1) ln1) ->
- (match detaint vi2 with
- | V_unknown -> (Value vi2,lm,le)
- | V_lit (L_aux (L_num n2) ln2) ->
- let slice = binary_taint (fun v1 v2 -> V_tuple[v1;v2]) vi1 vi2 in
- let fup_v_slice v1 vvec =
- (match vvec with
- | V_vector _ _ _ ->
- fupdate_vector_slice vvec v_rep (natFromInteger n1) (natFromInteger n2)
- | V_vector_sparse _ _ _ _ _ ->
- fupdate_vector_slice vvec v_rep (natFromInteger n1) (natFromInteger n2)
- | V_unknown -> V_unknown
- | _ -> Assert_extra.failwith "Vector update requires vector"
- end) in
- (Value (binary_taint fup_v_slice slice vvec),lm,le)
- | _ -> Assert_extra.failwith "vector update requires number"
- end)
- | _ -> Assert_extra.failwith "vector update requires number"
- end))
- (fun a -> update_stack a (add_to_top_frame (fun exp' env ->
- let (vec_e, env') = to_exp mode env vvec in
- let (i1_e, env'') = to_exp mode env' vi1 in
- let (i2_e, env''') = to_exp mode env'' vi1 in
- (E_aux (E_vector_update_subrange vec_e i1_e i2_e exp') (l,annot), env''')))))
- (fun a -> update_stack a (add_to_top_frame (fun i2' env ->
- let (vec_e, env') = to_exp mode env vvec in
- let (i1_e, env'') = to_exp mode env' vi1 in
- (E_aux (E_vector_update_subrange vec_e i1_e i2' exp) (l,annot), env'')))))
- (fun a -> update_stack a (add_to_top_frame (fun i1' env ->
- let (vec_e, env') = to_exp mode env vvec in
- (E_aux (E_vector_update_subrange vec_e i1' i2 exp) (l,annot), env')))))
- (fun a -> update_stack a (add_to_top_frame (fun vec' env ->
- (E_aux (E_vector_update_subrange vec' i1 i2 exp) (l,annot), env))))
- | E_vector_append e1 e2 ->
- resolve_outcome
- (interp_main mode t_level l_env l_mem e1)
- (fun v1 lm le ->
- resolve_outcome
- (interp_main mode t_level l_env lm e2)
- (fun v2 lm le ->
- (match detaint v1 with
- | V_unknown -> (Value v1,lm,le)
- | _ ->
- let append v1 v2 =
- (match (v1,v2) with
- | (V_vector _ dir vals1, V_vector _ _ vals2) ->
- let vals = vals1++vals2 in
- let len = List.length vals in
- if is_inc(dir)
- then V_vector 0 dir vals
- else V_vector (len-1) dir vals
- | (V_vector m dir vals1, V_vector_sparse _ len _ vals2 d) ->
- let original_len = List.length vals1 in
- let (_,sparse_vals) = List.foldr (fun v (i,vals) -> (i+1,(i,v)::vals)) (m,[]) vals1 in
- let sparse_update = List.map (fun (i,v) -> (i+m+original_len,v)) vals2 in
- V_vector_sparse m (len+original_len) dir (sparse_vals ++ sparse_update) d
- | (V_vector_sparse m len dir vals1 d, V_vector _ _ vals2) ->
- let new_len = List.length vals2 in
- let (_,sparse_vals) = List.foldr (fun v (i,vals) -> (i+1,(i,v)::vals)) (len,[]) vals2 in
- V_vector_sparse m (len+new_len) dir (vals1++sparse_vals) d
- | (V_vector_sparse m len dir vals1 d, V_vector_sparse _ new_len _ vals2 _) ->
- let sparse_update = List.map (fun (i,v) -> (i+len,v)) vals2 in
- V_vector_sparse m (len+new_len) dir (vals1 ++ sparse_update) d
- | (V_unknown,_) -> V_unknown (*update to get length from type*)
- | (_,V_unknown) -> V_unknown (*see above*)
- | _ -> Assert_extra.failwith ("vector concat requires two vectors but given "
- ^ (string_of_value v1) ^ " " ^ (string_of_value v2))
- end)
- in
- (Value (binary_taint append v1 v2),lm,le)
- end))
- (fun a -> update_stack a (add_to_top_frame (fun e2' env ->
- let (e1_e, env') = to_exp mode env v1 in
- (E_aux (E_vector_append e1_e e2') (l,annot), env')))))
- (fun a -> update_stack a (add_to_top_frame (fun e1' env ->
- (E_aux (E_vector_append e1' e2) (l,annot), env))))
- | E_tuple(exps) ->
- exp_list mode t_level (fun exps env' -> (E_aux (E_tuple exps) (l,annot), env')) V_tuple l_env l_mem [] exps
- | E_vector(exps) ->
- let (is_inc,dir) = (match typ with
- | Typ_aux (Typ_app (Id_aux (Id "vector") _) [ _; _; Typ_arg_aux (Typ_arg_order (Ord_aux Ord_inc _)) _; _]) _ -> (true,IInc)
- | _ -> (false,IDec) end) in
- let base = (if is_inc then 0 else (List.length exps) - 1) in
- exp_list mode t_level
- (fun exps env' -> (E_aux (E_vector exps) (l,annot),env'))
- (fun vals -> V_vector base dir vals) l_env l_mem [] exps
- | E_block exps -> interp_block mode t_level l_env l_env l_mem l annot exps
- | E_nondet exps ->
- (Action (Nondet exps tag)
- (match tag with
- | Tag_unknown (Just id) -> mk_hole l annot t_level l_env l_mem
- | _ -> mk_thunk l annot t_level l_env l_mem end),
- l_mem, l_env)
- | E_app f args ->
- (match (exp_list mode t_level
- (fun es env -> (E_aux (E_app f es) (l,annot),env))
- (fun vs -> match vs with | [] -> V_lit (L_aux L_unit l) | [v] -> v | vs -> V_tuple vs end)
- l_env l_mem [] args) with
- | (Value v,lm,le) ->
- let name = get_id f in
- (match tag with
- | Tag_global ->
- (match Map.lookup name fdefs with
- | Just(funcls) ->
- (match find_funcl t_level funcls v with
- | [] ->
- (Error l ("No matching pattern for function " ^ name ^
- " on value " ^ (string_of_value v)),l_mem,l_env)
- | [(env,_,exp)] ->
- resolve_outcome
- (if mode.eager_eval
- then (interp_main mode t_level env (emem name) exp)
- else (debug_out (Just name) (Just v) exp t_level (emem name) env))
- (fun ret lm le -> (Value ret, l_mem,l_env))
- (fun a -> update_stack a
- (fun stack -> (Hole_frame redex_id (E_aux (E_id redex_id) (l,(intern_annot annot)))
- t_level l_env l_mem stack)))
- | multi_matches ->
- let (lets,taint_env) =
- List.foldr (fun (env,_,exp) (rst,taint_env) ->
- let (e,t_e) = env_to_let mode env exp taint_env in (e::rst,t_e)) ([],l_env) multi_matches in
- let (branches,maybe_id) = fix_up_nondet typ lets (l,annot) in
- let exp = E_aux (E_nondet branches) (l,(non_det_annot annot maybe_id)) in
- interp_main mode t_level taint_env lm exp
- end)
- | Nothing ->
- (Error l ("Internal error: function with tag global unfound " ^ name),lm,le) end)
- | Tag_empty ->
- (match Map.lookup name fdefs with
- | Just(funcls) ->
- (match find_funcl t_level funcls v with
- | [] ->
- (Error l ("No matching pattern for function " ^ name ^ " on value " ^ (string_of_value v)),l_mem,l_env)
- | [(env,used_unknown,exp)] ->
- resolve_outcome
- (if mode.eager_eval
- then (interp_main mode t_level env (emem name) exp)
- else (debug_out (Just name) (Just v) exp t_level (emem name) env))
- (fun ret lm le -> (Value ret, l_mem,l_env))
- (fun a -> update_stack a
- (fun stack -> (Hole_frame redex_id (E_aux (E_id redex_id) (l,(intern_annot annot)))
- t_level l_env l_mem stack)))
- | _ -> (Error l ("Internal error: multiple pattern matches found for " ^ name), l_mem, l_env)
- end)
- | Nothing ->
- (Error l ("Internal error: function with local tag unfound " ^ name),lm,le) end)
- | Tag_spec ->
- (match Map.lookup name fdefs with
- | Just(funcls) ->
- (match find_funcl t_level funcls v with
- | [] ->
- (Error l ("No matching pattern for function " ^ name ^ " on value " ^ (string_of_value v)),l_mem,l_env)
- | [(env,used_unknown,exp)] ->
- resolve_outcome
- (if mode.eager_eval
- then (interp_main mode t_level env (emem name) exp)
- else (debug_out (Just name) (Just v) exp t_level (emem name) env))
- (fun ret lm le -> (Value ret, l_mem,l_env))
- (fun a -> update_stack a
- (fun stack ->
- (Hole_frame redex_id
- (E_aux (E_id redex_id) (l,(intern_annot annot))) t_level l_env l_mem stack)))
- | _ -> (Error l ("Internal error: multiple pattern matches for " ^ name), l_mem, l_env)
- end)
- | Nothing ->
- (Error l (String.stringAppend "Specified function must be defined before executing " name),lm,le) end)
- | Tag_ctor ->
- (match Map.lookup name ctors with
- | Just(_) -> (Value (V_ctor f typ C_Union v), lm, le)
- | Nothing -> (Error l (String.stringAppend "Internal error: function with ctor tag unfound " name),lm,le)
- end)
- | Tag_extern opt_name ->
- let effects = (match effect with | Effect_aux(Effect_set es) _ -> es | _ -> [] end) in
- let name_ext = match opt_name with | Just s -> s | Nothing -> name end in
- let mk_hole_frame act = (Action act (mk_hole l annot t_level le lm), lm, le) in
- let mk_thunk_frame act = (Action act (mk_thunk l annot t_level le lm), lm, le) in
- if has_rmem_effect effects
- then mk_hole_frame (Read_mem (id_of_string name_ext) v Nothing)
- else if has_rmemt_effect effects
- then mk_hole_frame (Read_mem_tagged (id_of_string name_ext) v Nothing)
- else if has_barr_effect effects
- then mk_thunk_frame (Barrier (id_of_string name_ext) v)
- else if has_depend_effect effects
- then mk_thunk_frame (Footprint (id_of_string name_ext) v)
- else if has_wmem_effect effects
- then let (wv,v) =
- match v with
- | V_tuple [p;v] -> (v,p)
- | V_tuple params_list ->
- let reved = List.reverse params_list in
- (List_extra.head reved,V_tuple (List.reverse (List_extra.tail reved)))
- | _ -> Assert_extra.failwith ("Expected tuple found " ^ (string_of_value v)) end in
- mk_hole_frame (Write_mem (id_of_string name_ext) v Nothing wv)
- else if has_eamem_effect effects
- then mk_thunk_frame (Write_ea (id_of_string name_ext) v)
- else if has_exmem_effect effects
- then mk_hole_frame (Excl_res (id_of_string name_ext))
- else if has_wmv_effect effects
- then let (wv,v) =
- match v with
- | V_tuple [p;v] -> (v,p)
- | V_tuple params_list ->
- let reved= List.reverse params_list in
- (List_extra.head reved,V_tuple (List.reverse (List_extra.tail reved)))
- | _ -> (v,unitv) end in
- mk_hole_frame (Write_memv (id_of_string name_ext) v wv)
- else if has_wmvt_effect effects
- then match v with
- | V_tuple [addr; size; tag; data] ->
- mk_hole_frame (Write_memv_tagged (id_of_string name_ext) (V_tuple([addr; size])) tag data)
- | _ -> Assert_extra.failwith("wmvt: expected tuple of four elements") end
- else mk_hole_frame (Call_extern name_ext v)
- | _ ->
- (Error l (String.stringAppend "Tag not empty, spec, ctor, or extern on function call " name),lm,le) end)
- | out -> out end)
- | E_app_infix lft op r ->
- let op = match op with
- | Id_aux (Id x) il -> Id_aux (DeIid x) il
- | _ -> op
- end in
- let name = get_id op in
- resolve_outcome
- (interp_main mode t_level l_env l_mem lft)
- (fun lv lm le ->
- resolve_outcome
- (interp_main mode t_level l_env lm r)
- (fun rv lm le ->
- match tag with
- | Tag_global ->
- (match Map.lookup name fdefs with
- | Nothing -> (Error l ("Internal error: no function def for " ^ name),lm,le)
- | Just (funcls) ->
- (match find_funcl t_level funcls (V_tuple [lv;rv]) with
- | [] -> (Error l ("No matching pattern for function " ^ name),lm,l_env)
- | [(env,used_unknown,exp)] ->
- resolve_outcome
- (if mode.eager_eval
- then (interp_main mode t_level env (emem name) exp)
- else (debug_out (Just name) (Just (V_tuple [lv;rv])) exp t_level (emem name) env))
- (fun ret lm le -> (Value ret,l_mem,l_env))
- (fun a -> update_stack a
- (fun stack ->
- (Hole_frame redex_id (E_aux (E_id redex_id) (l,(intern_annot annot)))
- t_level l_env l_mem stack)))
- | _ -> (Error l ("Internal error: multiple pattern matches for " ^ name),lm,le)
- end)end)
- | Tag_empty ->
- (match Map.lookup name fdefs with
- | Nothing -> (Error l ("Internal error: no function def for " ^ name),lm,le)
- | Just (funcls) ->
- (match find_funcl t_level funcls (V_tuple [lv;rv]) with
- | [] -> (Error l ("No matching pattern for function " ^ name),lm,l_env)
- | [(env,used_unknown,exp)] ->
- resolve_outcome
- (if mode.eager_eval
- then (interp_main mode t_level env (emem name) exp)
- else (debug_out (Just name) (Just (V_tuple [lv;rv])) exp t_level (emem name) env))
- (fun ret lm le -> (Value ret,l_mem,l_env))
- (fun a -> update_stack a
- (fun stack -> (Hole_frame redex_id (E_aux (E_id redex_id) (l,annot))
- t_level l_env l_mem stack)))
- | _ -> (Error l ("Internal error: multiple pattern matches for " ^ name),lm,le)
- end)end)
- | Tag_spec ->
- (match Map.lookup name fdefs with
- | Nothing -> (Error l ("Internal error: No function definition found for " ^ name),lm,le)
- | Just (funcls) ->
- (match find_funcl t_level funcls (V_tuple [lv;rv]) with
- | [] -> (Error l ("No matching pattern for function " ^ name),lm,l_env)
- | [(env,used_unknown,exp)] ->
- resolve_outcome
- (if mode.eager_eval
- then (interp_main mode t_level env (emem name) exp)
- else (debug_out (Just name) (Just (V_tuple [lv;rv])) exp t_level (emem name) env))
- (fun ret lm le -> (Value ret,l_mem,l_env))
- (fun a -> update_stack a
- (fun stack -> (Hole_frame redex_id
- (E_aux (E_id redex_id) (l,(intern_annot annot)))
- t_level l_env l_mem stack)))
- | _ -> (Error l ("Internal error: multiple pattern matches for " ^ name), lm, le)
- end)end)
- | Tag_extern ext_name ->
- let ext_name = match ext_name with Just s -> s | Nothing -> name end in
- (Action (Call_extern ext_name (V_tuple [lv;rv]))
- (Hole_frame redex_id
- (E_aux (E_id redex_id) (l,intern_annot annot)) t_level le lm Top),lm,le)
- | _ -> (Error l "Internal error: unexpected tag for app_infix", l_mem, l_env) end)
- (fun a -> update_stack a
- (add_to_top_frame
- (fun r env -> let (el,env') = to_exp mode env lv in (E_aux (E_app_infix el op r) (l,annot), env')))))
- (fun a -> update_stack a (add_to_top_frame (fun lft env -> (E_aux (E_app_infix lft op r) (l,annot), env))))
- | E_exit exp ->
- (Action (Exit exp) (mk_thunk l annot t_level l_env l_mem),l_mem, l_env)
- | E_return exp ->
- resolve_outcome
- (interp_main mode t_level l_env l_mem exp)
- (fun v lm le -> (Action (Return v) Top, l_mem, l_env))
- (fun a -> update_stack a (add_to_top_frame (fun e env -> (E_aux (E_return e) (l,annot), env))))
- | E_assert cond msg ->
- resolve_outcome
- (interp_main mode t_level l_env l_mem msg)
- (fun v lm le ->
- resolve_outcome
- (interp_main mode t_level l_env lm cond)
- (fun c lm le ->
- (match detaint c with
- | V_lit (L_aux L_one _) -> (Value unitv,lm,l_env)
- | V_lit (L_aux L_true _) -> (Value unitv,lm,l_env)
- | V_lit (L_aux L_zero _) -> (Action (Fail v) (mk_thunk l annot t_level l_env l_mem), lm,le)
- | V_lit (L_aux L_false _) -> (Action (Fail v) (mk_thunk l annot t_level l_env l_mem), lm,le)
- | V_unknown ->
- let (branches,maybe_id) =
- fix_up_nondet typ [unit_e;
- E_aux (E_assert (E_aux (E_lit (L_aux L_zero l))
- (l,val_annot (mk_typ_id "bit"))) msg) (l,annot)]
- (l,annot) in
- interp_main mode t_level l_env lm (E_aux (E_nondet branches) (l,non_det_annot annot maybe_id))
- | _ -> (Error l ("assert given unexpected " ^ (string_of_value c)),l_mem,l_env)
- end))
- (fun a -> update_stack a (add_to_top_frame (fun c env -> (E_aux (E_assert c msg) (l,annot), env)))))
- (fun a -> update_stack a (add_to_top_frame (fun m env -> (E_aux (E_assert cond m) (l,annot), env))))
- | E_let (lbind : letbind tannot) exp ->
- match (interp_letbind mode t_level l_env l_mem lbind) with
- | ((Value v,lm,le),_) ->
- if mode.eager_eval
- then interp_main mode t_level le lm exp
- else debug_out Nothing Nothing exp t_level lm le
- | (((Action a s as o),lm,le),Just lbuild) ->
- ((update_stack o (add_to_top_frame (fun e env -> (E_aux (E_let (lbuild e) exp) (l,annot), env)))),lm,le)
- | (e,_) -> e end
- | E_assign lexp exp ->
- resolve_outcome
- (interp_main mode t_level l_env l_mem exp)
- (fun v lm le ->
- (match create_write_message_or_update mode t_level v l_env lm true lexp with
- | (outcome,Nothing,_) -> outcome
- | (outcome,Just lexp_builder,Nothing) ->
- resolve_outcome outcome
- (fun v lm le -> (Value v,lm,le))
- (fun a ->
- (match a with
- | (Action (Write_reg regf range value) stack) -> a
- | (Action (Write_mem id a_ range value) stack) -> a
- | (Action (Write_memv _ _ _) stack) -> a
- | (Action (Write_memv_tagged _ _ _ _) stack) -> a
- | _ -> update_stack a (add_to_top_frame
- (fun e env ->
- let (ev,env') = (to_exp mode env v) in
- let (lexp,env') = (lexp_builder e env') in
- (E_aux (E_assign lexp ev) (l,annot),env'))) end))
- | (outcome,Just lexp_builder, Just v) ->
- resolve_outcome outcome
- (fun v lm le -> (Value v,lm,le))
- (fun a -> update_stack a (add_to_top_frame
- (fun e env ->
- let (ev,env') = to_exp mode env v in
- let (lexp,env') = (lexp_builder e env') in
- (E_aux (E_assign lexp ev) (l,annot),env'))))
- end))
- (fun a -> update_stack a (add_to_top_frame (fun v env -> (E_aux (E_assign lexp v) (l,annot), env))))
- | _ -> (Error l "Internal expression escaped to interpreter", l_mem, l_env)
- end
-
-and interp_main mode t_level l_env l_mem exp =
- let _ = debug_fun_enter mode "interp_main" [show exp] in
- let retval = __interp_main (indent_mode mode) t_level l_env l_mem exp in
- let _ = debug_fun_exit mode "interp_main" retval in
- retval
-
-(*TODO shrink location information on recursive calls *)
-and __interp_block mode t_level init_env local_env local_mem l tannot exps =
- match exps with
- | [] -> (Value (V_lit (L_aux (L_unit) Unknown)), local_mem, init_env)
- | [exp] ->
- if mode.eager_eval
- then interp_main mode t_level local_env local_mem exp
- else debug_out Nothing Nothing exp t_level local_mem local_env
- | exp:: exps ->
- resolve_outcome (interp_main mode t_level local_env local_mem exp)
- (fun _ lm le ->
- if mode.eager_eval
- then interp_block mode t_level init_env le lm l tannot exps
- else debug_out Nothing Nothing (E_aux (E_block exps) (l,tannot)) t_level lm le)
- (fun a -> update_stack a
- (add_to_top_frame (fun e env-> (E_aux (E_block(e::exps)) (l,tannot), env))))
- end
-
-and interp_block mode t_level init_env local_env local_mem l tannot exps =
- let _ = debug_fun_enter mode "interp_block" [show exps] in
- let retval = __interp_block (indent_mode mode) t_level init_env local_env local_mem l tannot exps in
- let _ = debug_fun_exit mode "interp_block" retval in
- retval
-
-and __create_write_message_or_update mode t_level value l_env l_mem is_top_level
- ((LEXP_aux lexp (l,annot)):lexp tannot)
- : ((outcome * lmem * lenv) * maybe ((exp tannot) -> lenv -> ((lexp tannot) * lenv)) * maybe value) =
- let (Env fdefs instrs default_dir lets regs ctors subregs aliases debug) = t_level in
- let (typ,tag,ncs,ef,efr) = match annot with
- | Nothing -> (mk_typ_var "fresh_v", Tag_empty, [],
- (Effect_aux (Effect_set []) Unknown),(Effect_aux (Effect_set []) Unknown))
- | Just(t, tag, ncs, ef,efr) -> (t,tag,ncs,ef,efr) end in
- let recenter_val (Typ_aux typ _) value = match typ with
- | Typ_app (Id_aux (Id "reg") _) [Typ_arg_aux (Typ_arg_typ (Typ_aux (Typ_app (Id_aux (Id "vector") _)
- [Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant start) _)) _; Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant size) _)) _;_;_]) _)) _] ->
- update_vector_start default_dir (natFromInteger start) (natFromInteger size) value
- | _ -> value end in
- match lexp with
- | LEXP_id id ->
- let name = get_id id in
- match tag with
- | Tag_intro ->
- match detaint (in_lenv l_env id) with
- | V_unknown ->
- if is_top_level then
- if name = "0" then
- ((Value (V_lit (L_aux L_unit l)), update_mem true l_mem 0 value, l_env), Nothing, Nothing)
- else
- let (LMem owner c m s) = l_mem in
- let l_mem = (LMem owner (c+1) m s) in
- ((Value (V_lit (L_aux L_unit l)),
- update_mem mode.track_lmem l_mem c value,
- (add_to_env (id,(V_boxref c typ)) l_env)),Nothing, Nothing)
- else ((Error l ("Unknown local id " ^ (get_id id)),l_mem,l_env),Nothing,Nothing)
- | v ->
- if is_top_level
- then
- if name = "0" then
- ((Value (V_lit (L_aux L_unit l)), update_mem true l_mem 0 value, l_env), Nothing,Nothing)
- else
- ((Error l ("Writes must be to reg values given " ^ (string_of_value v)),l_mem,l_env),
- Nothing, Nothing)
- else ((Value v,l_mem,l_env),Just (fun e env -> (LEXP_aux(LEXP_id id) (l,annot), env)), Nothing)
- end
- | Tag_set ->
- match detaint (in_lenv l_env id) with
- | ((V_boxref n t) as v) ->
- if is_top_level
- then ((Value (V_lit (L_aux L_unit l)),
- update_mem mode.track_lmem l_mem n (recenter_val t value), l_env),Nothing, Nothing)
- else ((Value v, l_mem, l_env),Just (fun e env -> (LEXP_aux (LEXP_id id) (l,annot), env)), Nothing)
- | V_unknown ->
- if is_top_level then
- if name = "0" then
- ((Value (V_lit (L_aux L_unit l)), update_mem true l_mem 0 value, l_env), Nothing, Nothing)
- else
- let (LMem owner c m s) = l_mem in
- let l_mem = (LMem owner (c+1) m s) in
- ((Value (V_lit (L_aux L_unit l)),
- update_mem mode.track_lmem l_mem c value,
- (add_to_env (id,(V_boxref c typ)) l_env)),Nothing,Nothing)
- else ((Error l ("Unknown local id " ^ (get_id id)),l_mem,l_env),Nothing, Nothing)
- | v ->
- if is_top_level
- then
- if name = "0" then
- ((Value (V_lit (L_aux L_unit l)), update_mem true l_mem 0 value, l_env), Nothing, Nothing)
- else
- ((Error l ("Writes must be to reg values given " ^ (string_of_value v)),l_mem,l_env),
- Nothing, Nothing)
- else ((Value v,l_mem,l_env),Just (fun e env -> (LEXP_aux(LEXP_id id) (l,annot), env)), Nothing)
- end
- | Tag_empty ->
- match detaint (in_lenv l_env id) with
- | ((V_boxref n t) as v) ->
- if is_top_level
- then ((Value (V_lit (L_aux L_unit l)),
- update_mem mode.track_lmem l_mem n (recenter_val t value), l_env),Nothing, Nothing)
- else ((Value v, l_mem, l_env),Just (fun e env -> (LEXP_aux (LEXP_id id) (l,annot), env)), Nothing)
- | V_unknown ->
- if is_top_level then
- if name = "0" then
- ((Value (V_lit (L_aux L_unit l)), update_mem true l_mem 0 value, l_env), Nothing, Nothing)
- else
- let (LMem owner c m s) = l_mem in
- let l_mem = (LMem owner (c+1) m s) in
- ((Value (V_lit (L_aux L_unit l)),
- update_mem mode.track_lmem l_mem c value,
- (add_to_env (id,(V_boxref c typ)) l_env)),Nothing, Nothing)
- else ((Error l ("Unknown local id " ^ (get_id id)),l_mem,l_env),Nothing,Nothing)
- | v ->
- if is_top_level
- then
- if name = "0" then
- ((Value (V_lit (L_aux L_unit l)), update_mem true l_mem 0 value, l_env), Nothing, Nothing)
- else
- ((Error l ("Writes must be to reg values given " ^ (string_of_value v)),l_mem,l_env),
- Nothing, Nothing)
- else ((Value v,l_mem,l_env),Just (fun e env -> (LEXP_aux(LEXP_id id) (l,annot), env)), Nothing)
- end
- | Tag_global ->
- (match in_env lets name with
- | Just v ->
- if is_top_level then ((Error l "Writes must be to reg or registers",l_mem,l_env),Nothing,Nothing)
- else ((Value v,l_mem,l_env),Just (fun e env -> (LEXP_aux(LEXP_id id) (l,annot), env)), Nothing)
- | Nothing ->
- let regf =
- match in_env regs name with (*pull the regform with the most specific type annotation from env *)
- | Just(V_register regform) -> regform
- | _ -> Assert_extra.failwith "Register not known in regenv" end in
- let start_pos = reg_start_pos regf in
- let reg_size = reg_size regf in
- let request =
- (Action (Write_reg regf Nothing
- (if is_top_level then (update_vector_start default_dir start_pos reg_size value) else value))
- (Thunk_frame (E_aux (E_lit (L_aux L_unit l)) (l,intern_annot annot)) t_level l_env l_mem Top),
- l_mem,l_env) in
- if is_top_level then (request,Nothing,Nothing)
- else (request,Just (fun e env -> (LEXP_aux (LEXP_id id) (l,annot), env)), Nothing) end)
- | Tag_extern _ ->
- let regf =
- match in_env regs name with (*pull the regform with the most specific type annotation from env *)
- | Just(V_register regform) -> regform
- | _ -> Assert_extra.failwith "Register not known in regenv" end in
- let start_pos = reg_start_pos regf in
- let reg_size = reg_size regf in
- let request =
- (Action (Write_reg regf Nothing
- (if is_top_level then (update_vector_start default_dir start_pos reg_size value) else value))
- (Thunk_frame (E_aux (E_lit (L_aux L_unit l)) (l,intern_annot annot)) t_level l_env l_mem Top),
- l_mem,l_env) in
- if is_top_level then (request,Nothing,Nothing)
- else (request,Just (fun e env -> (LEXP_aux (LEXP_id id) (l,annot), env)),Nothing)
- | Tag_alias ->
- let request =
- (match in_env aliases name with
- | Just (AL_aux aspec (l,_)) ->
- (match aspec with
- | AL_subreg (RI_aux (RI_id reg) (li, ((Just((Typ_aux (Typ_id (Id_aux (Id id) _)) _),_,_,_,_)) as annot'))) subreg ->
- (match in_env subregs id with
- | Just indexes ->
- (match in_env indexes (get_id subreg) with
- | Just ir ->
- (Action
- (Write_reg (Form_SubReg subreg (Form_Reg reg annot' default_dir) ir) Nothing
- (update_vector_start default_dir (get_first_index_range ir)
- (get_index_range_size ir) value))
- (Thunk_frame (E_aux (E_lit (L_aux L_unit l)) (l, intern_annot annot))
- t_level l_env l_mem Top), l_mem, l_env)
- | _ -> (Error l "Internal error, alias spec has unknown field", l_mem, l_env) end)
- | _ ->
- (Error l ("Internal error: alias spec has unknown register type " ^ id), l_mem, l_env) end)
- | AL_bit (RI_aux (RI_id reg) (_,annot')) e ->
- resolve_outcome (interp_main mode t_level l_env l_mem e)
- (fun v le lm -> match v with
- | V_lit (L_aux (L_num i) _) ->
- let i = natFromInteger i in
- (Action (Write_reg (Form_Reg reg annot' default_dir) (Just (i,i))
- (update_vector_start default_dir i 1 value))
- (Thunk_frame (E_aux (E_lit (L_aux L_unit l)) (l, intern_annot annot))
- t_level l_env l_mem Top), l_mem, l_env)
- | _ -> (Error l "Internal error: alias bit has non number", l_mem, l_env) end)
- (fun a -> a)
- | AL_slice (RI_aux (RI_id reg) (_,annot')) start stop ->
- resolve_outcome (interp_main mode t_level l_env l_mem start)
- (fun v lm le ->
- match detaint v with
- | V_lit (L_aux (L_num start) _) ->
- (resolve_outcome (interp_main mode t_level l_env lm stop)
- (fun v le lm ->
- (match detaint v with
- | V_lit (L_aux (L_num stop) _) ->
- let (start,stop) = (natFromInteger start,natFromInteger stop) in
- let size = if start < stop then stop - start +1 else start -stop +1 in
- (Action (Write_reg (Form_Reg reg annot' default_dir) (Just (start,stop))
- (update_vector_start default_dir start size value))
- (Thunk_frame (E_aux (E_lit (L_aux L_unit l)) (l, intern_annot annot))
- t_level l_env l_mem Top),
- l_mem, l_env)
- | _ -> (Error l "Alias slice has non number",l_mem, l_env) end))
- (fun a -> a))
- | _ -> (Error l "Alias slice has non number",l_mem,l_env) end)
- (fun a -> a)
- | AL_concat (RI_aux (RI_id reg1) (l1,annot1)) (RI_aux (RI_id reg2) annot2) ->
- let val_typ (Typ_aux t _) = match t with
- | Typ_app (Id_aux (Id "register") _) [Typ_arg_aux (Typ_arg_typ t) _] -> t
- | _ -> Assert_extra.failwith "alias type ill formed" end in
- let (t1,t2) = match (annot1,annot2) with
- | (Just (t1,_,_,_,_), (_,(Just (t2,_,_,_,_)))) -> (val_typ t1,val_typ t2)
- | _ -> Assert_extra.failwith "type annotations ill formed" end in
- (match (t1,t2) with
- | (Typ_aux (Typ_app (Id_aux (Id "vector") _) [Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant b1) _)) _;
- Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant r1) _)) _; _;_]) _,
- Typ_aux (Typ_app (Id_aux (Id "vector") _) [Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant b2) _)) _;
- Typ_arg_aux (Typ_arg_nexp (Nexp_aux (Nexp_constant r2) _)) _; _;_]) _) ->
- (Action
- (Write_reg (Form_Reg reg1 annot1 default_dir) Nothing
- (slice_vector value (natFromInteger b1) (natFromInteger r1)))
- (Thunk_frame
- (E_aux (E_assign (LEXP_aux (LEXP_id reg2) annot2)
- (fst (to_exp <| mode with track_values =false|> eenv
- (slice_vector value (natFromInteger (r1+1)) (natFromInteger r2)))))
- annot2)
- t_level l_env l_mem Top), l_mem,l_env)
- | _ -> (Error l "Internal error: alias vector types ill formed", l_mem, l_env) end)
- | _ -> (Error l "Internal error: alias spec ill formed", l_mem, l_env) end)
- | _ -> (Error l ("Internal error: alias not found for id " ^(get_id id)),l_mem,l_env) end) in
- (request,Nothing,Nothing)
- | _ ->
- ((Error l ("Internal error: writing to id with tag other than extern, empty, or alias " ^ (get_id id)),
- l_mem,l_env),Nothing,Nothing)
- end
- | LEXP_memory id exps ->
- match (exp_list mode t_level (fun exps env -> (E_aux (E_tuple exps) (Unknown,Nothing),env))
- (fun vs ->
- match vs with | [] -> V_lit (L_aux L_unit Unknown) | [v] -> v | vs -> V_tuple vs end)
- l_env l_mem [] exps) with
- | (Value v,lm,le) ->
- (match tag with
- | Tag_extern _ ->
- let request =
- let effects = (match ef with | Effect_aux(Effect_set es) _ -> es | _ -> [] end) in
- let act = if has_wmem_effect effects then (Write_mem id v Nothing value)
- else if has_wmv_effect effects then (Write_memv id v value)
- else Assert_extra.failwith "LEXP_memory with neither wmem or wmv event" in
- (Action act
- (Thunk_frame (E_aux (E_lit (L_aux L_unit l)) (l,intern_annot annot)) t_level l_env lm Top),
- lm,l_env) in
- if is_top_level then (request,Nothing,Nothing)
- else
- (request,
- Just (fun e env->
- let (parms,env) = (to_exps mode env (match v with | V_tuple vs -> vs | v -> [v] end)) in
- (LEXP_aux (LEXP_memory id parms) (l,annot), env)), Nothing)
- | Tag_global ->
- let name = get_id id in
- (match Map.lookup name fdefs with
- | Just(funcls) ->
- let new_vals = match v with
- | V_tuple vs -> V_tuple (vs ++ [value])
- | V_lit (L_aux L_unit _) -> V_tuple [v;value] (*hmmm may be wrong in some code*)
- | v -> V_tuple [v;value] end in
- (match find_funcl t_level funcls new_vals with
- | [] -> ((Error l ("No matching pattern for function " ^ name ^
- " on value " ^ (string_of_value new_vals)),l_mem,l_env),Nothing, Nothing)
- | [(env,used_unknown,exp)] ->
- (match (if mode.eager_eval
- then (interp_main mode t_level env (emem name) exp)
- else (debug_out (Just name) (Just new_vals) exp t_level (emem name) env)) with
- | (Value ret, _,_) -> ((Value ret, l_mem,l_env),Nothing, Nothing)
- | (Action action stack,lm,le) ->
- (((update_stack (Action action stack)
- (fun stack -> (Hole_frame redex_id (E_aux (E_id redex_id) (l,(intern_annot annot)))
- t_level l_env l_mem stack))), l_mem,l_env), Nothing, Nothing)
- | (e,lm,le) -> ((e,lm,le),Nothing,Nothing) end)
- | multi_matches ->
- let (lets,taint_env) =
- List.foldr (fun (env,_,exp) (rst,taint_env) ->
- let (e,t_e) = env_to_let mode env exp taint_env in (e::rst,t_e)) ([],l_env) multi_matches in
- let (branches,maybe_id) = fix_up_nondet typ lets (l,annot) in
- (interp_main mode t_level taint_env lm (E_aux (E_nondet branches)
- (l,non_det_annot annot maybe_id)),
- Nothing, Nothing)
- end)
- | Nothing ->
- ((Error l ("Internal error: function unfound " ^ name),lm,le),Nothing,Nothing) end)
- | Tag_spec ->
- let name = get_id id in
- (match Map.lookup name fdefs with
- | Just(funcls) ->
- let new_vals = match v with
- | V_tuple vs -> V_tuple (vs ++ [value])
- | V_lit (L_aux L_unit _) -> V_tuple [v;value] (*hmmm may be wrong in some code*)
- | v -> V_tuple [v;value] end in
- (match find_funcl t_level funcls new_vals with
- | [] -> ((Error l ("No matching pattern for function " ^ name ^
- " on value " ^ (string_of_value new_vals)),l_mem,l_env),Nothing,Nothing)
- | [(env,used_unknown,exp)] ->
- (match (if mode.eager_eval
- then (interp_main mode t_level env (emem name) exp)
- else (debug_out (Just name) (Just new_vals) exp t_level (emem name) env)) with
- | (Value ret, _,_) -> ((Value ret, l_mem,l_env),Nothing,Nothing)
- | (Action action stack,lm,le) ->
- (((update_stack (Action action stack)
- (fun stack -> (Hole_frame redex_id (E_aux (E_id redex_id) (l,(intern_annot annot)))
- t_level l_env l_mem stack))), l_mem,l_env), Nothing, Nothing)
- | (e,lm,le) -> ((e,lm,le),Nothing,Nothing) end)
- | multi_matches ->
- let (lets,taint_env) =
- List.foldr (fun (env,_,exp) (rst,taint_env) ->
- let (e,t_e) = env_to_let mode env exp taint_env in (e::rst,t_e)) ([],l_env) multi_matches in
- let (branches,maybe_id) = fix_up_nondet typ lets (l,annot) in
- (interp_main mode t_level taint_env lm (E_aux (E_nondet branches)
- (l,non_det_annot annot maybe_id)),
- Nothing,Nothing)
- end)
- | Nothing ->
- ((Error l ("Internal error: function unfound " ^ name),lm,le),Nothing,Nothing) end)
- | _ -> ((Error l "Internal error: unexpected tag for memory or register write", lm,le),Nothing,Nothing)
- end)
- | (Action a s,lm, le) ->
- ((Action a s,lm,le),
- Just (fun (E_aux e _) env ->
- (match e with | E_tuple es -> (LEXP_aux (LEXP_memory id es) (l,annot), env)
- | _ -> Assert_extra.failwith "Lexp builder not well formed" end)), Nothing)
- | e -> (e,Nothing,Nothing) end
- | LEXP_cast typc id ->
- let name = get_id id in
- match tag with
- | Tag_intro ->
- match detaint (in_lenv l_env id) with
- | V_unknown ->
- if is_top_level
- then begin
- let (LMem owner c m s) = l_mem in
- let l_mem = (LMem owner (c+1) m s) in
- ((Value (V_lit (L_aux L_unit l)), update_mem mode.track_lmem l_mem c value,
- (add_to_env (id,(V_boxref c typ)) l_env)),Nothing, Nothing)
- end
- else ((Error l ("LEXP:cast1: Undefined id " ^ (get_id id)),l_mem,l_env),Nothing, Nothing)
- | v ->
- if is_top_level then ((Error l "Writes must be to reg values",l_mem,l_env),Nothing, Nothing)
- else ((Value v,l_mem,l_env),Just (fun e env -> (LEXP_aux(LEXP_cast typc id) (l,annot), env)), Nothing)
- end
- | Tag_set ->
- match detaint (in_lenv l_env id) with
- | ((V_boxref n t) as v) ->
- if is_top_level
- then ((Value (V_lit (L_aux L_unit l)),
- update_mem mode.track_lmem l_mem n (recenter_val t value), l_env),Nothing,Nothing)
- else ((Value v, l_mem, l_env),
- Just (fun e env -> (LEXP_aux (LEXP_cast typc id) (l,annot), env)), Nothing)
- | V_unknown ->
- if is_top_level
- then begin
- let (LMem owner c m s) = l_mem in
- let l_mem = (LMem owner (c+1) m s) in
- ((Value (V_lit (L_aux L_unit l)), update_mem mode.track_lmem l_mem c value,
- (add_to_env (id,(V_boxref c typ)) l_env)),Nothing,Nothing)
- end
- else ((Error l ("LEXP:cast2: Undefined id " ^ (get_id id)),l_mem,l_env),Nothing,Nothing)
- | v ->
- if is_top_level then ((Error l "Writes must be to reg values",l_mem,l_env),Nothing,Nothing)
- else ((Value v,l_mem,l_env),
- Just (fun e env -> (LEXP_aux(LEXP_cast typc id) (l,annot), env)),Nothing)
- end
- | Tag_empty ->
- match detaint (in_lenv l_env id) with
- | ((V_boxref n t) as v) ->
- if is_top_level
- then ((Value (V_lit (L_aux L_unit l)),
- update_mem mode.track_lmem l_mem n (recenter_val t value), l_env),Nothing,Nothing)
- else ((Value v, l_mem, l_env),
- Just (fun e env -> (LEXP_aux (LEXP_cast typc id) (l,annot), env)), Nothing)
- | V_unknown ->
- if is_top_level
- then begin
- let (LMem owner c m s) = l_mem in
- let l_mem = (LMem owner (c+1) m s) in
- ((Value (V_lit (L_aux L_unit l)), update_mem mode.track_lmem l_mem c value,
- (add_to_env (id,(V_boxref c typ)) l_env)),Nothing,Nothing)
- end
- else ((Error l ("LEXP:cast3: Undefined id " ^ (get_id id)),l_mem,l_env),Nothing,Nothing)
- | v ->
- if is_top_level then ((Error l "Writes must be to reg values",l_mem,l_env),Nothing,Nothing)
- else ((Value v,l_mem,l_env),Just (fun e env -> (LEXP_aux(LEXP_cast typc id) (l,annot), env)),Nothing)
- end
- | Tag_extern _ ->
- let regf =
- match in_env regs name with (*pull the regform with the most specific type annotation from env *)
- | Just(V_register regform) -> regform
- | _ -> Assert_extra.failwith "Register not known in regenv" end in
- let start_pos = reg_start_pos regf in
- let reg_size = reg_size regf in
- let request =
- (Action (Write_reg regf Nothing
- (if is_top_level
- then (update_vector_start default_dir start_pos reg_size value)
- else value))
- (Thunk_frame (E_aux (E_lit (L_aux L_unit l)) (l,intern_annot annot)) t_level l_env l_mem Top),
- l_mem,l_env) in
- if is_top_level then (request,Nothing,Nothing)
- else (request,Just (fun e env -> (LEXP_aux (LEXP_cast typc id) (l,annot), env)),Nothing)
- | _ ->
- ((Error l ("Internal error: writing to id not extern or empty " ^(get_id id)),l_mem,l_env),
- Nothing,Nothing)
- end
- | LEXP_tup ltups ->
- match (ltups,value) with
- | ([],_) ->
- ((Error l "Internal error: found an empty tuple of assignments as an lexp", l_mem, l_env), Nothing,Nothing)
- | ([le],V_tuple[v]) -> create_write_message_or_update mode t_level v l_env l_mem true le
- | (le::ltups,V_tuple (v::vs)) ->
- let new_v = V_tuple vs in
- (match (create_write_message_or_update mode t_level v l_env l_mem true le) with
- | ((Value v_whole,lm,le),Nothing,Nothing) ->
- create_write_message_or_update mode t_level new_v le lm true (LEXP_aux (LEXP_tup ltups) (l,annot))
- | ((Action act stack,lm,le),Nothing,Nothing) ->
- ((Action act stack,lm,le), Just (fun e env -> (LEXP_aux (LEXP_tup ltups) (l,annot),env)), Just new_v)
- | ((Action act stack,lm,le), Just le_builder, Nothing) ->
- ((Action act stack,lm,le),
- Just (fun e env ->
- let (lexp,env) = le_builder e env in
- (LEXP_aux (LEXP_tup (lexp::ltups)) (l,annot),env)), Just value)
- | ((Action act stack, lm,le), Just le_builder, Just v) ->
- ((Action act stack, lm, le),
- Just (fun e env ->
- let (lexp,env) = le_builder e env in
- (LEXP_aux (LEXP_tup (lexp::ltups)) (l,annot),env)), Just (V_tuple (v::vs)))
- | ((Error l msg,lm,le),_,_) -> ((Error l msg,lm,le),Nothing,Nothing)
- | _ ->
- ((Error l "Internal error: Unexpected pattern match failure in LEXP_tup",l_mem,l_env),Nothing,Nothing)
- end)
- end
- | LEXP_vector lexp exp ->
- match (interp_main mode t_level l_env l_mem exp) with
- | (Value i,lm,le) ->
- (match detaint i with
- | V_unknown -> ((Value i,lm,le),Nothing,Nothing)
- | V_lit (L_aux (L_num n) ln) ->
- let next_builder le_builder =
- (fun e env ->
- let (lexp,env) = le_builder e env in
- let (ie,env) = to_exp mode env i in
- (LEXP_aux (LEXP_vector lexp ie) (l,annot), env)) in
- let n = natFromInteger n in
- (match (create_write_message_or_update mode t_level value l_env lm false lexp) with
- | ((Value v_whole,lm,le),maybe_builder,maybe_value) ->
- let v = detaint v_whole in
- let nth _ = detaint (access_vector v n) in
- (match v with
- | V_unknown -> ((Value v_whole,lm,le),Nothing,Nothing)
- | V_boxref i _ ->
- (match (in_mem lm i,is_top_level,maybe_builder) with
- | ((V_vector _ _ _ as vec),true,_) ->
- let new_vec = fupdate_vector_slice vec (V_vector 1 default_dir [value]) n n in
- ((Value (V_lit (L_aux L_unit Unknown)),
- update_mem mode.track_lmem lm i new_vec, l_env), Nothing,Nothing)
- | ((V_track (V_vector _ _ _ as vec) r), true,_) ->
- let new_vec = fupdate_vector_slice vec (V_vector 1 default_dir [value]) n n in
- ((Value (V_lit (L_aux L_unit Unknown)),
- update_mem mode.track_lmem lm i (taint new_vec r),l_env),Nothing,Nothing)
- | ((V_vector _ _ _ as vec),false, Just lexp_builder) ->
- ((Value (access_vector vec n), lm, l_env), Just (next_builder lexp_builder),Nothing)
- | (v,_,_) ->
- Assert_extra.failwith("no vector findable in set bit, found " ^ (string_of_value v))
- end )
- | V_vector inc m vs ->
- (match (nth(),is_top_level,maybe_builder) with
- | (V_register regform,true,_) ->
- let start_pos = reg_start_pos regform in
- let reg_size = reg_size regform in
- ((Action (Write_reg regform Nothing (update_vector_start default_dir start_pos reg_size value))
- (Thunk_frame (E_aux (E_lit (L_aux L_unit l))
- (l,intern_annot annot)) t_level l_env l_mem Top),
- l_mem,l_env),
- Nothing,Nothing)
- | (V_register regform,false,Just lexp_builder) ->
- let start_pos = reg_start_pos regform in
- let reg_size = reg_size regform in
- ((Action (Write_reg regform Nothing (update_vector_start default_dir start_pos reg_size value))
- (Thunk_frame (E_aux (E_lit (L_aux L_unit l))
- (l,intern_annot annot)) t_level l_env l_mem Top),
- l_mem,l_env),
- Just (next_builder lexp_builder),maybe_value)
- | (V_boxref n t,true,_) ->
- ((Value (V_lit (L_aux L_unit Unknown)), update_mem mode.track_lmem lm n value, l_env),
- Nothing,Nothing)
- | (V_unknown,true,_) -> ((Value (V_lit (L_aux L_unit Unknown)), lm, l_env),Nothing,Nothing)
- | (v,true,_) ->
- ((Error l "Vector does not contain reg or register values",lm,l_env),Nothing,Nothing)
- | ((V_boxref n t),false, Just lexp_builder) ->
- ((Value (in_mem lm n),lm, l_env),Just (next_builder lexp_builder),Nothing)
- | (v,false, Just lexp_builder) ->
- ((Value v,lm,le), Just (next_builder lexp_builder),Nothing)
- | _ -> Assert_extra.failwith "Vector assignment logic incomplete"
- end)
- | V_vector_sparse n m inc vs d ->
- (match (nth(),is_top_level,maybe_builder) with
- | (V_register regform,true,_) ->
- let start_pos = reg_start_pos regform in
- let reg_size = reg_size regform in
- ((Action (Write_reg regform Nothing (update_vector_start default_dir start_pos reg_size value))
- (Thunk_frame (E_aux (E_lit (L_aux L_unit l)) (l,intern_annot annot)) t_level l_env l_mem Top),
- l_mem,l_env),Nothing,Nothing)
- | (V_register regform,false,Just lexp_builder) ->
- let start_pos = reg_start_pos regform in
- let reg_size = reg_size regform in
- ((Action (Write_reg regform Nothing (update_vector_start default_dir start_pos reg_size value))
- (Thunk_frame (E_aux (E_lit (L_aux L_unit l)) (l,intern_annot annot)) t_level l_env l_mem Top),
- l_mem,l_env),
- Just (next_builder lexp_builder),Nothing)
- | (V_boxref n t,true,_) ->
- ((Value (V_lit (L_aux L_unit Unknown)), update_mem mode.track_lmem lm n value, l_env),
- Nothing,Nothing)
- | (v,true,_) ->
- ((Error l ("Vector does not contain reg or register values " ^ (string_of_value v)),
- lm,l_env), Nothing,Nothing)
- | ((V_boxref n t),false, Just lexp_builder) ->
- ((Value (in_mem lm n),lm, l_env),Just (next_builder lexp_builder),Nothing)
- | (v,false, Just lexp_builder) ->
- ((Value v,lm,le), Just (next_builder lexp_builder), Nothing)
- | _ -> Assert_extra.failwith "Vector assignment logic incomplete"
- end)
- | v ->
- ((Error l ("Vector access to write of non-vector" ^ (string_of_value v)),lm,l_env),Nothing,Nothing)
- end)
- | ((Action a s,lm,le),Just lexp_builder,maybe_value) ->
- (match (a,is_top_level) with
- | ((Write_reg regf Nothing value),true) ->
- ((Action (Write_reg regf (Just (n,n))
- (if (vector_length value) = 1
- then (update_vector_start default_dir n 1 value)
- else (access_vector value n))) s, lm,le), Nothing, Nothing)
- | ((Write_reg regf Nothing value),false) ->
- ((Action (Write_reg regf (Just (n,n))
- (if (vector_length value) = 1
- then (update_vector_start default_dir n 1 value)
- else (access_vector value n))) s,lm,le),
- Just (next_builder lexp_builder), Nothing)
- | ((Write_mem id a Nothing value),true) ->
- ((Action (Write_mem id a (Just (n,n)) value) s,lm,le), Nothing, Nothing)
- | ((Write_mem id a Nothing value),false) ->
- ((Action (Write_mem id a (Just (n,n)) value) s,lm,le), Just (next_builder lexp_builder), Nothing)
- | _ -> ((Action a s,lm,le), Just (next_builder lexp_builder), Nothing) end)
- | e -> e end)
- | v ->
- ((Error l ("Vector access must be a number given " ^ (string_of_value v)),lm,le),Nothing,Nothing) end)
- | (Action a s,lm,le) ->
- ((Action a s,lm,le), Just (fun e env -> (LEXP_aux (LEXP_vector lexp e) (l,annot), env)), Nothing)
- | e -> (e,Nothing,Nothing) end
- | LEXP_vector_range lexp exp1 exp2 ->
- match (interp_main mode t_level l_env l_mem exp1) with
- | (Value i1, lm, le) ->
- (match detaint i1 with
- | V_unknown -> ((Value i1,lm,le),Nothing,Nothing)
- | V_lit (L_aux (L_num n1) ln1) ->
- (match (interp_main mode t_level l_env l_mem exp2) with
- | (Value i2,lm,le) ->
- (match detaint i2 with
- | V_unknown -> ((Value i2,lm,le),Nothing,Nothing)
- | V_lit (L_aux (L_num n2) ln2) ->
- let next_builder le_builder =
- (fun e env ->
- let (e1,env) = to_exp mode env i1 in
- let (e2,env) = to_exp mode env i2 in
- let (lexp,env) = le_builder e env in
- (LEXP_aux (LEXP_vector_range lexp e1 e2) (l,annot), env)) in
- let (n1,n2) = (natFromInteger n1,natFromInteger n2) in
- (match (create_write_message_or_update mode t_level value l_env lm false lexp) with
- | ((Value v,lm,le), Just lexp_builder,_) ->
- (match (detaint v,is_top_level) with
- | (V_vector m inc vs,true) ->
- ((Value (V_lit (L_aux L_unit Unknown)),
- update_vector_slice mode.track_lmem v value n1 n2 lm, l_env), Nothing, Nothing)
- | (V_boxref _ _, true) ->
- ((Value (V_lit (L_aux L_unit Unknown)),
- update_vector_slice mode.track_lmem v value n1 n2 lm, l_env), Nothing, Nothing)
- | (V_vector m inc vs,false) ->
- ((Value (slice_vector v n1 n2),lm,l_env), Just (next_builder lexp_builder), Nothing)
- | (V_register regform,true) ->
- let start_pos = reg_start_pos regform in
- let reg_size = reg_size regform in
- ((Action (Write_reg regform (Just (n1,n2)) (update_vector_start default_dir start_pos reg_size v))
- (mk_thunk l annot t_level l_env l_mem),
- l_mem,l_env),
- Just (next_builder lexp_builder), Nothing)
- | (V_unknown,_) ->
- let inc = n1 < n2 in
- let start = if inc then n1 else (n2-1) in
- let size = if inc then n2-n1 +1 else n1 -n2 +1 in
- ((Value (V_vector start (if inc then IInc else IDec) (List.replicate size V_unknown)),
- lm,l_env),Nothing,Nothing)
- | _ -> ((Error l "Vector required",lm,le),Nothing,Nothing) end)
- | ((Action (Write_reg regf Nothing value) s, lm,le), Just lexp_builder,_) ->
- let len = (if n1 < n2 then n2 -n1 else n1 - n2) +1 in
- ((Action
- (Write_reg regf (Just (n1,n2))
- (if (vector_length value) <= len
- then (update_vector_start default_dir n1 len value)
- else (slice_vector value n1 n2))) s,lm,le),
- Just (next_builder lexp_builder), Nothing)
- | ((Action (Write_mem id a Nothing value) s,lm,le), Just lexp_builder,_) ->
- ((Action (Write_mem id a (Just (n1,n2)) value) s,lm,le), Just (next_builder lexp_builder), Nothing)
- | ((Action a s,lm,le), Just lexp_builder,_ ) ->
- ((Action a s,lm,le), Just (next_builder lexp_builder), Nothing)
- | e -> e end)
- | _ -> ((Error l "Vector slice requires a number", lm, le),Nothing,Nothing) end)
- | (Action a s,lm,le) ->
- ((Action a s,lm, le),
- Just (fun e env ->
- let (e1,env) = to_exp mode env i1 in
- (LEXP_aux (LEXP_vector_range lexp e1 e) (l,annot), env)), Nothing)
- | e -> (e,Nothing,Nothing) end)
- | _ -> ((Error l "Vector slice requires a number", lm, le),Nothing,Nothing) end)
- | (Action a s,lm,le) ->
- ((Action a s, lm,le), Just (fun e env -> (LEXP_aux (LEXP_vector_range lexp e exp2) (l,annot), env)), Nothing)
- | e -> (e,Nothing,Nothing) end
- | LEXP_field lexp id ->
- (match (create_write_message_or_update mode t_level value l_env l_mem false lexp) with
- | ((Value (V_record t fexps),lm,le),Just lexp_builder,_) ->
- let next_builder = Just (fun e env -> let (lexp,env) = (lexp_builder e env) in
- (LEXP_aux (LEXP_field lexp id) (l,annot), env)) in
- match (in_env (env_from_list fexps) (get_id id),is_top_level) with
- | (Just (V_boxref n t),true) ->
- ((Value (V_lit (L_aux L_unit l)), update_mem mode.track_lmem lm n value, l_env),Nothing,Nothing)
- | (Just (V_boxref n t),false) -> ((Value (in_mem lm n),lm,l_env),next_builder,Nothing)
- | (Just v, true) -> ((Error l "Mutating a field access requires a reg type",lm,le),Nothing,Nothing)
- | (Just v,false) -> ((Value v,lm,l_env),next_builder,Nothing)
- | (Nothing,_) -> ((Error l "Field not found in specified record",lm,le),Nothing,Nothing) end
- | ((Action a s,lm,le), Just lexp_builder,_) ->
- let next_builder = Just (fun e env -> let (lexp,env) = (lexp_builder e env) in
- (LEXP_aux (LEXP_field lexp id) (l,annot), env)) in
- match a with
- | Read_reg _ _ -> ((Action a s,lm,le), next_builder, Nothing)
- | Read_mem _ _ _ -> ((Action a s,lm,le), next_builder, Nothing)
- | Read_mem_tagged _ _ _ -> ((Action a s,lm,le), next_builder, Nothing)
- | Call_extern _ _ -> ((Action a s,lm,le), next_builder, Nothing)
- | Write_reg ((Form_Reg _ (Just(Typ_aux (Typ_id (Id_aux (Id id') _)) _,_,_,_,_)) _) as regf) Nothing value ->
- match in_env subregs id' with
- | Just(indexes) ->
- match in_env indexes (get_id id) with
- | Just ir ->
- ((Action
- (Write_reg (Form_SubReg id regf ir) Nothing
- (update_vector_start default_dir (get_first_index_range ir)
- (get_index_range_size ir) value)) s,
- lm,le),
- (if is_top_level then Nothing else next_builder), Nothing)
- | _ -> ((Error l "Internal error, unrecognized write, no field",lm,le),Nothing,Nothing)
- end
- | Nothing -> ((Error l "Internal error, unrecognized write, no subreges",lm,le),Nothing,Nothing) end
- | _ -> ((Error l "Internal error, unrecognized write, no matching action",lm,le),Nothing,Nothing)
- end
- | e -> e end)
- end
-
-and create_write_message_or_update mode t_level value l_env l_mem is_top_level le =
- let _ = debug_fun_enter mode "create_write_message_or_update" [show le] in
- let retval = __create_write_message_or_update (indent_mode mode) t_level value l_env l_mem is_top_level le in
- let _ = debug_fun_exit mode "create_write_message_or_update" "_" in
- retval
-
-and __interp_letbind mode t_level l_env l_mem (LB_aux lbind (l,annot)) =
- match lbind with
- | LB_val pat exp ->
- match (interp_main mode t_level l_env l_mem exp) with
- | (Value v,lm,le) ->
- (match match_pattern t_level pat v with
- | (true,used_unknown,env) -> ((Value (V_lit (L_aux L_unit l)), lm, (union_env env l_env)),Nothing)
- | _ -> ((Error l "Pattern in letbind did not match value",lm,le),Nothing) end)
- | (Action a s,lm,le) -> ((Action a s,lm,le),(Just (fun e -> (LB_aux (LB_val pat e) (l,annot)))))
- | e -> (e,Nothing) end
-end
-
-and interp_letbind mode t_level l_env l_mem lb =
- let _ = debug_fun_enter mode "interp_letbind" [show lb] in
- let retval = __interp_letbind (indent_mode mode) t_level l_env l_mem lb in
- let _ = debug_fun_exit mode "interp_letbind" "_" in
- retval
-
-and __interp_alias_read mode t_level l_env l_mem (AL_aux alspec (l,annot)) =
- let (Env defs instrs default_dir lets regs ctors subregs aliases debug) = t_level in
- let stack = Hole_frame redex_id (E_aux (E_id redex_id) (l,(intern_annot annot))) t_level l_env l_mem Top in
- let get_reg_typ_name typ =
- match typ with
- | Typ_aux (Typ_id (Id_aux (Id i) _)) _ -> i
- | _ -> Assert_extra.failwith "Alias reg typ not well formed"
- end in
- match alspec with
- | AL_subreg (RI_aux (RI_id reg) (li,((Just (t,_,_,_,_)) as annot'))) subreg ->
- let reg_ti = get_reg_typ_name t in
- (match in_env subregs reg_ti with
- | Just indexes ->
- (match in_env indexes (get_id subreg) with
- | Just ir -> (Action (Read_reg (Form_SubReg subreg (Form_Reg reg annot' default_dir) ir) Nothing) stack,
- l_mem, l_env)
- | _ -> (Error l "Internal error, alias spec has unknown field", l_mem, l_env) end)
- | _ -> (Error l (String.stringAppend "Internal error: alias spec has unknown register type " reg_ti),
- l_mem, l_env) end)
- | AL_bit (RI_aux (RI_id reg) (_,annot')) e ->
- resolve_outcome (interp_main mode t_level l_env l_mem e)
- (fun v le lm -> match v with
- | V_lit (L_aux (L_num i) _) ->
- let i = natFromInteger i in
- (Action (Read_reg (Form_Reg reg annot' default_dir) (Just (i,i))) stack, l_mem, l_env)
- | _ -> Assert_extra.failwith "alias bit did not reduce to number" end)
- (fun a -> a) (*Should not currently happen as type system enforces constants*)
- | AL_slice (RI_aux (RI_id reg) (_,annot')) start stop ->
- resolve_outcome (interp_main mode t_level l_env l_mem start)
- (fun v lm le ->
- match v with
- | V_lit (L_aux (L_num start) _) ->
- (resolve_outcome
- (interp_main mode t_level l_env lm stop)
- (fun v le lm ->
- (match v with
- | V_lit (L_aux (L_num stop) _) ->
- let (start,stop) = (natFromInteger start,natFromInteger stop) in
- (Action (Read_reg (Form_Reg reg annot' default_dir) (Just (start,stop))) stack, l_mem, l_env)
- | _ -> Assert_extra.failwith ("Alias slice evaluted non-lit " ^ (string_of_value v))
- end))
- (fun a -> a))
- | _ -> Assert_extra.failwith ("Alias slice evaluated non-lit "^ string_of_value v)
- end)
- (fun a -> a) (*Neither action function should occur, due to above*)
- | AL_concat (RI_aux (RI_id reg1) (l1, annot1)) (RI_aux (RI_id reg2) annot2) ->
- (Action (Read_reg (Form_Reg reg1 annot1 default_dir) Nothing)
- (Hole_frame redex_id
- (E_aux (E_vector_append (E_aux (E_id redex_id) (l1, (intern_annot annot1)))
- (E_aux (E_id reg2) annot2))
- (l,(intern_annot annot))) t_level l_env l_mem Top), l_mem,l_env)
- | _ -> Assert_extra.failwith "alias spec not well formed"
-end
-
-and interp_alias_read mode t_level l_env l_mem al =
- let _ = debug_fun_enter mode "interp_alias_read" [show al] in
- let retval = __interp_alias_read (indent_mode mode) t_level l_env l_mem al in
- let _ = debug_fun_exit mode "interp_alias_read" retval in
- retval
-
-let rec eval_toplevel_let handle_action tlevel env mem lbind =
- match interp_letbind <| eager_eval=true; track_values=false; track_lmem=false; debug=false; debug_indent="" |> tlevel env mem lbind with
- | ((Value v, lm, (LEnv _ le)),_) -> Just le
- | ((Action a s,lm,le), Just le_builder) ->
- (match handle_action (Action a s) with
- | Just value ->
- (match s with
- | Hole_frame id exp tl lenv lmem s ->
- eval_toplevel_let handle_action tl (add_to_env (id,value) lenv) lmem (le_builder exp)
- | _ -> Assert_extra.failwith "Top level def evaluation created a thunk frame" end)
- | Nothing -> Nothing end)
- | _ -> Nothing end
-
-let rec to_global_letbinds handle_action (Defs defs) t_level =
- let (Env fdefs instrs default_dir lets regs ctors subregs aliases debug) = t_level in
- match defs with
- | [] -> ((Value (V_lit (L_aux L_unit Unknown)), (emem "global_letbinds"), eenv),t_level)
- | def::defs ->
- match def with
- | DEF_val lbind ->
- match eval_toplevel_let handle_action t_level eenv (emem "global_letbinds") lbind with
- | Just le ->
- to_global_letbinds handle_action
- (Defs defs)
- (Env fdefs instrs default_dir (Map.(union) lets le) regs ctors subregs aliases debug)
- | Nothing ->
- to_global_letbinds handle_action (Defs defs)
- (Env fdefs instrs default_dir lets regs ctors subregs aliases debug) end
- | DEF_type (TD_aux tdef _) ->
- match tdef with
- | TD_enum id ns ids _ ->
- let typ = mk_typ_id (get_id id) in
- let enum_vals =
- Map.fromList
- (snd
- (List.foldl (fun (c,rst) eid -> (1+c,(get_id eid,V_ctor eid typ (C_Enum c) unitv)::rst)) (0,[]) ids)) in
- to_global_letbinds
- handle_action (Defs defs)
- (Env fdefs instrs default_dir (Map.(union) lets enum_vals) regs ctors subregs aliases debug)
- | _ -> to_global_letbinds handle_action (Defs defs) t_level end
- | _ -> to_global_letbinds handle_action (Defs defs) t_level
- end
- end
-
-let rec extract_default_direction (Defs defs) = match defs with
- | [] -> IInc (*When lack of a declared default, go for inc*)
- | def::defs ->
- match def with
- | DEF_default (DT_aux (DT_order (Ord_aux Ord_inc _)) _) -> IInc
- | DEF_default (DT_aux (DT_order (Ord_aux Ord_dec _)) _) -> IDec
- | _ -> extract_default_direction (Defs defs) end end
-
-(*TODO Contemplate making execute environment variable instead of constant*)
-let to_top_env debug external_functions defs =
- let direction = (extract_default_direction defs) in
- let t_level = Env (to_fdefs defs)
- (extract_instructions "execute" defs)
- direction
- Map.empty (* empty letbind and enum values, call below will fill in any *)
- (to_registers direction defs)
- (to_data_constructors defs) (to_register_fields defs) (to_aliases defs) debug in
- let (o,t_level) = to_global_letbinds (external_functions direction) defs t_level in
- match o with
- | (Value _,_,_) -> (Nothing,t_level)
- | (o,_,_) -> (Just o,t_level)
- end
-
-let __interp mode external_functions defs exp =
- match (to_top_env mode.debug external_functions defs) with
- | (Nothing,t_level) ->
- interp_main mode t_level eenv (emem "top level") exp
- | (Just o,_) -> (o,(emem "top level error"),eenv)
- end
-
-let interp mode external_functions defs exp =
- let _ = debug_fun_enter mode "interp" [show exp] in
- let retval = __interp (indent_mode mode) external_functions defs exp in
- let _ = debug_fun_exit mode "interp" retval in
- retval
-
-let rec __resume_with_env mode stack value =
- match (stack,value) with
- | (Top,_) -> (Error Unknown "Top hit without expression to evaluate in resume_with_env",eenv)
- | (Hole_frame id exp t_level env mem Top,Just value) ->
- match interp_main mode t_level (add_to_env (id,value) env) mem exp with | (o,_,e) -> (o,e) end
- | (Hole_frame id exp t_level env mem stack,Just value) ->
- match resume_with_env mode stack (Just value) with
- | (Value v,e) ->
- match interp_main mode t_level (add_to_env (id,v) env) mem exp with | (o,_,e) -> (o,e) end
- | (Action action stack,e) -> (Action action (Hole_frame id exp t_level env mem stack),e)
- | (Error l s,e) -> (Error l s,e)
- end
- | (Hole_frame id exp t_level env mem stack, Nothing) ->
- match resume_with_env mode stack Nothing with
- | (Value v,e) ->
- match interp_main mode t_level (add_to_env (id,v) env) mem exp with | (o,_,e) -> (o,e) end
- | (Action action stack,e) -> (Action action (Hole_frame id exp t_level env mem stack),e)
- | (Error l s,e) -> (Error l s,e)
- end
- | (Thunk_frame exp t_level env mem Top,_) ->
- match interp_main mode t_level env mem exp with | (o,_,e) -> (o,e) end
- | (Thunk_frame exp t_level env mem stack,value) ->
- match resume_with_env mode stack value with
- | (Value v,e) ->
- match interp_main mode t_level env mem exp with | (o,_,e) -> (o,e) end
- | (Action action stack,e) -> (Action action (Thunk_frame exp t_level env mem stack),e)
- | (Error l s,e) -> (Error l s,e)
- end
- end
-
-and resume_with_env mode stack value =
- let _ = debug_fun_enter mode "resume_with_env" [show value] in
- let retval = __resume_with_env (indent_mode mode) stack value in
- let _ = debug_fun_exit mode "interp" retval in
- retval
-
-
-let rec __resume mode stack value =
- match (stack,value) with
- | (Top,_) -> (Error Unknown "Top hit without expression to evaluate in resume",(emem "top level error"),eenv)
- | (Hole_frame id exp t_level env mem Top,Just value) ->
- interp_main mode t_level (add_to_env (id,value) env) mem exp
- | (Hole_frame id exp t_level env mem Top,Nothing) ->
- (Error Unknown "Top hole frame hit wihtout a value in resume", mem, env)
- | (Hole_frame id exp t_level env mem stack,Just value) ->
- match resume mode stack (Just value) with
- | (Value v,_,_) ->
- interp_main mode t_level (add_to_env (id,v) env) mem exp
- | (Action action stack,lm,le) -> (Action action (Hole_frame id exp t_level env mem stack),lm,le)
- | (Error l s,lm,le) -> (Error l s,lm,le)
- end
- | (Hole_frame id exp t_level env mem stack, Nothing) ->
- match resume mode stack Nothing with
- | (Value v,_,_) ->
- interp_main mode t_level (add_to_env (id,v) env) mem exp
- | (Action action stack,lm,le) -> (Action action (Hole_frame id exp t_level env mem stack),lm,le)
- | (Error l s,lm,le) -> (Error l s,lm,le)
- end
- | (Thunk_frame exp t_level env mem Top,_) ->
- interp_main mode t_level env mem exp
- | (Thunk_frame exp t_level env mem stack,value) ->
- match resume mode stack value with
- | (Value v,_,_) -> interp_main mode t_level env mem exp
- | (Action action stack,lm,le) -> (Action action (Thunk_frame exp t_level env mem stack), lm, le)
- | (Error l s,lm,le) -> (Error l s,lm,le)
- end
- end
-
-and resume mode stack value =
- let _ = debug_fun_enter mode "resume" [show value] in
- let retval = __resume (indent_mode mode) stack value in
- let _ = debug_fun_exit mode "resume" retval in
- retval
diff --git a/src/lem_interp/0.11/interp_inter_imp.lem b/src/lem_interp/0.11/interp_inter_imp.lem
deleted file mode 100644
index 3413494e..00000000
--- a/src/lem_interp/0.11/interp_inter_imp.lem
+++ /dev/null
@@ -1,1338 +0,0 @@
-(*========================================================================*)
-(* Sail *)
-(* *)
-(* Copyright (c) 2013-2017 *)
-(* Kathyrn Gray *)
-(* Shaked Flur *)
-(* Stephen Kell *)
-(* Gabriel Kerneis *)
-(* Robert Norton-Wright *)
-(* Christopher Pulte *)
-(* Peter Sewell *)
-(* Alasdair Armstrong *)
-(* Brian Campbell *)
-(* Thomas Bauereiss *)
-(* Anthony Fox *)
-(* Jon French *)
-(* Dominic Mulligan *)
-(* Stephen Kell *)
-(* Mark Wassell *)
-(* *)
-(* All rights reserved. *)
-(* *)
-(* This software was developed by the University of Cambridge Computer *)
-(* Laboratory as part of the Rigorous Engineering of Mainstream Systems *)
-(* (REMS) project, funded by EPSRC grant EP/K008528/1. *)
-(* *)
-(* Redistribution and use in source and binary forms, with or without *)
-(* modification, are permitted provided that the following conditions *)
-(* are met: *)
-(* 1. Redistributions of source code must retain the above copyright *)
-(* notice, this list of conditions and the following disclaimer. *)
-(* 2. Redistributions in binary form must reproduce the above copyright *)
-(* notice, this list of conditions and the following disclaimer in *)
-(* the documentation and/or other materials provided with the *)
-(* distribution. *)
-(* *)
-(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
-(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
-(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
-(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
-(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
-(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
-(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
-(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
-(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
-(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
-(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
-(* SUCH DAMAGE. *)
-(*========================================================================*)
-
-open import Interp_ast
-import Interp
-import Interp_lib
-import Instruction_extractor
-import Set_extra
-open import Pervasives
-open import Assert_extra
-open import Interp_ast
-open import Interp_utilities
-open import Sail_impl_base
-open import Interp_interface
-
-val intern_reg_value : register_value -> Interp_ast.value
-val intern_mem_value : interp_mode -> direction -> memory_value -> Interp_ast.value
-val extern_reg_value : reg_name -> Interp_ast.value -> register_value
-val extern_with_track: forall 'a. interp_mode -> (Interp_ast.value -> 'a) -> Interp_ast.value -> ('a * maybe (list reg_name))
-val extern_vector_value: Interp_ast.value -> list byte_lifted
-val extern_mem_value : Interp_ast.value -> memory_value
-val extern_reg : Interp_ast.reg_form -> maybe (nat * nat) -> reg_name
-
-let make_interpreter_mode eager_eval tracking_values debug =
- <| Interp.eager_eval = eager_eval; Interp.track_values = tracking_values; Interp.track_lmem = false; Interp.debug = debug; Interp.debug_indent = "" |>;;
-
-let make_mode eager_eval tracking_values debug =
- <| internal_mode = make_interpreter_mode eager_eval tracking_values debug |>;;
-let make_mode_exhaustive debug =
- <| internal_mode = <| Interp.eager_eval = true; Interp.track_values = true; Interp.track_lmem = true; Interp.debug = debug; Interp.debug_indent = "" |> |>;;
-let tracking_dependencies mode = mode.internal_mode.Interp.track_values
-let make_eager_mode mode = <| internal_mode = <| mode.internal_mode with Interp.eager_eval = true |> |>;;
-let make_default_mode = fun () -> <| internal_mode = make_interpreter_mode false false false |>;;
-
-let bitl_to_ibit = function
- | Bitl_zero -> (Interp_ast.V_lit (L_aux L_zero Interp_ast.Unknown))
- | Bitl_one -> (Interp_ast.V_lit (L_aux L_one Interp_ast.Unknown))
- | Bitl_undef -> (Interp_ast.V_lit (L_aux L_undef Interp_ast.Unknown))
- | Bitl_unknown -> Interp_ast.V_unknown
-end
-
-let bit_to_ibit = function
- | Bitc_zero -> (Interp_ast.V_lit (L_aux L_zero Interp_ast.Unknown))
- | Bitc_one -> (Interp_ast.V_lit (L_aux L_one Interp_ast.Unknown))
-end
-
-let to_bool = function
- | Bitl_zero -> false
- | Bitl_one -> true
- | Bitl_undef -> Assert_extra.failwith "to_bool given undef"
- | Bitl_unknown -> Assert_extra.failwith "to_bool given unknown"
-end
-
-let is_bool = function
- | Bitl_zero -> true
- | Bitl_one -> true
- | Bitl_undef -> false
- | Bitl_unknown -> false
-end
-
-let bitl_from_ibit b =
- let b = Interp.detaint b in
- match b with
- | Interp_ast.V_lit (L_aux L_zero _) -> Bitl_zero
- | Interp_ast.V_vector _ _ [Interp_ast.V_lit (L_aux L_zero _)] -> Bitl_zero
- | Interp_ast.V_lit (L_aux L_one _) -> Bitl_one
- | Interp_ast.V_vector _ _ [Interp_ast.V_lit (L_aux L_one _)] -> Bitl_one
- | Interp_ast.V_lit (L_aux L_undef _) -> Bitl_undef
- | Interp_ast.V_vector _ _ [Interp_ast.V_lit (L_aux L_undef _)] -> Bitl_undef
- | Interp_ast.V_unknown -> Bitl_unknown
- | _ -> Assert_extra.failwith ("bit_from_ibit given unexpected " ^ (Interp.string_of_value b)) end
-
-let bits_to_ibits l = List.map bit_to_ibit l
-let bitls_to_ibits l = List.map bitl_to_ibit l
-let bitls_from_ibits l = List.map bitl_from_ibit l
-
-let bits_from_ibits l = List.map
- (fun b ->
- let b = Interp.detaint b in
- match b with
- | Interp_ast.V_lit (L_aux L_zero _) -> Bitc_zero
- | Interp_ast.V_vector _ _ [Interp_ast.V_lit (L_aux L_zero _)] -> Bitc_zero
- | Interp_ast.V_lit (L_aux L_one _) -> Bitc_one
- | Interp_ast.V_vector _ _ [Interp_ast.V_lit (L_aux L_one _)] -> Bitc_one
- | _ -> Assert_extra.failwith ("bits_from_ibits given unexpected " ^ (Interp.string_of_value b))
- end) l
-
-let rec to_bytes l = match l with
- | [] -> []
- | (a::b::c::d::e::f::g::h::rest) -> (Byte_lifted[a;b;c;d;e;f;g;h])::(to_bytes rest)
- | _ -> Assert_extra.failwith "to_bytes given list of bits not divisible by 8"
-end
-
-let all_known l = List.all is_bool l
-let all_known_bytes l = List.all (fun (Byte_lifted bs) -> List.all is_bool bs) l
-
-let bits_to_word8 b =
- if ((List.length b) = 8) && (all_known b)
- then natFromInteger (integerFromBoolList (false,(List.reverse (List.map to_bool b))))
- else Assert_extra.failwith "bits_to_word8 given a non-8 list or one containing ? and u"
-
-let intern_direction = function
- | D_increasing -> Interp_ast.IInc
- | D_decreasing -> Interp_ast.IDec
-end
-
-let extern_direction = function
- | Interp_ast.IInc -> D_increasing
- | Interp_ast.IDec -> D_decreasing
-end
-
-let intern_opcode direction (Opcode v) =
- let bits = List.concatMap (fun (Byte(bits)) -> (List.map bit_to_ibit bits)) v in
- let direction = intern_direction direction in
- Interp_ast.V_vector (if Interp.is_inc(direction) then 0 else (List.length(bits) - 1)) direction bits
-
-let intern_reg_value v = match v with
- | <| rv_bits=[b] |> -> bitl_to_ibit b
- | _ -> Interp_ast.V_vector v.rv_start_internal (intern_direction v.rv_dir) (bitls_to_ibits v.rv_bits)
-end
-
-let intern_mem_value mode direction v =
- List.reverse v (* match little endian representation *)
- $> List.concatMap (fun (Byte_lifted bits) -> bitls_to_ibits bits)
- $> fun bits ->
- let direction = intern_direction direction in
- Interp_ast.V_vector (if Interp.is_inc direction then 0 else (List.length bits) -1) direction bits
-
-let intern_ifield_value direction v =
- let bits = bits_to_ibits v in
- let direction = intern_direction direction in
- Interp_ast.V_vector (if Interp.is_inc direction then 0 else (List.length(bits) -1)) direction bits
-
-let extern_slice (d:direction) (start:nat) ((i,j):(nat*nat)) =
- match d with
- | D_increasing -> (i,j) (*This is the case the thread/concurrecny model expects, so no change needed*)
- | D_decreasing ->
- let slice_i = start - i in
- let slice_j = (i - j) + slice_i in
- (slice_i,slice_j)
- end
-
-let extern_reg r slice = match (r,slice) with
- | (Interp_ast.Form_Reg (Id_aux (Id x) _) (Just(t,_,_,_,_)) dir,Nothing) ->
- Reg x (Interp.reg_start_pos r) (Interp.reg_size r) (extern_direction dir)
- | (Interp_ast.Form_Reg (Id_aux (Id x) _) (Just(t,_,_,_,_)) dir,Just(i1,i2)) ->
- let start = Interp.reg_start_pos r in
- let edir = extern_direction dir in
- Reg_slice x start edir (extern_slice edir start (i1, i2))
- | (Interp_ast.Form_SubReg (Id_aux (Id x) _) ((Interp_ast.Form_Reg (Id_aux (Id y) _) _ dir) as main_r) (BF_aux(BF_single i) _),
- Nothing) ->
- let i = natFromInteger i in
- let start = Interp.reg_start_pos main_r in
- let edir = extern_direction dir in
- Reg_field y start edir x (extern_slice edir start (i,i))
- | (Interp_ast.Form_SubReg (Id_aux (Id x) _) ((Interp_ast.Form_Reg (Id_aux (Id y) _) _ dir) as main_r) (BF_aux(BF_range i j) _),
- Nothing) ->
- let start = Interp.reg_start_pos main_r in
- let edir = extern_direction dir in
- Reg_field y start edir x (extern_slice edir start (natFromInteger i,natFromInteger j))
- | (Interp_ast.Form_SubReg (Id_aux (Id x) _)
- ((Interp_ast.Form_Reg (Id_aux (Id y) _) _ dir) as main_r) (BF_aux(BF_range i j) _), Just(i1,j1)) ->
- let start = Interp.reg_start_pos main_r in
- let edir = extern_direction dir in
- Reg_f_slice y start edir x (extern_slice edir start (natFromInteger i,natFromInteger j))
- (extern_slice edir start (i1, j1))
- | _ -> Assert_extra.failwith "extern_reg given non-externable reg"
-end
-
-let rec extern_reg_value reg_name v =
- match v with
- | Interp_ast.V_track v regs -> extern_reg_value reg_name v
- | Interp_ast.V_vector_sparse fst stop inc bits default ->
- extern_reg_value reg_name (Interp_lib.fill_in_sparse v)
- | _ ->
- let (internal_start, external_start, direction) =
- (match reg_name with
- | Reg _ start size dir ->
- (start, (if dir = D_increasing then start else (start - (size +1))), dir)
- | Reg_slice _ reg_start dir (slice_start, slice_end) ->
- ((if dir = D_increasing then slice_start else (reg_start - slice_start)),
- slice_start, dir)
- | Reg_field _ reg_start dir _ (slice_start, slice_end) ->
- ((if dir = D_increasing then slice_start else (reg_start - slice_start)),
- slice_start, dir)
- | Reg_f_slice _ reg_start dir _ _ (slice_start, slice_end) ->
- ((if dir = D_increasing then slice_start else (reg_start - slice_start)),
- slice_start, dir) end) in
- let bit_list =
- (match v with
- | Interp_ast.V_vector fst dir bits -> bitls_from_ibits bits
- | Interp_ast.V_lit (L_aux L_zero _) -> [Bitl_zero]
- | Interp_ast.V_lit (L_aux L_false _) -> [Bitl_zero]
- | Interp_ast.V_lit (L_aux L_one _) -> [Bitl_one]
- | Interp_ast.V_lit (L_aux L_true _) -> [Bitl_one]
- | Interp_ast.V_lit (L_aux L_undef _) -> [Bitl_undef]
- | Interp_ast.V_unknown -> [Bitl_unknown]
- | _ -> Assert_extra.failwith ("extern_reg_val given non externable value " ^ (Interp.string_of_value v)) end)
- in
- <| rv_bits=bit_list;
- rv_dir=direction;
- rv_start=external_start;
- rv_start_internal = internal_start |>
-end
-
-let extern_with_track mode f = function
- | Interp_ast.V_track v regs ->
- (f v,
- if mode.internal_mode.Interp.track_values
- then (Just (List.map (fun r -> extern_reg r Nothing) (Set_extra.toList regs)))
- else Nothing)
- | v -> (f v, Nothing)
- end
-
-let rec extern_vector_value v = match v with
- | Interp_ast.V_vector _fst _inc bits ->
- bitls_from_ibits bits
- $> to_bytes
- | Interp_ast.V_vector_sparse _fst _stop _inc _bits _default ->
- Interp_lib.fill_in_sparse v
- $> extern_vector_value
- | Interp_ast.V_track v _ -> extern_vector_value v
- | _ -> Assert_extra.failwith ("extern_vector_value received non-externable value " ^ (Interp.string_of_value v))
-end
-
-let rec extern_mem_value v = List.reverse (extern_vector_value v)
-
-
-let rec extern_ifield_value i_name field_name v ftyp = match (v,ftyp) with
- | (Interp_ast.V_track v regs,_) -> extern_ifield_value i_name field_name v ftyp
- | (Interp_ast.V_vector fst inc bits,_) -> bits_from_ibits bits
- | (Interp_ast.V_vector_sparse fst stop inc bits default,_) ->
- extern_ifield_value i_name field_name (Interp_lib.fill_in_sparse v) ftyp
- | (Interp_ast.V_lit (L_aux L_zero _),_) -> [Bitc_zero]
- | (Interp_ast.V_lit (L_aux L_false _),_) -> [Bitc_zero]
- | (Interp_ast.V_lit (L_aux L_one _),_) -> [Bitc_one]
- | (Interp_ast.V_lit (L_aux L_true _),_) -> [Bitc_one]
- | (Interp_ast.V_lit (L_aux (L_num i) _),Range (Just n)) -> bit_list_of_integer n i
- | (Interp_ast.V_lit (L_aux (L_num i) _),Enum _ n) -> bit_list_of_integer n i
- | (Interp_ast.V_lit (L_aux (L_num i) _),_) -> bit_list_of_integer 64 i
- | (Interp_ast.V_ctor _ _ (Interp_ast.C_Enum i) _,Enum _ n) -> bit_list_of_integer n (integerFromNat i)
- | (Interp_ast.V_ctor _ _ (Interp_ast.C_Enum i) _,_) -> bit_list_of_integer 64 (integerFromNat i)
- | _ ->
- Assert_extra.failwith ("extern_ifield_value of " ^ i_name ^ " for field " ^ field_name
- ^ " given non-externable " ^ (Interp.string_of_value v) ^ " ftyp is " ^ show ftyp)
-end
-
-let rec slice_reg_value v start stop =
-(* let _ = Interp.debug_print ("slice_reg_value " ^ show v.rv_start_internal ^ " " ^ show v.rv_start ^ " " ^ show start ^ " " ^ show stop) in*)
- let inc = v.rv_dir = D_increasing in
- let r_internal_start = if inc then start else (stop - start) + 1 in
- let r_start = if inc then r_internal_start else start in
-(* let _ = Interp.debug_print (" " ^ " " ^ if inc then "Inc " else "dec " ^ show (List.length (Interp.from_n_to_n
- (if inc then (start - v.rv_start_internal) else (v.rv_start_internal - start))
- (if inc then (stop - v.rv_start_internal) else (v.rv_start_internal - stop)) v.rv_bits)) ^ " " ^ show (List.length v.rv_bits) ^ " " ^ show (v.rv_start_internal - start) ^ " " ^ show (v.rv_start_internal - stop) ^ "\n") in*)
- <| v with rv_bits = (Interp.from_n_to_n (start - v.rv_start) (stop - v.rv_start) v.rv_bits);
- rv_start = r_start;
- rv_start_internal = r_internal_start
- |>
-
-let lift_reg_name_to_whole reg_name size = match reg_name with
- | Reg _ _ _ _ -> reg_name
- | Reg_slice name start dir _ -> Reg name start size dir
- | Reg_field name start dir _ _ -> Reg name start size dir
- | Reg_f_slice name start dir _ _ _ -> Reg name start size dir
-end
-
-let update_reg_value_slice reg_name v start stop v2 =
- let v_internal = intern_reg_value v in
- let v2_internal = intern_reg_value v2 in
- <| (extern_reg_value (lift_reg_name_to_whole reg_name 0)
- (if start = stop then
- (Interp.fupdate_vec v_internal start v2_internal)
- else
- (Interp.fupdate_vector_slice v_internal v2_internal start stop)))
- with rv_start = v.rv_start; rv_start_internal = v.rv_start_internal |>
-
-(*TODO: Only find some sub piece matches, need to look for field/slice sub pieces*)
-(*TODO immediate: this will be impacted by need to change slicing *)
-let rec find_reg_name reg = function
- | [] -> Nothing
- | (reg_name,v)::registers ->
- match (reg,reg_name) with
- | (Reg i start size dir, Reg n start2 size2 dir2) ->
- if i = n && size = size2 then (Just v) else find_reg_name reg registers
- | (Reg_slice i _ _ (p1,p2), Reg n _ _ _) ->
- if i = n then (Just (slice_reg_value v p1 p2)) else find_reg_name reg registers
- | (Reg_field i _ _ f (p1,p2), Reg n _ _ _) ->
-(* let _ = Interp.debug_print ("find_reg_name " ^ i ^ " field case " ^ show p1 ^ " " ^ show p2 ^ "\n") in*)
- if i = n then (Just (slice_reg_value v p1 p2)) else find_reg_name reg registers
- | (Reg_slice i _ _ (p1,p2), Reg_slice n _ _ (p3,p4)) ->
- if i=n
- then if p1=p3 && p2 = p4 then (Just v)
- else if p1>=p3 && p2<= p4 then (Just (slice_reg_value v p1 p2))
- else find_reg_name reg registers
- else find_reg_name reg registers
- | (Reg_field i _ _ f _,Reg_field n _ _ fn _) ->
- if i=n && f = fn then (Just v) else find_reg_name reg registers
- | (Reg_f_slice i _ _ f _ (p1,p2), Reg_f_slice n _ _ fn _ (p3,p4)) ->
- if i=n && f=fn && p1=p3 && p2=p3 then (Just v) else find_reg_name reg registers
- | _ -> find_reg_name reg registers
-end end
-
-
-let initial_instruction_state top_level main args =
- let e_args = match args with
- | [] -> [E_aux (E_lit (L_aux L_unit Interp_ast.Unknown)) (Interp_ast.Unknown,Nothing)]
- | [arg] -> let (e,_) = Interp.to_exp (make_interpreter_mode true false) Interp.eenv (intern_reg_value arg) in [e]
- | args -> List.map fst (List.map (Interp.to_exp (make_interpreter_mode true false) Interp.eenv)
- (List.map intern_reg_value args)) end in
- Interp.Thunk_frame (E_aux (E_app (Id_aux (Id main) Interp_ast.Unknown) e_args) (Interp_ast.Unknown, Nothing))
- top_level Interp.eenv (Interp.emem "istate top level") Interp.Top
-
-type interp_value_helper_mode = Ivh_translate | Ivh_decode | Ivh_unsupported | Ivh_illegal | Ivh_analysis
-type interp_value_return =
- | Ivh_value of Interp_ast.value
- | Ivh_value_after_exn of Interp_ast.value
- | Ivh_error of decode_error
-
-let rec interp_to_value_helper debug arg ivh_mode err_str instr direction registers events exn_seen thunk =
- let errk_str = match ivh_mode with
- | Ivh_translate -> "translate"
- | Ivh_analysis -> "analysis"
- | Ivh_decode -> "decode"
- | Ivh_unsupported -> "supported_instructions"
- | Ivh_illegal -> "illegal instruction" end in
- let events_out = match events with [] -> Nothing | _ -> Just events end in
- let mode = (make_interpreter_mode true false debug) in
- match thunk() with
- | (Interp.Value value,_,_) ->
- if exn_seen
- then (Ivh_value_after_exn value, events_out)
- else
- (match ivh_mode with
- | Ivh_translate -> (Ivh_value value, events_out)
- | Ivh_analysis -> (Ivh_value value, events_out)
- | _ ->
- (match value with
- | Interp_ast.V_ctor (Id_aux (Id "Some") _) _ _ vinstr -> (Ivh_value vinstr,events_out)
- | Interp_ast.V_ctor (Id_aux (Id "None") _) _ _ _ ->
- (match (ivh_mode,arg) with
- | (Ivh_decode, (Just arg)) -> (Ivh_error (Interp_interface.Not_an_instruction_error arg), events_out)
- | (Ivh_illegal, (Just arg)) -> (Ivh_error (Interp_interface.Not_an_instruction_error arg), events_out)
- | (Ivh_unsupported, _) -> (Ivh_error (Interp_interface.Unsupported_instruction_error instr), events_out)
- | _ -> Assert_extra.failwith "Reached unreachable pattern" end)
- | _ -> (Ivh_error (Interp_interface.Internal_error ("Value not an option for " ^ errk_str)), events_out) end) end)
- | (Interp.Error l msg,_,_) -> (Ivh_error (Interp_interface.Internal_error msg), events_out)
- | (Interp.Action (Interp.Return value) stack,_,_) ->
- interp_to_value_helper debug arg ivh_mode err_str instr direction registers events exn_seen
- (fun _ -> Interp.resume mode stack (Just value))
- | (Interp.Action (Interp.Call_extern i value) stack,_,_) ->
- match List.lookup i (Interp_lib.library_functions direction) with
- | Nothing -> (Ivh_error (Interp_interface.Internal_error ("External function not available " ^ i)), events_out)
- | Just f ->
- interp_to_value_helper debug arg ivh_mode err_str instr direction registers events exn_seen
- (fun _ -> Interp.resume mode stack (Just (f value)))
- end
- | (Interp.Action (Interp.Fail v) stack, _, _) ->
- match (Interp.detaint v) with
- | Interp_ast.V_ctor (Id_aux (Id "Some") _) _ _ (Interp_ast.V_lit (L_aux (L_string s) _)) ->
- (Ivh_error (Interp_interface.Internal_error ("Assert failed: " ^ s)), events_out)
- | _ -> (Ivh_error (Interp_interface.Internal_error "Assert failed"), events_out) end
- | (Interp.Action (Interp.Exit exp) stack,_,_) ->
- interp_to_value_helper debug arg ivh_mode err_str instr direction registers events true
- (fun _ -> Interp.resume mode (Interp.set_in_context stack exp) Nothing)
- | (Interp.Action (Interp.Read_reg r slice) stack,_,_) ->
- let rname = match r with
- | Interp_ast.Form_Reg (Id_aux (Id i) _) _ _ -> i
- | Interp_ast.Form_SubReg (Id_aux (Id i) _) (Interp_ast.Form_Reg (Id_aux (Id i2) _) _ _) _ -> i2 ^ "." ^ i
- | _ -> Assert_extra.failwith "Reg not following expected structure" end in
- let err_value =
- (Ivh_error (Interp_interface.Internal_error ("Register read of "^ rname^" request in a " ^ errk_str ^ " of " ^ err_str)),
- events_out) in
- (match registers with
- | Nothing -> err_value
- | Just(regs) ->
- let reg = extern_reg r slice in
- match find_reg_name reg regs with
- | Nothing -> err_value
- | Just v ->
- let value = intern_reg_value v in
-(* let _ = Interp.debug_print ("Register read of " ^ rname ^ " returning value " ^ (Interp.string_of_value value) ^ "\n") in *)
- interp_to_value_helper debug arg ivh_mode err_str instr direction registers events exn_seen
- (fun _ -> Interp.resume mode stack (Just value)) end end)
- | (Interp.Action (Interp.Write_reg r slice value) stack,_,_) ->
- let ext_reg = extern_reg r slice in
- let reg_value = extern_reg_value ext_reg value in
- interp_to_value_helper debug arg ivh_mode err_str instr direction registers ((E_write_reg ext_reg reg_value)::events)
- exn_seen (fun _ -> Interp.resume mode stack Nothing)
- | (Interp.Action (Interp.Read_mem _ _ _) _,_,_) ->
- (Ivh_error (Interp_interface.Internal_error ("Read memory request in a " ^ errk_str)), events_out)
- | (Interp.Action (Interp.Read_mem_tagged _ _ _) _,_,_) ->
- (Ivh_error (Interp_interface.Internal_error ("Read memory tagged request in a " ^ errk_str)), events_out)
- | (Interp.Action (Interp.Write_mem _ _ _ _) _,_,_) ->
- (Ivh_error (Interp_interface.Internal_error ("Write memory request in a " ^ errk_str)), events_out)
- | (Interp.Action (Interp.Write_ea _ _) _,_,_) ->
- (Ivh_error (Interp_interface.Internal_error ("Write ea request in a " ^ errk_str)), events_out)
- | (Interp.Action (Interp.Excl_res _) _,_,_) ->
- (Ivh_error (Interp_interface.Internal_error ("Exclusive result request in a " ^ errk_str)), events_out)
- | (Interp.Action (Interp.Write_memv _ _ _) _,_,_) ->
- (Ivh_error (Interp_interface.Internal_error ("Write memory value request in a " ^ errk_str)), events_out)
- | (Interp.Action (Interp.Write_memv_tagged _ _ _ _) _,_,_) ->
- (Ivh_error (Interp_interface.Internal_error ("Write memory value tagged request in a " ^ errk_str)), events_out)
- | (outcome, _, _) ->
- (Ivh_error (Interp_interface.Internal_error ("Non expected action in a " ^ errk_str ^ " " ^ Interp.string_of_outcome outcome)), events_out)
-end
-
-let call_external_functions direction outcome =
- match outcome with
- | Interp.Action (Interp.Call_extern i value) stack ->
- match List.lookup i (Interp_lib.library_functions direction) with
- | Nothing -> Nothing
- | Just f -> Just (f value) end
- | _ -> Nothing end
-
-let build_context debug defs reads writes write_eas write_vals barriers excl_res externs =
- (*TODO add externs to to_top_env*)
- match Interp.to_top_env debug call_external_functions defs with
- | (_,((Interp.Env _ _ dir _ _ _ _ _ debug) as context)) ->
- Context context (if Interp.is_inc(dir) then D_increasing else D_decreasing)
- reads writes write_eas write_vals barriers excl_res externs end
-
-
-let translate_address top_level end_flag thunk_name registers address =
- let (Address bytes i) = address in
- let (Context top_env direction _ _ _ _ _ _ _ _ _) = top_level in
- let (Interp.Env _ _ _ _ _ _ _ _ debug) = top_env in
- let mode = make_mode true false debug in
- let int_mode = mode.internal_mode in
- let intern_val = intern_mem_value mode direction (memory_value_of_address end_flag address) in
- let val_str = Interp.string_of_value intern_val in
- let (arg,_) = Interp.to_exp int_mode Interp.eenv intern_val in
- let internal_direction = if direction = D_increasing then Interp_ast.IInc else Interp_ast.IDec in
- let (address_error,events) =
- interp_to_value_helper debug (Just (Opcode bytes)) Ivh_translate val_str (V_list []) internal_direction
- registers [] false
- (fun _ -> Interp.resume
- int_mode
- (Interp.Thunk_frame
- (E_aux (E_app (Id_aux (Id thunk_name) Interp_ast.Unknown) [arg])
- (Interp_ast.Unknown, Nothing))
- top_env Interp.eenv (Interp.emem "translate top level") Interp.Top) Nothing) in
- match (address_error) with
- | Ivh_value addr ->
- (address_of_byte_lifted_list (extern_vector_value addr), events)
- | Ivh_value_after_exn _ ->
- (Nothing, events)
- | Ivh_error err -> match err with
- | Interp_interface.Internal_error msg -> Assert_extra.failwith msg
- | _ -> Assert_extra.failwith "Not an internal error either" end
-end
-
-let value_of_instruction_param direction (name,typ,v) =
- let vec = intern_ifield_value direction v in
- let v = match vec with
- | Interp_ast.V_vector start dir bits ->
- match typ with
- | Bit -> match bits with | [b] -> b | _ -> Assert_extra.failwith "Expected a bitvector of length 1" end
- | Range _ -> Interp_lib.to_num Interp_lib.Unsigned vec
- | Enum _ _ -> Interp_lib.to_num Interp_lib.Unsigned vec
- | _ -> vec
- end
- | _ -> Assert_extra.failwith "intern_ifield did not return vector"
- end in v
-
-let intern_instruction direction (name,parms) =
- Interp_ast.V_ctor (Interp.id_of_string name) (mk_typ_id "ast") Interp_ast.C_Union
- (Interp_ast.V_tuple (List.map (value_of_instruction_param direction) parms))
-
-let instruction_analysis top_level end_flag thunk_name regn_to_reg_details registers (instruction : Interp_ast.value) =
- let (Context top_env direction _ _ _ _ _ _ _ _ _) = top_level in
- let (Interp.Env _ _ _ _ _ _ _ _ debug) = top_env in
- let mode = make_mode true false debug in
- let int_mode = mode.internal_mode in
- let val_str = Interp.string_of_value instruction in
- let (arg,_) = Interp.to_exp int_mode Interp.eenv instruction in
- let internal_direction = if direction = D_increasing then Interp_ast.IInc else Interp_ast.IDec in
- let (analysis_or_error,events) =
- interp_to_value_helper debug Nothing Ivh_analysis val_str (V_list []) internal_direction
- registers [] false
- (fun _ -> Interp.resume
- int_mode
- (Interp.Thunk_frame
- (E_aux (E_app (Id_aux (Id thunk_name) Interp_ast.Unknown) [arg])
- (Interp_ast.Unknown, Nothing))
- top_env Interp.eenv (Interp.emem "instruction analysis top level") Interp.Top) Nothing) in
- match (analysis_or_error) with
- | Ivh_value analysis ->
- (match analysis with
- | Interp_ast.V_tuple [Interp_ast.V_list regs1;
- Interp_ast.V_list regs2;
- Interp_ast.V_list regs3;
- Interp_ast.V_list nias;
- dia;
- ik] ->
- let reg_to_reg_name v = match v with
- | Interp_ast.V_ctor (Id_aux (Id "RFull") _) _ _ (Interp_ast.V_lit (L_aux (L_string n) _)) ->
- let (start,length,direction,_) = regn_to_reg_details n Nothing in
- Reg n start length direction
- | Interp_ast.V_ctor (Id_aux (Id "RSlice") _) _ _
- (Interp_ast.V_tuple [Interp_ast.V_lit (L_aux (L_string n) _);
- Interp_ast.V_lit (L_aux (L_num s1) _);
- Interp_ast.V_lit (L_aux (L_num s2) _);]) ->
- let (start,length,direction,_) = regn_to_reg_details n Nothing in
- Reg_slice n start direction (extern_slice direction start (natFromInteger s1, natFromInteger s2))
- (*Note, this may need to change order depending on the direction*)
- | Interp_ast.V_ctor (Id_aux (Id "RSliceBit") _) _ _
- (Interp_ast.V_tuple [Interp_ast.V_lit (L_aux (L_string n) _);
- Interp_ast.V_lit (L_aux (L_num s) _);]) ->
- let (start,length,direction,_) = regn_to_reg_details n Nothing in
- Reg_slice n start direction (extern_slice direction start (natFromInteger s,natFromInteger s))
- | Interp_ast.V_ctor (Id_aux (Id "RField") _) _ _
- (Interp_ast.V_tuple [Interp_ast.V_lit (L_aux (L_string n) _);
- Interp_ast.V_lit (L_aux (L_string f) _);]) ->
- let (start,length,direction,span) = regn_to_reg_details n (Just f) in
- Reg_field n start direction f (extern_slice direction start span)
- | _ -> Assert_extra.failwith "Register footprint analysis did not return an element of the specified type" end
- in
- let get_addr v = match address_of_byte_lifted_list (extern_vector_value v) with
- | Just addr -> addr
- | Nothing -> failwith "get_nia encountered invalid address" end in
- let dia_to_dia = function
- | Interp_ast.V_ctor (Id_aux (Id "DIAFP_none") _) _ _ _ -> DIA_none
- | Interp_ast.V_ctor (Id_aux (Id "DIAFP_concrete") _) _ _ address ->
- DIA_concrete_address (get_addr address)
- | Interp_ast.V_ctor (Id_aux (Id "DIAFP_reg") _) _ _ reg -> DIA_register (reg_to_reg_name reg)
- | _ -> failwith "Register footprint analysis did not return dia of expected type" end in
- let nia_to_nia = function
- | Interp_ast.V_ctor (Id_aux (Id "NIAFP_successor") _) _ _ _ -> NIA_successor
- | Interp_ast.V_ctor (Id_aux (Id "NIAFP_concrete_address") _) _ _ address ->
- NIA_concrete_address (get_addr address)
- | Interp_ast.V_ctor (Id_aux (Id "NIAFP_indirect_address") _) _ _ _ ->
- NIA_indirect_address
- | _ -> failwith "Register footprint analysis did not return nia of expected type" end in
- let (regs1,regs2,regs3,nias,dia,ik) =
- (List.map reg_to_reg_name regs1,
- List.map reg_to_reg_name regs2,
- List.map reg_to_reg_name regs3,
- List.map nia_to_nia nias,
- dia_to_dia dia,
- fromInterpValue ik) in
- ((regs1,regs2,regs3,nias,dia,ik), events)
- | _ -> Assert_extra.failwith "Analysis did not return a four-tuple of lists" end)
- | Ivh_value_after_exn _ -> Assert_extra.failwith "Instruction analysis failed"
- | Ivh_error err -> match err with
- | Interp_interface.Internal_error msg -> Assert_extra.failwith msg
- | _ -> Assert_extra.failwith "Not an internal error either" end
-end
-
-let rec find_instruction i = function
- | [] -> Nothing
- | Instruction_extractor.Skipped::instrs -> find_instruction i instrs
- | ((Instruction_extractor.Instr_form name parms effects) as instr)::instrs ->
- if i = name
- then Just instr
- else find_instruction i instrs
-end
-
-let migrate_typ = function
- | Instruction_extractor.IBit -> Bit
- | Instruction_extractor.IBitvector len -> Bvector len
- | Instruction_extractor.IRange len -> Range len
- | Instruction_extractor.IEnum s max -> Enum s max
- | Instruction_extractor.IOther -> Other
-end
-
-
-let interp_value_to_instr_external top_level instr =
- let (Context (Interp.Env _ instructions _ _ _ _ _ _ debug) _ _ _ _ _ _ _ _ _ _) = top_level in
- match instr with
- | Interp_ast.V_ctor (Id_aux (Id i) _) _ _ parm ->
- match (find_instruction i instructions) with
- | Just(Instruction_extractor.Instr_form name parms effects) ->
- match (parm,parms) with
- | (Interp_ast.V_lit (L_aux L_unit _),[]) -> (name, [])
- | (value,[(p_name,ie_typ)]) ->
- let t = migrate_typ ie_typ in
- (name, [(p_name,t, (extern_ifield_value name p_name value t))])
- | (Interp_ast.V_tuple vals,parms) ->
- (name,
- (Interp_utilities.map2 (fun value (p_name,ie_typ) ->
- let t = migrate_typ ie_typ in
- (p_name,t,(extern_ifield_value name p_name value t))) vals parms))
- | _ -> Assert_extra.failwith "decoded instruction doesn't match expectation"
- end
- | _ -> Assert_extra.failwith ("failed to find instruction " ^ i)
- end
- | _ -> Assert_extra.failwith "decoded instruction not a constructor"
- end
-
-
-let decode_to_instruction top_level registers value : instruction_or_decode_error =
- let (Context ((Interp.Env _ instructions _ _ _ _ _ _ debug) as top_env) direction _ _ _ _ _ _ _ _ _) = top_level in
- let mode = make_interpreter_mode true false debug in
- let intern_val = intern_opcode direction value in
- let val_str = Interp.string_of_value intern_val in
- let (arg,_) = Interp.to_exp mode Interp.eenv intern_val in
- let internal_direction = if direction = D_increasing then Interp_ast.IInc else Interp_ast.IDec in
- let (instr_decoded_error,events) =
- interp_to_value_helper debug (Just value) Ivh_decode val_str (V_list []) internal_direction registers [] false
- (fun _ -> Interp.resume
- mode
- (Interp.Thunk_frame
- (E_aux (E_app (Id_aux (Id "decode") Interp_ast.Unknown) [arg]) (Interp_ast.Unknown, Nothing))
- top_env Interp.eenv (Interp.emem "decode top level") Interp.Top) Nothing) in
- match (instr_decoded_error) with
- | Ivh_value instr ->
- (* let instr_external = interp_value_to_instr_external top_level instr in*)
- let (instr_decoded_error,events) =
- interp_to_value_helper debug (Just value) Ivh_unsupported val_str instr (*instr_external*) internal_direction
- registers [] false
- (fun _ -> Interp.resume
- mode
- (Interp.Thunk_frame
- (E_aux (E_app (Id_aux (Id "supported_instructions") Interp_ast.Unknown) [arg])
- (Interp_ast.Unknown, Nothing))
- top_env Interp.eenv (Interp.emem "decode second top level") Interp.Top) Nothing) in
- match (instr_decoded_error) with
- | Ivh_value _ -> IDE_instr instr (*instr_external*)
- | Ivh_value_after_exn v ->
- Assert_extra.failwith "supported_instructions called exit, so support will be needed for that now"
- | Ivh_error err -> IDE_decode_error err
- end
- | Ivh_value_after_exn _ ->
- Assert_extra.failwith ("Decode of " ^ val_str ^ " called exit.")
- | Ivh_error err -> IDE_decode_error err
-end
-
-
-let decode_to_istate (top_level:context) registers (value:opcode) : i_state_or_error =
- let (Context top_env _ _ _ _ _ _ _ _ _ _) = top_level in
- match decode_to_instruction top_level registers value with
- | IDE_instr instr ->
- let mode = make_interpreter_mode true false in
- let (arg,_) = Interp.to_exp mode Interp.eenv instr in
- Instr instr
- (IState (Interp.Thunk_frame
- (E_aux (E_app (Id_aux (Id "execute") Interp_ast.Unknown) [arg]) (Interp_ast.Unknown,Nothing))
- top_env Interp.eenv (Interp.emem "execute") Interp.Top)
- top_level)
- | IDE_decode_error de -> Decode_error de
- end
-
-
-let instr_external_to_interp_value top_level instr =
- let (Context _ direction _ _ _ _ _ _ _ _ _) = top_level in
- let (name,parms) = instr in
-
- let get_value (_,typ,v) =
- let vec = intern_ifield_value direction v in
- match vec with
- | Interp_ast.V_vector start dir bits ->
- match typ with
- | Bit -> match bits with | [b] -> b | _ -> Assert_extra.failwith "Expected a bitvector of length 1" end
- | Range _ -> Interp_lib.to_num Interp_lib.Unsigned vec
- | Enum _ _ -> Interp_lib.to_num Interp_lib.Unsigned vec
- | _ -> vec
- end
- | _ -> Assert_extra.failwith "intern_ifield did not return vector"
- end in
-
- let parmsV = match parms with
- | [] -> Interp_ast.V_lit (L_aux L_unit Unknown)
- | _ -> Interp_ast.V_tuple (List.map get_value parms)
- end in
- (*This type shouldn't be hard-coded*)
- Interp_ast.V_ctor (Interp_ast.Id_aux (Interp_ast.Id name) Interp_ast.Unknown)
- (mk_typ_id "ast") Interp_ast.C_Union parmsV
-
-val instruction_to_istate : context -> Interp_ast.value -> instruction_state
-let instruction_to_istate (top_level:context) (instr:Interp_ast.value) : instruction_state =
- let mode = make_interpreter_mode true false in
- let (Context top_env _ _ _ _ _ _ _ _ _ _) = top_level in
- let ast_node = fst (Interp.to_exp mode Interp.eenv instr) in
- (IState
- (Interp.Thunk_frame
- (E_aux (E_app (Id_aux (Id "execute") Interp_ast.Unknown) [ast_node])
- (Interp_ast.Unknown,Nothing))
- top_env Interp.eenv (Interp.emem "execute") Interp.Top)
- top_level)
-
-let rec interp_to_outcome mode context thunk =
- let (Context _ direction mem_reads mem_reads_tagged mem_writes mem_write_eas mem_write_vals mem_write_vals_tagged barriers excl_res spec_externs) = context in
- let internal_direction = if direction = D_increasing then Interp_ast.IInc else Interp_ast.IDec in
- match thunk () with
- | (Interp.Value _,lm,le) -> (Done,lm)
- | (Interp.Error l msg,lm,le) -> (Error msg,lm)
- | (Interp.Action a next_state,lm,le) ->
- (match a with
- | Interp.Read_reg reg_form slice ->
- (Read_reg (extern_reg reg_form slice)
- (fun v ->
- let v = (intern_reg_value v) in
- let v = if mode.internal_mode.Interp.track_values then (Interp_ast.V_track v (Set.fromList [reg_form])) else v in
- IState (Interp.add_answer_to_stack next_state v) context), lm)
- | Interp.Write_reg reg_form slice value ->
- let reg_name = extern_reg reg_form slice in
- (Write_reg reg_name (extern_reg_value reg_name value) (IState next_state context),lm)
- | Interp.Read_mem (Id_aux (Id i) _) value slice ->
- (match List.lookup i mem_reads with
- | (Just (MR read_k f)) ->
- let (location, length, tracking) = (f mode value) in
- if (List.length location) = 8
- then let address_int = match (maybe_all (List.map byte_of_byte_lifted location)) with
- | Just bs -> Just (integer_of_byte_list bs)
- | _ -> Nothing end in
- Read_mem read_k (Address_lifted location address_int) length tracking
- (fun v -> IState (Interp.add_answer_to_stack next_state (intern_mem_value mode direction v)) context)
- else Error ("Memory address on read is not 64 bits")
- | _ -> Error ("Memory function " ^ i ^ " not found")
- end , lm)
- | Interp.Read_mem_tagged (Id_aux (Id i) _) value slice ->
- (match List.lookup i mem_reads_tagged with
- | (Just (MRT read_k f)) ->
- let (location, length, tracking) = (f mode value) in
- if (List.length location) = 8
- then let address_int = match (maybe_all (List.map byte_of_byte_lifted location)) with
- | Just bs -> Just (integer_of_byte_list bs)
- | _ -> Nothing end in
- Read_mem_tagged read_k (Address_lifted location address_int) length tracking
- (fun (tag, v) -> IState (Interp.add_answer_to_stack next_state (Interp_ast.V_tuple ([(bitl_to_ibit tag);(intern_mem_value mode direction v)]))) context)
- else Error ("Memory address on read is not 64 bits")
- | _ -> Error ("Memory function " ^ i ^ " not found")
- end , lm)
- | Interp.Write_mem (Id_aux (Id i) _) loc_val slice write_val ->
- (match List.lookup i mem_writes with
- | (Just (MW write_k f return)) ->
- let (location, length, tracking) = (f mode loc_val) in
- let (value, v_tracking) = extern_with_track mode extern_mem_value write_val in
- if (List.length location) = 8
- then let address_int = match (maybe_all (List.map byte_of_byte_lifted location)) with
- | Just bs -> Just (integer_of_byte_list bs)
- | _ -> Nothing end in
- Write_mem write_k (Address_lifted location address_int)
- length tracking value v_tracking
- (fun b ->
- match return with
- | Nothing -> (IState (Interp.add_answer_to_stack next_state Interp.unitv) context)
- | Just return_bool -> return_bool (IState next_state context) b end)
- else Error "Memory address on write is not 64 bits"
- | _ -> Error ("Memory function " ^ i ^ " not found")
- end , lm)
- | Interp.Write_ea (Id_aux (Id i) _) loc_val ->
- (match List.lookup i mem_write_eas with
- | (Just (MEA write_k f)) ->
- let (location, length, tracking) = (f mode loc_val) in
- if (List.length location) = 8
- then let address_int = match (maybe_all (List.map byte_of_byte_lifted location)) with
- | Just bs -> Just (integer_of_byte_list bs)
- | _ -> Nothing end in
- Write_ea write_k (Address_lifted location address_int) length tracking (IState next_state context)
- else Error "Memory address for write is not 64 bits"
- | _ -> Error ("Memory function " ^ i ^ " to signal impending write, not found") end, lm)
- | Interp.Excl_res (Id_aux (Id i) _) ->
- (match excl_res with
- | (Just (i', ER return)) ->
- Excl_res (fun b ->
- match return with
- | Nothing -> (IState (Interp.add_answer_to_stack next_state Interp.unitv) context)
- | Just return_bool -> return_bool (IState next_state context) b end)
- | _ -> Error ("Exclusive result function, not provided") end, lm)
- | Interp.Write_memv (Id_aux (Id i) _) address_val write_val ->
- (match List.lookup i mem_write_vals with
- | (Just (MV parmf return)) ->
- let (value, v_tracking) =
- match (Interp.detaint write_val) with
- | Interp_ast.V_tuple[_;v] -> extern_with_track mode extern_mem_value (Interp.retaint write_val v)
- | _ -> extern_with_track mode extern_mem_value write_val end in
- let location_opt = match parmf mode address_val with
- | Nothing -> Nothing
- | Just mv -> let address_int = match (maybe_all (List.map byte_of_byte_lifted mv)) with
- | Just bs -> Just (integer_of_byte_list bs)
- | _ -> Nothing end in Just (Address_lifted mv address_int) end
- in
- Write_memv location_opt value v_tracking
- (fun b ->
- match return with
- | Nothing -> (IState (Interp.add_answer_to_stack next_state Interp.unitv) context)
- | Just return_bool -> return_bool (IState next_state context) b end)
- | _ -> Error ("Memory function " ^ i ^ " not found") end, lm)
- | Interp.Write_memv_tagged (Id_aux (Id i) _) address_val tag_val write_val ->
- (match List.lookup i mem_write_vals_tagged with
- | (Just (MVT parmf return)) ->
- let (value, v_tracking) =
- match (Interp.detaint write_val) with
- | Interp_ast.V_tuple[_;v] -> extern_with_track mode extern_mem_value (Interp.retaint write_val v)
- | _ -> extern_with_track mode extern_mem_value write_val end in
- let location_opt = match parmf mode address_val with
- | Nothing -> Nothing
- | Just mv -> let address_int = match (maybe_all (List.map byte_of_byte_lifted mv)) with
- | Just bs -> Just (integer_of_byte_list bs)
- | _ -> Nothing end in Just (Address_lifted mv address_int) end
- in
- Write_memv_tagged location_opt ((bitl_from_ibit tag_val), value) v_tracking
- (fun b ->
- match return with
- | Nothing -> (IState (Interp.add_answer_to_stack next_state Interp.unitv) context)
- | Just return_bool -> return_bool (IState next_state context) b end)
- | _ -> Error ("Memory function " ^ i ^ " not found") end, lm)
- | Interp.Barrier (Id_aux (Id i) _) lval ->
- (match List.lookup i barriers with
- | Just barrier ->
- Barrier barrier (IState next_state context)
- | _ -> Error ("Barrier " ^ i ^ " function not found") end, lm)
- | Interp.Footprint (Id_aux (Id i) _) lval ->
- (Footprint (IState next_state context), lm)
- | Interp.Nondet exps tag ->
- (match tag with
- | Tag_unknown _ ->
- let possible_states = List.map (Interp.set_in_context next_state) exps in
- let cleared_possibles = List.map Interp.clear_stack_state possible_states in
- Analysis_non_det (List.map (fun i -> IState i context) cleared_possibles) (IState next_state context)
- | _ ->
- let nondet_states = List.map (Interp.set_in_context next_state) exps in
- Nondet_choice (List.map (fun i -> IState i context) nondet_states) (IState next_state context) end, lm)
- | Interp.Call_extern i value ->
- (match List.lookup i ((Interp_lib.library_functions internal_direction) ++ spec_externs) with
- | Nothing -> (Error ("External function not available " ^ i), lm)
- | Just f ->
- if (mode.internal_mode.Interp.eager_eval)
- then interp_to_outcome mode context
- (fun _ -> Interp.resume mode.internal_mode next_state (Just (f value)))
- else let new_v = f value in
- (Internal (Just i)
- (Just (fun _ -> (Interp.string_of_value value) ^ "=>" ^ (Interp.string_of_value new_v)))
- (IState (Interp.add_answer_to_stack next_state new_v) context), lm)
- end)
- | Interp.Return value ->
- interp_to_outcome mode context (fun _ -> Interp.resume mode.internal_mode next_state (Just value))
- | Interp.Step l Nothing Nothing -> (Internal Nothing Nothing (IState next_state context), lm)
- | Interp.Step l (Just name) Nothing -> (Internal (Just name) Nothing (IState next_state context), lm)
- | Interp.Step l (Just name) (Just value) ->
- (Internal (Just name) (Just (fun _ -> Interp.string_of_value value)) (IState next_state context), lm)
- | Interp.Fail value ->
- (match value with
- | Interp_ast.V_ctor (Id_aux (Id "Some") _) _ _ (Interp_ast.V_lit (L_aux (L_string s) _)) -> (Fail (Just s),lm)
- | _ -> (Fail Nothing,lm) end)
- | Interp.Exit e ->
- (Escape (match e with
- | E_aux (E_lit (L_aux L_unit _)) _ -> Nothing
- | _ -> Just (IState (Interp.set_in_context next_state e) context) end)
- (IState next_state context),
- (snd (Interp.get_stack_state next_state)))
- | _ -> Assert_extra.failwith "Action not as expected: consider if a deiid could have appeared"
- end )
- end
-
-
-
-(*Update slice potentially here*)
-let reg_size = function
- | Reg i _ size _ -> size
- | Reg_slice i _ _ (p1,p2) -> if p1 < p2 then (p2-p1 +1) else (p1-p2 +1)
- | Reg_field i _ _ f (p1,p2) -> if p1 < p2 then (p2-p1 +1) else (p1-p2 +1)
- | Reg_f_slice i _ _ f _ (p1,p2) -> if p1 < p2 then p2-p1 +1 else p1-p2+1
-end
-
-
-let interp mode (IState interp_state context) =
- match interp_to_outcome mode context (fun _ -> Interp.resume mode.internal_mode interp_state Nothing) with
- | (o,_) -> o
-end
-
-
-(*ie_loop returns a tuple of event list, and a tuple ofinternal interpreter memory, bool to indicate normal or exceptional termination*)
-let rec ie_loop mode register_values (IState interp_state context) =
- let (Context _ direction externs reads reads_tagged writes write_eas write_vals write_vals_tagged barriers excl_res) = context in
- let unknown_reg size =
- <| rv_bits = (List.replicate size Bitl_unknown);
- rv_start = 0;
- rv_start_internal = (if direction = D_increasing then 0 else (size-1));
- rv_dir = direction |> in
- let unknown_mem size = List.replicate size (Byte_lifted (List.replicate 8 Bitl_unknown)) in
- match interp_to_outcome mode context (fun _ -> Interp.resume mode.internal_mode interp_state Nothing) with
- | (Done,lm) -> ([],(lm,true))
- | (Error msg,lm) -> ([E_error msg],(lm,false))
- | (Escape Nothing i_state,lm) -> ([E_escape],(lm,false))
- (*Do we want to record anything about the escape expression, which may be a function call*)
- | (Escape _ i_state,lm) -> ([E_escape],(lm,false))
- | (Fail _,lm) -> ([E_escape],(lm,false))
- | (Read_reg reg i_state_fun,_) ->
- let v = (match register_values with
- | Nothing -> unknown_reg (reg_size reg)
- | Just(registers) -> match find_reg_name reg registers with
- | Nothing -> unknown_reg (reg_size reg)
- | Just v -> v end end) in
- let (events,analysis_data) = ie_loop mode register_values (i_state_fun v) in
- ((E_read_reg reg)::events,analysis_data)
- | (Write_reg reg value i_state, _)->
- let (events,analysis_data) = ie_loop mode register_values i_state in
- ((E_write_reg reg value)::events,analysis_data)
- | (Read_mem read_k loc length tracking i_state_fun, _) ->
- let (events,analysis_data) = ie_loop mode register_values (i_state_fun (unknown_mem length)) in
- ((E_read_mem read_k loc length tracking)::events,analysis_data)
- | (Read_mem_tagged read_k loc length tracking i_state_fun, _) ->
- let (events,analysis_data) = ie_loop mode register_values (i_state_fun (Bitl_unknown, (unknown_mem length))) in
- ((E_read_memt read_k loc length tracking)::events,analysis_data)
- | (Write_mem write_k loc length tracking value v_tracking i_state_fun, _) ->
- let (events,analysis_data) = ie_loop mode register_values (i_state_fun true) in
- let (events',analysis_data) = ie_loop mode register_values (i_state_fun false) in
- (*TODO: consider if lm and lm should be distinct and merged*)
- ((E_write_mem write_k loc length tracking value v_tracking)::(events++events'),analysis_data)
- | (Write_ea write_k loc length tracking i_state, _) ->
- let (events,analysis_data) = ie_loop mode register_values i_state in
- ((E_write_ea write_k loc length tracking)::events,analysis_data)
- | (Excl_res i_state_fun, _) ->
- let (events,analysis_data) = ie_loop mode register_values (i_state_fun true) in
- let (events',analysis_data) = ie_loop mode register_values (i_state_fun false) in
- (*TODO: consider if lm and lm should be merged*)
- (E_excl_res :: (events ++ events'), analysis_data)
- | (Write_memv opt_address value tracking i_state_fun, _) ->
- let (events,analysis_data) = ie_loop mode register_values (i_state_fun true) in
- let (events',analysis_data) = ie_loop mode register_values (i_state_fun false) in
- (*TODO: consider if lm and lm should be merged*)
- ((E_write_memv opt_address value tracking)::(events++events'),analysis_data)
- | (Write_memv_tagged opt_address value tracking i_state_fun, _) ->
- let (events,analysis_data) = ie_loop mode register_values (i_state_fun true) in
- let (events',analysis_data) = ie_loop mode register_values (i_state_fun false) in
- (*TODO: consider if lm and lm should be merged*)
- ((E_write_memvt opt_address value tracking)::(events++events'),analysis_data)
- | (Barrier barrier_k i_state, _) ->
- let (events,analysis_data) = ie_loop mode register_values i_state in
- ((E_barrier barrier_k)::events,analysis_data)
- | (Footprint i_state, _) ->
- let (events,analysis_data) = ie_loop mode register_values i_state in
- (E_footprint::events,analysis_data)
- | (Internal _ _ next, _) -> (ie_loop mode register_values next)
- | (Analysis_non_det possible_istates i_state,_) ->
- if possible_istates = []
- then ie_loop mode register_values i_state
- else
- let (possible_events,possible_states) = List.unzip(List.map (ie_loop mode register_values) possible_istates) in
- let (unified_mem,update_mem) = List.foldr
- (fun (lm,terminated_normally) (mem,update_mem) ->
- if terminated_normally && update_mem
- then (Interp.merge_lmems lm mem, true)
- else if terminated_normally
- then (lm, true)
- else (mem, false))
- (List_extra.head possible_states) (List_extra.tail possible_states) in
- let updated_i_state =
- if update_mem
- then match i_state with
- | (IState interp_state context) -> IState (Interp.update_stack_state interp_state unified_mem) context end
- else i_state in
- let (events,analysis_data) = ie_loop mode register_values updated_i_state in
- ((List.concat possible_events)++events, analysis_data)
- | _ -> Assert_extra.failwith "interp_to_outcome may have produced a nondet action"
- end ;;
-
-val interp_exhaustive : bool -> maybe (list (reg_name * register_value)) -> instruction_state -> list event
-let interp_exhaustive debug register_values i_state =
- let mode = make_mode_exhaustive debug in
- match ie_loop mode register_values i_state with
- | (events,_) -> events
-end
-
-
-val state_to_outcome_s :
- (instruction_state -> unit -> (string * string)) ->
- interp_mode -> instruction_state -> Sail_impl_base.outcome_s unit
-val outcome_to_outcome :
- (instruction_state -> unit -> (string * string)) ->
- interp_mode -> Interp_interface.outcome -> Sail_impl_base.outcome unit
-
-let rec outcome_to_outcome pp_instruction_state mode =
- let state_to_outcome_s =
- state_to_outcome_s pp_instruction_state in
- function
- | Interp_interface.Read_mem rk addr size _ k ->
- Sail_impl_base.Read_mem (rk,addr,size) (fun v -> state_to_outcome_s mode (k v))
- | Interp_interface.Write_mem rk addr size _ mv _ k ->
- failwith "Write_mem not supported anymore"
- | Interp_interface.Write_ea wk addr size _ state ->
- Sail_impl_base.Write_ea (wk,addr,size) (state_to_outcome_s mode state)
- | Interp_interface.Excl_res k ->
- Sail_impl_base.Excl_res (fun v -> state_to_outcome_s mode (k v))
- | Interp_interface.Write_memv _ mv _ k ->
- Sail_impl_base.Write_memv mv (fun v -> state_to_outcome_s mode (k v))
- | Interp_interface.Barrier bk state ->
- Sail_impl_base.Barrier bk (state_to_outcome_s mode state)
- | Interp_interface.Footprint state ->
- Sail_impl_base.Footprint (state_to_outcome_s mode state)
- | Interp_interface.Read_reg r k ->
- Sail_impl_base.Read_reg r (fun v -> state_to_outcome_s mode (k v))
- | Interp_interface.Write_reg r rv state ->
- Sail_impl_base.Write_reg (r,rv) (state_to_outcome_s mode state)
- | Interp_interface.Nondet_choice _ _ ->
- failwith "Nondet_choice not supported yet"
- | Interp_interface.Escape _ _ ->
- Sail_impl_base.Escape Nothing
- | Interp_interface.Fail maybestring ->
- Sail_impl_base.Fail maybestring
- | Interp_interface.Internal maybestring maybeprint state ->
- Sail_impl_base.Internal (maybestring,maybeprint) (state_to_outcome_s mode state)
- | Interp_interface.Analysis_non_det _ _ ->
- failwith "Analysis_non_det outcome returned"
- | Interp_interface.Done ->
- Sail_impl_base.Done ()
- | Interp_interface.Error message ->
- failwith ("Interpreter error: " ^ message)
-end
-
-and state_to_outcome_s pp_instruction_state mode state =
- let next_outcome' = interp mode state in
- let next_outcome = outcome_to_outcome pp_instruction_state mode next_outcome' in
- (next_outcome,
- Just ((pp_instruction_state state),
- (fun env -> interp_exhaustive mode.internal_mode.Interp.debug (Just env) state))
- )
-
-val initial_outcome_s_of_instruction : (instruction_state -> unit -> (string * string)) -> context -> interp_mode -> Interp_ast.value -> Sail_impl_base.outcome_s unit
-let initial_outcome_s_of_instruction pp_instruction_state context mode instruction =
- let state = instruction_to_istate context instruction in
- state_to_outcome_s pp_instruction_state mode state
-
-
-(*This code is no longer uptodate. If no one is using it, then we don't need to fix it
-If someone is using it, this will let me know*)
-(*let rec rr_ie_loop mode i_state =
- let (IState _ (Context _ direction _ _ _ _ _ _)) = i_state in
- let unknown_reg size =
- <| rv_bits = (List.replicate size Bitl_unknown);
- rv_start = 0;
- rv_start_internal = (if direction=D_increasing then 0 else (size-1));
- rv_dir = direction |> in
- let unknown_mem size = List.replicate size (Byte_lifted (List.replicate 8 Bitl_unknown)) in
- match (interp mode i_state) with
- | Done -> ([],Done)
- | Error msg -> ([E_error msg], Error msg)
- | Read_reg reg i_state_fun -> ([], Read_reg reg i_state_fun)
- | Write_reg reg value i_state->
- let (events,outcome) = (rr_ie_loop mode i_state) in
- (((E_write_reg reg value)::events), outcome)
- | Read_mem read_k loc length tracking i_state_fun ->
- let (events,outcome) = (rr_ie_loop mode (i_state_fun (unknown_mem length))) in
- (((E_read_mem read_k loc length tracking)::events),outcome)
- | Write_mem write_k loc length tracking value v_tracking i_state_fun ->
- let (events,outcome) = (rr_ie_loop mode (i_state_fun true)) in
- (((E_write_mem write_k loc length tracking value v_tracking)::events),outcome)
- | Barrier barrier_k i_state ->
- let (events,outcome) = (rr_ie_loop mode i_state) in
- (((E_barrier barrier_k)::events),outcome)
- | Internal _ _ next -> (rr_ie_loop mode next)
- end ;;
-
-let rr_interp_exhaustive mode i_state events =
- let (events',outcome) = rr_ie_loop mode i_state in ((events ++ events'),outcome)
-*)
-
-
-let instruction_kind_of_event nia_reg : event -> maybe instruction_kind = function
- (* this is a hack to avoid adding special events for AArch64 transactional-memory *)
- | E_read_reg (Reg "TMStartEffect" 63 64 D_decreasing) -> Just (IK_trans Transaction_start)
- | E_write_reg (Reg "TMAbortEffect" 63 64 D_decreasing) _ -> Just (IK_trans Transaction_abort)
- | E_barrier Barrier_TM_COMMIT -> Just (IK_trans Transaction_commit)
-
- | E_read_mem rk _ _ _ -> Just (IK_mem_read rk)
- | E_read_memt rk _ _ _ -> Just (IK_mem_read rk)
- | E_write_mem wk _ _ _ _ _ -> Just (IK_mem_write wk)
- | E_write_ea wk _ _ _ -> Just (IK_mem_write wk)
- | E_excl_res -> Nothing
- | E_write_memv _ _ _ -> Nothing
- | E_write_memvt _ _ _ -> Nothing
- | E_barrier bk -> Just (IK_barrier bk)
- | E_footprint -> Nothing
- | E_read_reg _ -> Nothing
- | E_write_reg reg _ ->
- if register_base_name reg = register_base_name nia_reg then Just IK_branch
- else Nothing
- | E_error s -> failwith ("instruction_kind_of_event error: "^s)
- | E_escape -> Nothing (*failwith ("instruction_kind_of_event escape")*)
- end
-(* TODO: how can we decide, looking only at the output of interp_exhaustive,
- that an instruction is a conditional branch? *)
-
-let regs_in_of_event : event -> list reg_name = function
- | E_read_mem _ _ _ _ -> []
- | E_read_memt _ _ _ _ -> []
- | E_write_mem _ _ _ _ _ _ -> []
- | E_write_ea _ _ _ _ -> []
- | E_excl_res -> []
- | E_write_memv _ _ _ -> []
- | E_write_memvt _ _ _ -> []
- | E_barrier _ -> []
- | E_footprint -> []
- | E_read_reg r -> [r]
- | E_write_reg _ _ -> []
- | E_error s -> failwith ("regs_in_of_event "^s)
- | E_escape -> [] (*failwith ("regs_in_of_event escape")*)
- end
-
-let regs_out_of_event : event -> list reg_name = function
- | E_read_mem _ _ _ _ -> []
- | E_read_memt _ _ _ _ -> []
- | E_write_mem _ _ _ _ _ _ -> []
- | E_write_ea _ _ _ _ -> []
- | E_excl_res -> []
- | E_write_memv _ _ _ -> []
- | E_write_memvt _ _ _ -> []
- | E_barrier _ -> []
- | E_footprint -> []
- | E_read_reg _ -> []
- | E_write_reg r _ -> [r]
- | E_error s -> failwith ("regs_out_of_event "^s)
- | E_escape -> [] (*failwith ("regs_out_of_event escape")*)
- end
-
-
-let regs_feeding_memory_access_address_of_event : event -> list reg_name = function
- | E_read_mem _ _ _ (Just rs) -> rs
- | E_read_mem _ _ _ None -> []
- | E_read_memt _ _ _ (Just rs) -> rs
- | E_read_memt _ _ _ None -> []
- | E_write_mem _ _ _ (Just rs) _ _ -> rs
- | E_write_mem _ _ _ None _ _ -> []
- | E_write_ea wk _ _ (Just rs) -> rs
- | E_write_ea wk _ _ None -> []
- | E_excl_res -> []
- | E_write_memv _ _ _ -> []
- | E_write_memvt _ _ _ -> []
- | E_barrier bk -> []
- | E_footprint -> []
- | E_read_reg _ -> []
- | E_write_reg _ _ -> []
- | E_error s -> failwith ("regs_feeding_memory_access_address_of_event " ^ s)
- | E_escape -> [] (*failwith ("regs_feeding_memory_access_address_of_event escape")*)
-end
-
-let nia_address_of_event nia_reg (event: event) : maybe (maybe address) =
- (* return Nothing for unknown/undef *)
- match event with
- | E_write_reg reg reg_value ->
- if register_base_name reg = register_base_name nia_reg then
- let al = match address_lifted_of_register_value reg_value with
- | Just al -> al
- | Nothing -> failwith "nia_register_of_event: NIA read not 64 bits"
- end in
- Just (address_of_address_lifted al)
- else Nothing
- | _ -> Nothing
- end
-
-let interp_instruction_analysis
- top_level
- (interp_exhaustive : ((list (reg_name * register_value)) -> list event))
- instruction
- nia_reg
- (nias_function : (list (maybe address) -> list nia))
- ism environment =
-
- let es = interp_exhaustive environment in
-
- let regs_in = List.concatMap regs_in_of_event es in
- let regs_out = List.concatMap regs_out_of_event es in
-
- let regs_feeding_address = List.concatMap regs_feeding_memory_access_address_of_event es in
-
- let nia_address = List.mapMaybe (nia_address_of_event nia_reg) es in
- let nias = nias_function nia_address in
-
- let dia = DIA_none in (* FIX THIS! *)
-
- let inst_kind =
- match List.mapMaybe (instruction_kind_of_event nia_reg) es with
- | [] -> IK_simple
- | inst_kind :: [] -> inst_kind
- | inst_kind :: inst_kinds ->
- if forall (inst_kind' MEM inst_kinds). inst_kind' = inst_kind then
- inst_kind
-
- else if
- (forall (inst_kind' MEM (inst_kind :: inst_kinds)).
- match inst_kind' with
- | IK_mem_read _ -> true
- | IK_mem_write _ -> true
- | IK_mem_rmw _ -> false
- | IK_barrier _ -> false
- | IK_branch -> false
- | IK_trans _ -> false
- | IK_simple -> false
- end)
- then
- match
- List.partition
- (function IK_mem_read _ -> true | _ -> false end)
- (inst_kind :: inst_kinds)
- with
- | ((IK_mem_read r) :: rs, (IK_mem_write w) :: ws) ->
- let () = ensure (forall (r' MEM rs). r' = IK_mem_read r) "more than one kind of read" in
- let () = ensure (forall (w' MEM ws). w' = IK_mem_write w) "more than one kind of write" in
- IK_mem_rmw (r, w)
- | _ -> fail
- end
-
- (* the TSTART instruction can also be aborted so it will have two kinds of events *)
- else if (exists (inst_kind' MEM (inst_kind :: inst_kinds)).
- inst_kind' = IK_trans Transaction_start) &&
- (forall (inst_kind' MEM (inst_kind :: inst_kinds)).
- inst_kind' = IK_trans Transaction_start
- || inst_kind' = IK_trans Transaction_abort)
- then
- IK_trans Transaction_start
-
- else
- failwith "multiple instruction kinds"
- end in
-
- (regs_in, regs_out, regs_feeding_address, nias, dia, inst_kind)
-
-let interp_handwritten_instruction_analysis context endianness instruction analysis_function reg_info environment =
- fst (instruction_analysis context endianness analysis_function
- reg_info (Just environment) instruction)
-
-
-
-val print_and_fail_of_inequal : forall 'a. Show 'a =>
- (string -> unit) ->
- (instruction -> string) ->
- (string * 'a) -> (string * 'a) -> unit
-let print_and_fail_if_inequal
- (print_endline,instruction)
- (name1,xs1) (name2,xs2) =
- if xs1 = xs2 then ()
- else
- let () = print_endline (name1^": "^show xs1) in
- let () = print_endline (name2^": "^show xs2) in
- failwith (name1^" and "^ name2^" inequal for instruction: \n" ^ Interp.string_of_value instruction)
-
-let interp_compare_analyses
- print_endline
- (non_pseudo_registers : set reg_name -> set reg_name)
- context
- endianness
- interp_exhaustive
- (instruction : Interp_ast.value)
- nia_reg
- (nias_function : (list (maybe address) -> list nia))
- ism
- environment
- analysis_function
- reg_info =
- let (regs_in1,regs_out1,regs_feeding_address1,nias1,dia1,inst_kind1) =
- interp_instruction_analysis context interp_exhaustive instruction nia_reg nias_function ism
- environment in
- let (regs_in1S,regs_out1S,regs_feeding_address1S,nias1S) =
- (Set.fromList regs_in1,
- Set.fromList regs_out1,
- Set.fromList regs_feeding_address1,
- Set.fromList nias1) in
- let (regs_in1S,regs_out1S,regs_feeding_addres1S) =
- (non_pseudo_registers regs_in1S,
- non_pseudo_registers regs_out1S,
- non_pseudo_registers regs_feeding_address1S) in
-
- let (regs_in2,regs_out2,regs_feeding_address2,nias2,dia2,inst_kind2) =
- interp_handwritten_instruction_analysis
- context endianness instruction analysis_function reg_info environment in
- let (regs_in2S,regs_out2S,regs_feeding_address2S,nias2S) =
- (Set.fromList regs_in2,
- Set.fromList regs_out2,
- Set.fromList regs_feeding_address2,
- Set.fromList nias2) in
- let (regs_in2S,regs_out2S,regs_feeding_addres2S) =
- (non_pseudo_registers regs_in2S,
- non_pseudo_registers regs_out2S,
- non_pseudo_registers regs_feeding_address2S) in
-
- let aux = (print_endline,instruction) in
- let () = (print_and_fail_if_inequal aux)
- ("regs_in exhaustive",regs_in1S)
- ("regs_in hand",regs_in2S) in
- let () = (print_and_fail_if_inequal aux)
- ("regs_out exhaustive",regs_out1S)
- ("regs_out hand",regs_out2S) in
- let () = (print_and_fail_if_inequal aux)
- ("regs_feeding_address exhaustive",regs_feeding_address1S)
- ("regs_feeding_address hand",regs_feeding_address2S) in
- let () = (print_and_fail_if_inequal aux)
- ("nias exhaustive",nias1S)
- ("nias hand",nias2S) in
- let () = (print_and_fail_if_inequal aux)
- ("dia exhaustive",dia1)
- ("dia hand",dia2) in
- let () = (print_and_fail_if_inequal aux)
- ("inst_kind exhaustive",inst_kind1)
- ("inst_kind hand",inst_kind2) in
-
- (regs_in1,regs_out1,regs_feeding_address1,nias1,dia1,inst_kind1)
-
-
diff --git a/src/lem_interp/0.11/interp_interface.lem b/src/lem_interp/0.11/interp_interface.lem
deleted file mode 100644
index 32744da2..00000000
--- a/src/lem_interp/0.11/interp_interface.lem
+++ /dev/null
@@ -1,326 +0,0 @@
-(*========================================================================*)
-(* Sail *)
-(* *)
-(* Copyright (c) 2013-2017 *)
-(* Kathyrn Gray *)
-(* Shaked Flur *)
-(* Stephen Kell *)
-(* Gabriel Kerneis *)
-(* Robert Norton-Wright *)
-(* Christopher Pulte *)
-(* Peter Sewell *)
-(* Alasdair Armstrong *)
-(* Brian Campbell *)
-(* Thomas Bauereiss *)
-(* Anthony Fox *)
-(* Jon French *)
-(* Dominic Mulligan *)
-(* Stephen Kell *)
-(* Mark Wassell *)
-(* *)
-(* All rights reserved. *)
-(* *)
-(* This software was developed by the University of Cambridge Computer *)
-(* Laboratory as part of the Rigorous Engineering of Mainstream Systems *)
-(* (REMS) project, funded by EPSRC grant EP/K008528/1. *)
-(* *)
-(* Redistribution and use in source and binary forms, with or without *)
-(* modification, are permitted provided that the following conditions *)
-(* are met: *)
-(* 1. Redistributions of source code must retain the above copyright *)
-(* notice, this list of conditions and the following disclaimer. *)
-(* 2. Redistributions in binary form must reproduce the above copyright *)
-(* notice, this list of conditions and the following disclaimer in *)
-(* the documentation and/or other materials provided with the *)
-(* distribution. *)
-(* *)
-(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
-(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
-(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
-(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
-(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
-(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
-(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
-(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
-(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
-(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
-(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
-(* SUCH DAMAGE. *)
-(*========================================================================*)
-
-(* PS NOTES FOR KATHY:
-
-pls also change:
-
- decode_to_istate
- decode_to_instruction
-
-to take an opcode as defined above, instead of a value
-
-and change
-
-*)
-
-
-open import Sail_impl_base
-import Interp
-open import Interp_ast
-open import Pervasives
-open import Num
-
-open import Assert_extra
-
-(*Type representing the constructor parameters in instruction, other is a type not representable externally*)
-type instr_parm_typ =
- | Bit (*A single bit, represented as a one element Bitvector as a value*)
- | Bvector of maybe nat (* A bitvector type, with length when statically known *)
- | Range of maybe nat (*Internally represented as a number, externally as a bitvector of length nat *)
- | Enum of string * nat (*Internally represented as either a number or constructor, externally as a bitvector*)
- | Other (*An unrepresentable type, will be represented as Unknown in instruciton form *)
-
-let {coq} instr_parm_typEqual ip1 ip2 = match (ip1,ip2) with
- | (Bit,Bit) -> true
- | (Bvector i1,Bvector i2) -> i1 = i2
- | (Range i1,Range i2) -> i1 = i2
- | (Enum s1 i1,Enum s2 i2) -> s1 = s2 && i1 = i2
- | (Other,Other) -> true
- | _ -> false
-end
-let inline ~{coq} instr_parm_typEqual = unsafe_structural_equality
-
-let {coq} instr_parm_typInequal ip1 ip2 = not (instr_parm_typEqual ip1 ip2)
-let inline ~{coq} instr_parm_typInequal = unsafe_structural_inequality
-
-instance (Eq instr_parm_typ)
- let (=) = instr_parm_typEqual
- let (<>) ip1 ip2 = not (instr_parm_typEqual ip1 ip2)
-end
-
-let instr_parm_typShow ip = match ip with
- | Bit -> "Bit"
- | Bvector i -> "Bvector " ^ show i
- | Range i -> "Range " ^ show i
- | Enum s i -> "Enum " ^ s ^ " " ^ show i
- | Other -> "Other"
- end
-
-instance (Show instr_parm_typ)
-let show = instr_parm_typShow
-end
-
-(*A representation of the AST node for each instruction in the spec, with concrete values from this call,
- and the potential static effects from the funcl clause for this instruction
- Follows the form of the instruction in instruction_extractor, but populates the parameters with actual values
-*)
-
-
-type instruction_field_value = list bit
-
-type instruction = (string * list (string * instr_parm_typ * instruction_field_value))
-
-let {coq} instructionEqual i1 i2 = match (i1,i2) with
- | ((i1,parms1,effects1),(i2,parms2,effects2)) -> i1=i2 && parms1 = parms2 && effects1 = effects2
-end
-let inline ~{coq} instructionEqual = unsafe_structural_equality
-
-let {coq} instructionInequal i1 i2 = not (instructionEqual i1 i2)
-let inline ~{coq} instructionInequal = unsafe_structural_inequality
-
-type v_kind = Bitv | Bytev
-
-type decode_error =
- | Unsupported_instruction_error of Interp_ast.value
- | Not_an_instruction_error of opcode
- | Internal_error of string
-
-
-let decode_error_compare e1 e2 =
- match (e1, e2) with
- | (Unsupported_instruction_error i1, Unsupported_instruction_error i2)
- -> defaultCompare i1 i2
- | (Unsupported_instruction_error _, _) -> LT
- | (_, Unsupported_instruction_error _) -> GT
-
- | (Not_an_instruction_error o1, Not_an_instruction_error o2) -> defaultCompare o1 o2
- | (Not_an_instruction_error _, _) -> LT
- | (_, Not_an_instruction_error _) -> GT
-
- | (Internal_error s1, Internal_error s2) -> compare s1 s2
- (* | (Internal_error _, _) -> LT *)
- (* | (_, Internal_error _) -> GT *)
- end
-
-let decode_error_less e1 e2 = decode_error_compare e1 e2 = LT
-let decode_error_less_eq e1 e2 = decode_error_compare e1 e2 <> GT
-let decode_error_greater e1 e2 = decode_error_compare e1 e2 = GT
-let decode_error_greater_eq e1 e2 = decode_error_compare e1 e2 <> LT
-
-instance (Ord decode_error)
- let compare = decode_error_compare
- let (<) = decode_error_less
- let (<=) = decode_error_less_eq
- let (>) = decode_error_greater
- let (>=) = decode_error_greater_eq
-end
-
-let decode_error_equal e1 e2 = (decode_error_compare e1 e2) = EQ
-let decode_error_inequal e1 e2 = not (decode_error_equal e1 e2)
-
-instance (Eq decode_error)
- let (=) = decode_error_equal
- let (<>) = decode_error_inequal
-end
-
-
-type interpreter_state = Interp.stack (*Deem abstract*)
-(* Will come from a .lem file generated by Sail, bound to a 'defs' identifier *)
-type specification = Interp_ast.defs Interp_ast.tannot (*Deem abstract*)
-type interpreter_mode = Interp.interp_mode (*Deem abstract*)
-type interp_mode = <| internal_mode: interpreter_mode |>
-val make_mode : (*eager*) bool -> (*tracking*) bool -> interp_mode
-val tracking_dependencies : interp_mode -> bool
-
-
-
-(*Map between external functions as preceived from a Sail spec and the actual implementation of the function *)
-type external_functions = list (string * (Interp_ast.value -> Interp_ast.value))
-
-(*Maps between the memory functions as preceived from a Sail spec and the values needed for actions in the memory model*)
-type barriers = list (string * barrier_kind)
-type memory_parameter_transformer = interp_mode -> Interp_ast.value -> (memory_value * nat * maybe (list reg_name))
-type optional_memory_transformer = interp_mode -> Interp_ast.value -> maybe memory_value
-type memory_read = MR of read_kind * memory_parameter_transformer
-type memory_reads = list (string * memory_read)
-type memory_read_tagged = MRT of read_kind * memory_parameter_transformer
-type memory_read_taggeds = list (string * memory_read_tagged)
-type memory_write_ea = MEA of write_kind * memory_parameter_transformer
-type memory_write_eas = list (string * memory_write_ea)
-type memory_write = MW of write_kind * memory_parameter_transformer * (maybe (instruction_state -> bool -> instruction_state))
-and memory_writes = list (string * memory_write)
-and memory_write_val = MV of optional_memory_transformer * (maybe (instruction_state -> bool -> instruction_state))
-and memory_write_vals = list (string * memory_write_val)
-and excl_res_t = ER of maybe (instruction_state -> bool -> instruction_state)
-and excl_res = maybe (string * excl_res_t)
-and memory_write_val_tagged = MVT of optional_memory_transformer * (maybe (instruction_state -> bool -> instruction_state))
-and memory_write_vals_tagged = list (string * memory_write_val_tagged)
-
-(* Definition information needed to run an instruction *)
-and context =
- Context of Interp.top_level * direction *
- memory_reads * memory_read_taggeds * memory_writes * memory_write_eas * memory_write_vals * memory_write_vals_tagged * barriers * excl_res * external_functions
-
-(* An instruction in flight *)
-and instruction_state = IState of interpreter_state * context
-
-
-type outcome =
-(* Request to read N bytes at address *)
-(* The register list, used when mode.track_values, is those that the address depended on *)
-| Read_mem of read_kind * address_lifted * nat * maybe (list reg_name) * (memory_value -> instruction_state)
-| Read_mem_tagged of read_kind * address_lifted * nat * maybe (list reg_name) * ((bit_lifted * memory_value) -> instruction_state)
-
-(* Request to write memory *)
-| Write_mem of write_kind * address_lifted * nat * maybe (list reg_name)
- * memory_value * maybe (list reg_name) * (bool -> instruction_state)
-
-(* Request the result of store-exclusive *)
-| Excl_res of (bool -> instruction_state)
-
-(* Tell the system a write is imminent, at address lifted tainted by register list, of size nat *)
-| Write_ea of write_kind * address_lifted * nat * maybe (list reg_name) * instruction_state
-
-(* Request to write memory at last signaled address. Memory value should be 8* the size given in Write_ea *)
-| Write_memv of maybe address_lifted * memory_value * maybe (list reg_name) * (bool -> instruction_state)
-| Write_memv_tagged of maybe address_lifted * (bit_lifted * memory_value) * maybe (list reg_name) * (bool -> instruction_state)
-
-(* Request a memory barrier *)
-| Barrier of barrier_kind * instruction_state
-
-(* Tell the system to dynamically recalculate dependency footprint *)
-| Footprint of instruction_state
-
-(* Request to read register, will track dependency when mode.track_values *)
-| Read_reg of reg_name * (register_value -> instruction_state)
-
-(* Request to write register *)
-| Write_reg of reg_name * register_value * instruction_state
-
-(* List of instruciton states to be run in parallel, any order*)
-| Nondet_choice of list instruction_state * instruction_state
-
-(* Escape the current instruction, for traps, some sys calls, interrupts, etc. Can optionally
- provide a handler. The non-optional instruction_state is what we would be doing if we're
- not escaping. This is for exhaustive interp *)
-| Escape of maybe instruction_state * instruction_state
-
-(*Result of a failed assert with possible error message to report*)
-| Fail of maybe string
-
-(* Stop for incremental stepping, function can be used to display function call data *)
-| Internal of maybe string * maybe (unit -> string) * instruction_state
-
-(* Analysis can lead to non_deterministic evaluation, represented with this outcome *)
-(*Note: this should not be externally visible *)
-| Analysis_non_det of list instruction_state * instruction_state
-
-(*Completed interpreter*)
-| Done
-
-(*Interpreter error*)
-| Error of string
-
-
-(* Functions to build up the initial state for interpretation *)
-val build_context : bool -> specification -> memory_reads -> memory_read_taggeds-> memory_writes -> memory_write_eas -> memory_write_vals -> memory_write_vals_tagged -> barriers -> excl_res -> external_functions -> context
-val initial_instruction_state : context -> string -> list register_value -> instruction_state
- (* string is a function name, list of value are the parameters to that function *)
-
-type instruction_or_decode_error =
- | IDE_instr of Interp_ast.value
- | IDE_decode_error of decode_error
-
-(** propose to remove the following type and use the above instead *)
-type i_state_or_error =
- | Instr of Interp_ast.value * instruction_state
- | Decode_error of decode_error
-
-
-(** PS:I agree. propose to remove this: Function to decode an instruction and build the state to run it*)
-val decode_to_istate : context -> maybe (list (reg_name * register_value)) -> opcode -> i_state_or_error
-
-(** propose to add this, and then use instruction_to_istate on the result: Function to decode an instruction and build the state to run it*)
-(** PS made a placeholder in interp_inter_imp.lem, but it just uses decode_to_istate and throws away the istate; surely it's easy to just do what's necessary to get the instruction. This sort-of works, but it crashes on ioid 10 after 167 steps - maybe instruction_to_istate (which I wasn't using directly before) isn't quite right? *)
-val decode_to_instruction : context -> maybe (list (reg_name * register_value))-> opcode -> instruction_or_decode_error
-
-(*Function to generate the state to run from an instruction form; is always an Instr*)
-val instruction_to_istate : context -> instruction -> instruction_state (*i_state_or_error*)
-
-(* Slice a register value into a smaller vector, starting at first number (wrt the indices of the register value, not raw positions in its list of bits) and going to second (inclusive) according to order. *)
-val slice_reg_value : register_value -> nat -> nat -> register_value
-(*Create a new register value where the contents of nat to nat are replaced by the second register_value *)
-val update_reg_value_slice : reg_name -> register_value -> nat -> nat -> register_value -> register_value
-
-
-(* Big step of the interpreter, to the next request for an external action *)
-(* When interp_mode has eager_eval false, interpreter is (close to) small step *)
-val interp : interp_mode -> instruction_state -> outcome
-
-(* Run the interpreter without external interaction, feeding in Unknown on all reads
-except for those register values provided *)
-val interp_exhaustive : maybe (list (reg_name * register_value)) -> instruction_state -> list event
-
-(* As above, but will request register reads: outcome will only be rreg, done, or error *)
-val rr_interp_exhaustive : interp_mode -> instruction_state -> list event -> (outcome * (list event))
-
-val translate_address :
- context -> end_flag -> string -> maybe (list (reg_name * register_value)) -> address
- -> maybe address * maybe (list event)
-
-
-val instruction_analysis :
- context -> end_flag -> string -> (string -> (nat * nat * direction * (nat * nat)))
- -> maybe (list (reg_name * register_value)) -> instruction -> (list reg_name * list reg_name * list reg_name * list nia * dia * instruction_kind)
-
-
-val initial_outcome_s_of_instruction : (instruction_state -> unit -> (string * string)) -> context -> interp_mode -> instruction -> Sail_impl_base.outcome_s unit
-
diff --git a/src/lem_interp/0.11/interp_lib.lem b/src/lem_interp/0.11/interp_lib.lem
deleted file mode 100644
index e55fc175..00000000
--- a/src/lem_interp/0.11/interp_lib.lem
+++ /dev/null
@@ -1,1111 +0,0 @@
-(*========================================================================*)
-(* Sail *)
-(* *)
-(* Copyright (c) 2013-2017 *)
-(* Kathyrn Gray *)
-(* Shaked Flur *)
-(* Stephen Kell *)
-(* Gabriel Kerneis *)
-(* Robert Norton-Wright *)
-(* Christopher Pulte *)
-(* Peter Sewell *)
-(* Alasdair Armstrong *)
-(* Brian Campbell *)
-(* Thomas Bauereiss *)
-(* Anthony Fox *)
-(* Jon French *)
-(* Dominic Mulligan *)
-(* Stephen Kell *)
-(* Mark Wassell *)
-(* *)
-(* All rights reserved. *)
-(* *)
-(* This software was developed by the University of Cambridge Computer *)
-(* Laboratory as part of the Rigorous Engineering of Mainstream Systems *)
-(* (REMS) project, funded by EPSRC grant EP/K008528/1. *)
-(* *)
-(* Redistribution and use in source and binary forms, with or without *)
-(* modification, are permitted provided that the following conditions *)
-(* are met: *)
-(* 1. Redistributions of source code must retain the above copyright *)
-(* notice, this list of conditions and the following disclaimer. *)
-(* 2. Redistributions in binary form must reproduce the above copyright *)
-(* notice, this list of conditions and the following disclaimer in *)
-(* the documentation and/or other materials provided with the *)
-(* distribution. *)
-(* *)
-(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
-(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
-(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
-(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
-(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
-(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
-(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
-(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
-(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
-(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
-(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
-(* SUCH DAMAGE. *)
-(*========================================================================*)
-
-open import Pervasives
-open import Interp_utilities
-open import Interp
-open import Interp_ast
-(* For failwith for error reporting while debugging; and for fromJust when we know it's not Nothing *)
-import Assert_extra Maybe_extra
-open import Num
-import Num_extra
-open import List
-open import Word
-open import Bool
-
-type signed = Unsigned | Signed
-
-val debug_print : string -> unit
-declare ocaml target_rep function debug_print s = `Printf.eprintf` "%s" s
-
-let print s = let _ = debug_print (string_of_value s) in V_lit(L_aux L_unit Unknown)
-
-let hardware_mod (a: integer) (b:integer) : integer =
- if a < 0 && b < 0
- then (abs a) mod (abs b)
- else if (a < 0 && b >= 0)
- then (a mod b) - b
- else a mod b
-
-(* There are different possible answers for integer divide regarding
-rounding behaviour on negative operands. Positive operands always
-round down so derive the one we want (trucation towards zero) from
-that *)
-let hardware_quot (a:integer) (b:integer) : integer =
- let q = (abs a) / (abs b) in
- if ((a<0) = (b<0)) then
- q (* same sign -- result positive *)
- else
- ~q (* different sign -- result negative *)
-
-let (max_64u : integer) = integerFromNat ((natPow 2 64) - 1)
-let (max_64 : integer) = integerFromNat ((natPow 2 63) - 1)
-let (min_64 : integer) = integerNegate (integerFromNat (natPow 2 63))
-let (max_32u : integer) = integerFromNat (natPow 2 32) (*4294967295*)
-let (max_32 : integer) = integerFromNat ((natPow 2 31) - 1) (*2147483647*)
-let (min_32 : integer) = integerNegate (integerFromNat (natPow 2 31)) (*2147483648*)
-let (max_8 : integer) = (integerFromNat 127)
-let (min_8 : integer) = (integerFromNat 0) - (integerFromNat 128)
-let (max_5 : integer) = (integerFromNat 31)
-
-val get_max_representable_in : signed -> nat -> integer
-let get_max_representable_in sign n =
- match (sign, n) with
- | (Signed, 64) -> max_64
- | (Unsigned, 64) -> max_64u
- | (Signed, 32) -> max_32
- | (Unsigned, 32) -> max_32u
- | (Signed, 8) -> max_8
- | (Unsigned, 5) -> max_5
- | (Signed, _) -> 2**(n -1) - 1
- | (Unsigned, _) -> 2**n - 1
- end
-
-val get_min_representable_in : signed -> nat -> integer
-let get_min_representable_in sign n =
- match (sign, n) with
- | (Unsigned, _) -> 0
- | (Signed, 64) -> min_64
- | (Signed, 32) -> min_32
- | (Signed, 8) -> min_8
- | (Signed, _) -> 0-(2**(n-1))
- end
-
-let ignore_sail x = V_lit (L_aux L_unit Unknown) ;;
-
-let compose f g x = f (V_tuple [g x]) ;;
-
-let zeroi = integerFromNat 0
-let onei = integerFromNat 1
-let twoi = integerFromNat 2
-
-let is_unknown v = match detaint v with
- | V_unknown -> true
- | _ -> false
-end
-
-let is_undef v = match detaint v with
- | V_lit (L_aux L_undef _) -> true
- | _ -> false
-end
-
-let has_unknown v = match detaint v with
- | V_vector _ _ vs -> List.any is_unknown vs
- | V_unknown -> true
- | _ -> false
-end
-
-let has_undef v = match detaint v with
- | V_vector _ _ vs -> List.any is_undef vs
- | _ -> Assert_extra.failwith ("has_undef given non-vector " ^ (string_of_value v))
-end
-
-let rec sparse_walker update ni processed_length length ls df =
- if processed_length = length
- then []
- else match ls with
- | [] -> replicate (length - processed_length) df
- | (i,v)::ls ->
- if ni = i
- then v::(sparse_walker update (update ni) (processed_length + 1) length ls df)
- else df::(sparse_walker update (update ni) (processed_length + 1) length ((i,v)::ls) df)
-end
-
-let fill_in_sparse v =
- retaint v (match detaint v with
- | V_vector_sparse first length dir ls df ->
- V_vector first dir
- (sparse_walker
- (if is_inc(dir) then (fun (x: nat) -> x + 1) else (fun (x: nat) -> x - 1)) first 0 length ls df)
- | V_unknown -> V_unknown
- | _ -> Assert_extra.failwith ("fill_in_sparse given non-vector " ^ (string_of_value v))
- end)
-
-let is_one v =
- retaint v
- match detaint v with
- | V_lit (L_aux (L_num n) lb) -> V_lit (L_aux (if n=1 then L_one else L_zero) lb)
- | V_lit (L_aux b lb) -> V_lit (L_aux (if b = L_one then L_one else L_zero) lb)
- | V_unknown -> v
- | _ -> Assert_extra.failwith ("is_one given non-vector " ^ (string_of_value v))
-end ;;
-
-let rec most_significant v =
- retaint v
- match detaint v with
- | V_vector _ _ (v::vs) -> v
- | V_vector_sparse _ _ _ _ _ -> most_significant (fill_in_sparse v)
- | V_lit (L_aux L_one _) -> v
- | V_lit (L_aux L_zero _) -> v
- | V_lit (L_aux (L_num n) lt) ->
- if n = 1
- then V_lit (L_aux L_one lt)
- else if n = 0
- then V_lit (L_aux L_zero lt)
- else Assert_extra.failwith ("most_significant given non-vector " ^ (string_of_value v))
- | V_lit (L_aux L_undef _) -> v
- | V_unknown -> V_unknown
- | _ -> Assert_extra.failwith ("most_significant given non-vector " ^ (string_of_value v))
-end;;
-
-let lt_range v =
- let lr_helper v1 v2 = match (v1,v2) with
- | (V_lit (L_aux (L_num l1) lr),V_lit (L_aux (L_num l2) ll)) ->
- if l1 < l2
- then V_lit (L_aux L_one Unknown)
- else V_lit (L_aux L_zero Unknown)
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | _ ->
- Assert_extra.failwith ("lt_range given non-lit (" ^ (string_of_value v1) ^ ", " ^ (string_of_value v2) ^ ")")
- end in
- match v with
- | (V_tuple[v1;v2]) ->
- binary_taint lr_helper v1 v2
- | _ -> Assert_extra.failwith ("lt_range not given tuple of length two " ^ (string_of_value v))
-end
-
-let bit_to_bool b = match detaint b with
- | V_lit (L_aux L_zero _) -> false
- | V_lit (L_aux L_false _) -> false
- | V_lit (L_aux L_one _) -> true
- | V_lit (L_aux L_true _) -> true
- | _ -> Assert_extra.failwith ("bit_to_bool given unexpected " ^ (string_of_value b))
- end ;;
-let bool_to_bit b = match b with
- false -> V_lit (L_aux L_zero Unknown)
- | true -> V_lit (L_aux L_one Unknown)
- end ;;
-
-let bitwise_not_bit v =
- let lit_not (L_aux l loc) = match l with
- | L_zero -> (V_lit (L_aux L_one loc))
- | L_false -> (V_lit (L_aux L_one loc))
- | L_one -> (V_lit (L_aux L_zero loc))
- | L_true -> (V_lit (L_aux L_zero loc))
- | L_undef -> (V_lit (L_aux L_undef loc))
- | _ -> Assert_extra.failwith ("bitwise_not_bit given unexpected " ^ (string_of_value v)) end in
- retaint v (match detaint v with
- | V_lit lit -> lit_not lit
- | V_unknown -> V_unknown
- | _ -> Assert_extra.failwith ("bitwise_not_bit given unexpected " ^ (string_of_value v))
- end)
-
-let rec bitwise_not v =
- retaint v (match detaint v with
- | V_vector idx inc v ->
- V_vector idx inc (List.map bitwise_not_bit v)
- | V_unknown -> V_unknown
- | _ -> Assert_extra.failwith ("bitwise_not given unexpected " ^ (string_of_value v))
- end)
-
-let rec bitwise_binop_bit op op_s v =
- let b_b_b_help x y = match (x,y) with
- | (V_vector _ _ [b],y) -> bitwise_binop_bit op op_s (V_tuple [b; y])
- | (_,V_vector _ _ [b]) -> bitwise_binop_bit op op_s (V_tuple [x; b])
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | (V_lit (L_aux L_undef li), v) ->
- (match op_s with | "|" -> y | "&" -> x | "^" -> y | _ -> x end)
- | (v,V_lit (L_aux L_undef li)) ->
- (match op_s with | "|" -> x | "&" -> y | "^" -> y | _ -> y end)
- | _ -> bool_to_bit (op (bit_to_bool x) (bit_to_bool y)) end in
- match v with
- | (V_tuple [x; y]) -> binary_taint b_b_b_help x y
- | _ -> Assert_extra.failwith ("bitwise_binop_bit not given tuple of length 2 " ^ (string_of_value v))
-end
-
-let rec bitwise_binop op op_s v =
- let b_b_help v1 v2 =
- match (v1,v2) with
- | (V_vector idx inc v, V_vector idx' inc' v') ->
- (* typechecker ensures inc = inc' and length v = length v' *)
- V_vector idx inc (List.map (fun (x,y) -> (bitwise_binop_bit op op_s (V_tuple[x; y]))) (List.zip v v'))
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | _ -> Assert_extra.failwith ("bitwise_binop given unexpected " ^ (string_of_value v)) end in
- match v with
- | (V_tuple [v1;v2]) -> binary_taint b_b_help v1 v2
- | _ -> Assert_extra.failwith ("bitwise_binop not given tuple of length 2 " ^ (string_of_value v))
-end
-
-(* BitSeq expects LSB first.
- * By convention, MSB is on the left, so increasing = Big-Endian (MSB0),
- * hence MSB first.
- * http://en.wikipedia.org/wiki/Bit_numbering *)
-let to_num signed v =
- retaint v
- (match detaint v with
- | (V_vector idx inc l) ->
- if has_unknown v then V_unknown else if l=[] then V_unknown
- else if has_undef v then V_lit (L_aux L_undef Unknown)
- else
- (* Word library in Lem expects bitseq with LSB first *)
- let l = reverse l in
- (* Make sure the last bit is a zero to force unsigned numbers *)
- let l = (match signed with | Signed -> l | Unsigned -> l ++ [V_lit (L_aux L_zero Unknown)] end) in
- V_lit(L_aux (L_num(integerFromBitSeq (Maybe_extra.fromJust (bitSeqFromBoolList (map bit_to_bool l))))) Unknown)
- | V_unknown -> V_unknown
- | V_lit (L_aux L_undef _) -> v
- | V_lit (L_aux L_zero l) -> V_lit (L_aux (L_num 0) l)
- | V_lit (L_aux L_one l) -> V_lit (L_aux (L_num 1) l)
- | _ -> Assert_extra.failwith ("to_num given unexpected " ^ (string_of_value v))
- end)
-
-let to_vec_inc v =
- let fail () = Assert_extra.failwith ("to_vec_inc given unexpected " ^ (string_of_value v)) in
- let tv_help v1 v2 =
- match (v1,v2) with
- | (V_lit(L_aux (L_num len) _), (V_lit(L_aux (L_num n) ln))) ->
- let l = if len < 0 then []
- else boolListFrombitSeq (natFromInteger len) (bitSeqFromInteger Nothing n) in
- V_vector 0 IInc (map bool_to_bit (reverse l))
- | ((V_lit(L_aux (L_num n) ln)),V_unknown) ->
- V_vector 0 IInc (List.replicate (if n < 0 then 0 else (natFromInteger n)) V_unknown)
- | ((V_lit(L_aux (L_num n) ln)),(V_lit (L_aux L_undef _))) ->
- V_vector 0 IInc (List.replicate (natFromInteger n) v2)
- | (_,V_unknown) -> V_unknown
- | (V_unknown,_) -> V_unknown
- | _ -> fail ()
- end in
- match v with
- | (V_tuple[v1;v2]) -> binary_taint tv_help v1 v2
- | _ -> fail ()
-end
-
-let to_vec_dec v =
- let fail () = Assert_extra.failwith ("to_vec_dec parameters were " ^ (string_of_value v)) in
- let tv_fun v1 v2 =
- match (v1,v2) with
- | (V_lit(L_aux (L_num len) _), (V_lit(L_aux (L_num n) ln))) ->
- let len = if len < 0 then 0 else natFromInteger len in
- let l = boolListFrombitSeq len (bitSeqFromInteger Nothing n) in
- V_vector (len - 1) IDec (map bool_to_bit (reverse l))
- | ((V_lit(L_aux (L_num n) ln)),V_unknown) ->
- let n = if n < 0 then 0 else natFromInteger n in
- V_vector (if n=0 then 0 else (n-1)) IDec (List.replicate n V_unknown)
- | ((V_lit(L_aux (L_num n) ln)),(V_lit (L_aux L_undef _))) ->
- let n = if n < 0 then 0 else natFromInteger n in
- V_vector (if n = 0 then 0 else (n-1)) IDec (List.replicate n v2)
- | (_,V_unknown) -> V_unknown
- | (V_unknown,_) -> V_unknown
- | _ -> fail ()
- end in
- match v with
- | V_tuple([v1;v2]) -> binary_taint tv_fun v1 v2
- | _ -> fail()
-end
-
-
-let rec to_vec_inc_undef v1 =
- retaint v1
- match detaint v1 with
- | V_lit(L_aux (L_num len) _) ->
- let len = if len < 0 then 0 else natFromInteger len in
- V_vector 0 IInc (List.replicate len (V_lit (L_aux L_undef Unknown)))
- | _ -> V_unknown
-end
-
-let rec to_vec_dec_undef v1 =
- retaint v1
- match detaint v1 with
- | V_lit(L_aux (L_num len) _) ->
- let len = if len < 0 then 0 else natFromInteger len in
- V_vector (len - 1) IDec (List.replicate len (V_lit (L_aux L_undef Unknown)))
- | _ -> V_unknown
-end
-
-let to_vec ord len n =
- if is_inc(ord)
- then to_vec_inc (V_tuple ([V_lit(L_aux (L_num len) Interp_ast.Unknown); n]))
- else to_vec_dec (V_tuple ([V_lit(L_aux (L_num len) Interp_ast.Unknown); n]))
-;;
-
-let exts direction v =
- let exts_help v1 v = match (v1,v) with
- | (V_lit(L_aux (L_num len) _), V_vector _ inc _)-> to_vec inc len (to_num Signed v)
- | (V_lit(L_aux (L_num len) _), V_unknown) -> to_vec direction len V_unknown
- | (V_unknown,_) -> V_unknown
- | _ -> Assert_extra.failwith ("exts given unexpected " ^ (string_of_value v))
- end in
- match v with
- | (V_tuple[v1;v]) -> binary_taint exts_help v1 v
- | _ -> Assert_extra.failwith ("exts not given tuple of length 2 " ^ (string_of_value v))
-end
-
-let extz direction v =
- let extz_help v1 v = match (v1,v) with
- | (V_lit(L_aux (L_num len) _), V_vector _ inc _)-> to_vec inc len (to_num Unsigned v)
- | (V_lit(L_aux (L_num len) _), V_unknown) -> to_vec direction len V_unknown
- | (V_unknown,_) -> V_unknown
- | _ -> Assert_extra.failwith ("extx given unexpected " ^ (string_of_value v))
- end in
- match v with
- | (V_tuple[v1;v]) -> binary_taint extz_help v1 v
- | _ -> Assert_extra.failwith ("extz not given tuple of length 2 " ^ (string_of_value v))
-end
-
-let eq v = match v with
- | (V_tuple [x; y]) ->
- let combo = binary_taint (fun v _ -> v) x y in
- retaint combo
- (if has_unknown x || has_unknown y
- then V_unknown
- else (V_lit (L_aux (if ((detaint x) = (detaint y)) then L_one else L_zero) Unknown)))
- | _ -> Assert_extra.failwith ("eq not given tuple of length 2 " ^ (string_of_value v))
-end
-
-let eq_vec v =
- let eq_vec_help v1 v2 = match (v1,v2) with
- | ((V_vector _ _ c1s),(V_vector _ _ c2s)) ->
- if (List.length c1s = List.length c2s) &&
- List.listEqualBy
- (fun v1 v2 -> match eq (V_tuple [v1; v2]) with V_lit (L_aux L_one _) -> true | _ -> false end) c1s c2s then
- V_lit (L_aux L_one Unknown)
- else if has_unknown v1 || has_unknown v2
- then V_unknown
- else V_lit (L_aux L_zero Unknown)
- | (V_unknown, _) -> V_unknown
- | (_, V_unknown) -> V_unknown
- | (V_vector _ _ [c1], _) -> eq (V_tuple [c1; v2])
- | (_, V_vector _ _ [c2]) -> eq (V_tuple [v1; c2])
- | (V_lit _, V_lit _) -> eq (V_tuple [v1;v2]) (*Vectors of one bit return one bit; we need coercion to match*)
- | _ -> Assert_extra.failwith ("eq_vec not given two vectors, given instead " ^ (string_of_value v)) end in
- match v with
- | (V_tuple [v1; v2]) -> binary_taint eq_vec_help v1 v2
- | _ -> Assert_extra.failwith ("eq_vec not given tuple of length 2 " ^ (string_of_value v))
-end
-
-let eq_vec_range v = match v with
- | (V_tuple [v; r]) -> eq (V_tuple [to_num Unsigned v; r])
- | _ -> Assert_extra.failwith ("eq_vec_range not given tuple of length 2 " ^ (string_of_value v))
-end
-let eq_range_vec v = match v with
- | (V_tuple [r; v]) -> eq (V_tuple [r; to_num Unsigned v])
- | _ -> Assert_extra.failwith ("eq_range_vec not given tuple of length 2 " ^ (string_of_value v))
-end
-(*let eq_vec_vec v = match v with
- | (V_tuple [v;v2]) -> eq (V_tuple [to_num Signed v; to_num Signed v2])
- | _ -> Assert_extra.failwith ("eq_vec_vec not given tuple of length 2 " ^ (string_of_value v))
-end*)
-
-let rec neg v = retaint v (match detaint v with
- | V_lit (L_aux arg la) ->
- V_lit (L_aux (match arg with
- | L_one -> L_zero
- | L_zero -> L_one
- | _ -> Assert_extra.failwith ("neg given unexpected " ^ (string_of_value v)) end) la)
- | V_unknown -> V_unknown
- | V_tuple [v] -> neg v
- | _ -> Assert_extra.failwith ("neg given unexpected " ^ (string_of_value v))
-end)
-
-let neq = compose neg eq ;;
-
-let neq_vec = compose neg eq_vec
-let neq_vec_range = compose neg eq_vec_range
-let neq_range_vec = compose neg eq_range_vec
-
-let rec v_abs v = retaint v (match detaint v with
- | V_lit (L_aux arg la) ->
- V_lit (L_aux (match arg with
- | L_num n -> if n < 0 then L_num (n * (0 - 1)) else L_num n
- | _ -> Assert_extra.failwith ("abs given unexpected " ^ (string_of_value v)) end) la)
- | V_unknown -> V_unknown
- | V_tuple [v] -> v_abs v
- | _ -> Assert_extra.failwith ("abs given unexpected " ^ (string_of_value v)) end)
-
-let arith_op op v =
- let fail () = Assert_extra.failwith ("arith_op given unexpected " ^ (string_of_value v)) in
- let arith_op_help vl vr =
- match (vl,vr) with
- | (V_lit(L_aux (L_num x) lx), V_lit(L_aux (L_num y) ly)) -> V_lit(L_aux (L_num (op x y)) lx)
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | (V_lit (L_aux L_undef lx),_) -> vl
- | (_, (V_lit (L_aux L_undef ly))) -> vr
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint arith_op_help vl vr
- | _ -> fail ()
-end
-let arith_op_vec op sign size v =
- let fail () = Assert_extra.failwith ("arith_op_vec given unexpected " ^ (string_of_value v)) in
- let arith_op_help vl vr =
- match (vl,vr) with
- | ((V_vector b ord cs as l1),(V_vector _ _ _ as l2)) ->
- let (l1',l2') = (to_num sign l1,to_num sign l2) in
- let n = arith_op op (V_tuple [l1';l2']) in
- to_vec ord (integerFromNat ((List.length cs) * size)) n
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint arith_op_help vl vr
- | _ -> fail ()
-end
-let arith_op_vec_vec_range op sign v =
- let fail () = Assert_extra.failwith ("arith_op_vec_vec_range given unexpected " ^ (string_of_value v)) in
- let arith_op_help vl vr =
- match (vl,vr) with
- | (V_vector _ _ _,V_vector _ _ _ ) ->
- let (l1,l2) = (to_num sign vl,to_num sign vr) in
- arith_op op (V_tuple [l1;l2])
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint arith_op_help vl vr
- | _ -> fail ()
-end
-let arith_op_overflow_vec op over_typ sign size v =
- let fail () = Assert_extra.failwith ("arith_op_overflow_vec given unexpected " ^ (string_of_value v)) in
- let overflow_help vl vr =
- match (vl,vr) with
- | (V_vector b ord cs1,V_vector _ _ cs2) ->
- let len = List.length cs1 in
- let act_size = len * size in
- let (is_l1_unknown,is_l2_unknown) = ((has_unknown vl), (has_unknown vr)) in
- if is_l1_unknown || is_l2_unknown
- then (V_tuple [ (to_vec ord (integerFromNat act_size) V_unknown);V_unknown;V_unknown])
- else
- let (l1_sign,l2_sign) = (to_num sign vl,to_num sign vr) in
- let (l1_unsign,l2_unsign) = (to_num Unsigned vl,to_num Unsigned vr) in
- let n = arith_op op (V_tuple [l1_sign;l2_sign]) in
- let n_unsign = arith_op op (V_tuple[l1_unsign;l2_unsign]) in
- let correct_size_num = to_vec ord (integerFromNat act_size) n in
- let one_more_size_u = to_vec ord (integerFromNat (act_size +1)) n_unsign in
- let overflow = (match n with
- | V_lit (L_aux (L_num n') ln) ->
- if (n' <= (get_max_representable_in sign len)) &&
- (n' >= (get_min_representable_in sign len))
- then V_lit (L_aux L_zero ln)
- else V_lit (L_aux L_one ln)
- | _ -> Assert_extra.failwith ("overflow arith_op returned " ^ (string_of_value v)) end) in
- let out_num = to_num sign correct_size_num in
- let c_out =
- match detaint one_more_size_u with
- | V_vector _ _ (b::bits) -> b
- | v -> Assert_extra.failwith ("to_vec returned " ^ (string_of_value v)) end in
- V_tuple [correct_size_num;overflow;c_out]
- | (V_unknown,_) -> V_tuple [V_unknown;V_unknown;V_unknown]
- | (_,V_unknown) -> V_tuple [V_unknown;V_unknown;V_unknown]
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint overflow_help vl vr
- | _ -> fail ()
-end
-let arith_op_overflow_vec_bit op sign size v =
- let fail () = Assert_extra.failwith ("arith_op_overflow_vec_bit given unexpected " ^ (string_of_value v)) in
- let arith_help vl vr =
- match (vl,vr) with
- | (V_vector b ord cs, V_lit (L_aux bit li)) ->
- let act_size = (List.length cs) * size in
- let is_v_unknown = has_unknown vl in
- if is_v_unknown
- then V_tuple [(to_vec ord (integerFromNat act_size) V_unknown);V_unknown;V_unknown]
- else
- let l1' = to_num sign vl in
- let l1_u = to_num Unsigned vl in
- let (n,nu,changed) = match bit with
- | L_one -> (arith_op op (V_tuple [l1';(V_lit (L_aux (L_num 1) li))]),
- arith_op op (V_tuple [l1_u;(V_lit (L_aux (L_num 1) li))]), true)
- | L_zero -> (l1',l1_u,false)
- | _ -> Assert_extra.failwith "arith_op_overflow_vec bit given non bit" end in
- let correct_size_num = to_vec ord (integerFromNat act_size) n in
- let one_larger = to_vec ord (integerFromNat (act_size +1)) nu in
- let overflow = if changed
- then retaint n (match detaint n with
- | V_lit (L_aux (L_num n') ln) ->
- if (n' <= (get_max_representable_in sign act_size)) &&
- (n' >= (get_min_representable_in sign act_size))
- then V_lit (L_aux L_zero ln)
- else V_lit (L_aux L_one ln)
- | _ -> Assert_extra.failwith "to_num returned non num" end)
- else V_lit (L_aux L_zero Unknown) in
- let carry_out = (match detaint one_larger with
- | V_vector _ _ (c::rst) -> c
- | _ -> Assert_extra.failwith "one_larger vector returned non vector" end) in
- V_tuple [correct_size_num;overflow;carry_out]
- | (V_unknown,_) -> V_tuple [V_unknown;V_unknown;V_unknown]
- | (_,V_unknown) -> V_tuple [V_unknown;V_unknown;V_unknown]
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint arith_help vl vr
- | _ -> fail ()
-end
-
-let arith_op_range_vec op sign size v =
- let fail () = Assert_extra.failwith ("arith_op_range_vec given unexpected " ^ (string_of_value v)) in
- let arith_help vl vr = match (vl,vr) with
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | (n, V_vector _ ord cs) ->
- arith_op_vec op sign size (V_tuple [(to_vec ord (integerFromNat (List.length cs)) n);vr])
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint arith_help vl vr
- | _ -> fail ()
-end
-
-let arith_op_vec_range op sign size v =
- let fail () = Assert_extra.failwith ("arith_op_vec_range given unexpected " ^ (string_of_value v)) in
- let arith_help vl vr = match (vl,vr) with
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | (V_vector _ ord cs,n) ->
- arith_op_vec op sign size (V_tuple [vl;(to_vec ord (integerFromNat (List.length cs)) n)])
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint arith_help vl vr
- | _ -> fail ()
-end
-
-let arith_op_range_vec_range op sign v =
- let fail () = Assert_extra.failwith ("arith_op_range_vec_range given unexpected " ^ (string_of_value v)) in
- let arith_help vl vr = match (vl,vr) with
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | (n,V_vector _ ord _) ->
- arith_op op (V_tuple [n;(to_num Unsigned vr)])
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint arith_help vl vr
- | _ -> fail ()
-end
-
-let arith_op_vec_range_range op sign v =
- let fail () = Assert_extra.failwith ("arith_op_vec_range_range given unexpected " ^ (string_of_value v)) in
- let arith_help vl vr = match (vl,vr) with
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | (V_vector _ ord _ ,n) ->
- arith_op op (V_tuple [(to_num sign vl);n])
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint arith_help vl vr
- | _ -> fail ()
-end
-
-let arith_op_vec_bit op sign size v =
- let fail () = Assert_extra.failwith ("arith_op_vec_bit given unexpected " ^ (string_of_value v)) in
- let arith_help vl vr =
- match (vl,vr) with
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | (V_vector _ ord cs,V_lit (L_aux bit _)) ->
- let l1' = to_num sign vl in
- let n = arith_op op (V_tuple
- [l1';
- V_lit
- (L_aux (L_num (match bit with | L_one -> 1 | _ -> 0 end)) Unknown)])
- in
- to_vec ord (integerFromNat ((List.length cs) * size)) n
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint arith_help vl vr
- | _ -> fail ()
-end
-
-let arith_op_no0 op v =
- let fail () = Assert_extra.failwith ("arith_op_no0 given unexpected " ^ (string_of_value v)) in
- let arith_help vl vr =
- match (vl,vr) with
- | (V_lit(L_aux (L_num x) lx), V_lit(L_aux (L_num y) ly)) ->
- if y = 0
- then V_lit (L_aux L_undef ly)
- else V_lit(L_aux (L_num (op x y)) lx)
- | (V_lit (L_aux L_undef lx),_) -> vl
- | (_, (V_lit (L_aux L_undef ly))) -> vr
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint arith_help vl vr
- | _ -> fail ()
-end
-
-let arith_op_vec_no0 op op_s sign size v =
- let fail () = Assert_extra.failwith ("arith_op_vec_no0 given unexpected " ^ (string_of_value v)) in
- let arith_help vl vr =
- match (vl,vr) with
- | (V_vector b ord cs, V_vector _ _ _) ->
- let act_size = (List.length cs) * size in
- let (is_l1_unknown,is_l2_unknown) = ((has_unknown vl), (has_unknown vr)) in
- let (l1',l2') = (if is_l1_unknown then V_unknown else (to_num sign vl),
- if is_l2_unknown then V_unknown else (to_num sign vr)) in
- let n = if is_l1_unknown || is_l2_unknown then V_unknown else arith_op op (V_tuple [l1';l2']) in
- let representable =
- match detaint n with
- | V_lit (L_aux (L_num n') ln) ->
- ((n' <= (get_max_representable_in sign act_size)) && (n' >= (get_min_representable_in sign act_size)))
- | _ -> true end in
- if representable
- then to_vec ord (integerFromNat act_size) n
- else to_vec ord (integerFromNat act_size) (V_lit (L_aux L_undef Unknown))
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint arith_help vl vr
- | _ -> fail ()
-end
-
-let arith_op_overflow_vec_no0 op op_s sign size v =
- let fail () = Assert_extra.failwith ("arith_op_overflow_vec_no0 given unexpected " ^ (string_of_value v)) in
- let arith_help vl vr =
- match (vl,vr) with
- | (V_vector b ord cs, V_vector _ _ cs2) ->
- let rep_size = (List.length cs2) * size in
- let act_size = (List.length cs) * size in
- let (is_l1_unknown,is_l2_unknown) = ((has_unknown vl), (has_unknown vr)) in
- if is_l1_unknown || is_l2_unknown
- then V_tuple [to_vec ord (integerFromNat act_size) V_unknown;V_unknown;V_unknown]
- else
- let (l1',l2') = ((to_num sign vl),(to_num sign vr)) in
- let (l1_u,l2_u) = (to_num Unsigned vl,to_num Unsigned vr) in
- let n = arith_op op (V_tuple [l1';l2']) in
- let n_u = arith_op op (V_tuple [l1_u;l2_u]) in
- let representable =
- match detaint n with
- | V_lit (L_aux (L_num n') ln) ->
- ((n' <= (get_max_representable_in sign rep_size)) && (n' >= (get_min_representable_in sign rep_size)))
- | _ -> true end in
- let (correct_size_num,one_more) =
- if representable then (to_vec ord (integerFromNat act_size) n,to_vec ord (integerFromNat (act_size+1)) n_u)
- else let udef = V_lit (L_aux L_undef Unknown) in
- (to_vec ord (integerFromNat act_size) udef, to_vec ord (integerFromNat (act_size +1)) udef) in
- let overflow = if representable then V_lit (L_aux L_zero Unknown) else V_lit (L_aux L_one Unknown) in
- let carry = match one_more with
- | V_vector _ _ (b::bits) -> b
- | _ -> Assert_extra.failwith "one_more returned non-vector" end in
- V_tuple [correct_size_num;overflow;carry]
- | (V_unknown,_) -> V_tuple [V_unknown;V_unknown;V_unknown]
- | (_,V_unknown) -> V_tuple [V_unknown;V_unknown;V_unknown]
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint arith_help vl vr
- | _ -> fail()
-end
-
-let arith_op_vec_range_no0 op op_s sign size v =
- let fail () = Assert_extra.failwith ("arith_op_vec_range_no0 given unexpected " ^ (string_of_value v)) in
- let arith_help vl vr =
- match (vl,vr) with
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | (V_vector _ ord cs,n) ->
- arith_op_vec_no0 op op_s sign size (V_tuple [vl;(to_vec ord (integerFromNat (List.length cs)) n)])
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint arith_help vl vr
- | _ -> fail ()
-end
-
-let rec shift_op_vec op v =
- let fail () = Assert_extra.failwith ("shift_op_vec given unexpected " ^ (string_of_value v)) in
- let arith_op_help vl vr =
- match (vl,vr) with
- | (V_vector b ord cs,V_lit (L_aux (L_num n) _)) ->
- let n = natFromInteger n in
- (match op with
- | "<<" ->
- V_vector b ord
- ((from_n_to_n n ((length cs) - 1) cs) ++(List.replicate n (V_lit (L_aux L_zero Unknown))))
- | ">>" ->
- V_vector b ord
- ((List.replicate n (V_lit (L_aux L_zero Unknown))) ++ (from_n_to_n 0 (((length cs) -1) - n) cs))
- | "<<<" ->
- V_vector b ord
- ((from_n_to_n n ((length cs) -1) cs) ++ (from_n_to_n 0 (n-1) cs))
- | _ -> Assert_extra.failwith "shift_op_vec given non-recognized op" end)
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | (V_lit (L_aux L_undef lx), _) -> V_lit (L_aux L_undef lx)
- | (_, V_lit (L_aux L_undef ly)) -> V_lit (L_aux L_undef ly)
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint arith_op_help vl vr
- | _ -> fail ()
-end
-
-let compare_op op v =
- let fail () = Assert_extra.failwith ("compare_op given unexpected " ^ (string_of_value v)) in
- let comp_help vl vr = match (vl,vr) with
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | (V_lit (L_aux L_undef lx), _) -> V_lit (L_aux L_undef lx)
- | (_, V_lit (L_aux L_undef ly)) -> V_lit (L_aux L_undef ly)
- | (V_lit(L_aux (L_num x) lx), V_lit(L_aux (L_num y) ly)) ->
- if (op x y)
- then V_lit(L_aux L_one lx)
- else V_lit(L_aux L_zero lx)
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint comp_help vl vr
- | _ -> fail ()
-end
-
-let compare_op_vec op sign v =
- let fail () = Assert_extra.failwith ("compare_op_vec given unexpected " ^ (string_of_value v)) in
- let comp_help vl vr = match (vl,vr) with
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | (V_vector _ _ _,V_vector _ _ _) ->
- let (l1',l2') = (to_num sign vl, to_num sign vr) in
- compare_op op (V_tuple[l1';l2'])
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint comp_help vl vr
- | _ -> fail ()
-end
-
-let compare_op_vec_range op sign v =
- let fail () = Assert_extra.failwith ("compare_op_vec_range given unexpected " ^ (string_of_value v)) in
- let comp_help vl vr = match (vl,vr) with
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | _ -> compare_op op (V_tuple[(to_num sign vl);vr])
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint comp_help vl vr
- | _ -> fail ()
-end
-
-let compare_op_range_vec op sign v =
- let fail () = Assert_extra.failwith ("compare_op_range_vec given unexpected " ^ (string_of_value v)) in
- let comp_help vl vr = match (vl,vr) with
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | _ -> compare_op op (V_tuple[vl;(to_num sign vr)])
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint comp_help vl vr
- | _ -> fail ()
-end
-
-let compare_op_vec_unsigned op v =
- let fail () = Assert_extra.failwith ("compare_op_vec_unsigned given unexpected " ^ (string_of_value v)) in
- let comp_help vl vr = match (vl,vr) with
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | (V_vector _ _ _,V_vector _ _ _) ->
- let (l1',l2') = (to_num Unsigned vl, to_num Unsigned vr) in
- compare_op op (V_tuple[l1';l2'])
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint comp_help vl vr
- | _ -> fail ()
-end
-
-let duplicate direction v =
- let fail () = Assert_extra.failwith ("duplicate given unexpected " ^ (string_of_value v)) in
- let dup_help vl vr =
- match (vl,vr) with
- | ((V_lit _ as v),(V_lit (L_aux (L_num n) _))) ->
- V_vector 0 direction (List.replicate (natFromInteger n) v)
- | (V_unknown,(V_lit (L_aux (L_num n) _))) ->
- V_vector 0 direction (List.replicate (natFromInteger n) V_unknown)
- | (V_unknown,_) -> V_unknown
- | (_, V_unknown) -> V_unknown
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint dup_help vl vr
- | _ -> fail ()
-end
-
-let rec repeat_block_helper (n: integer) bits =
- if n <= 0
- then []
- else bits ++ (repeat_block_helper (n-1) bits)
-
-let duplicate_bits v =
- let fail () = Assert_extra.failwith ("duplicate_bits given unexpected " ^ (string_of_value v)) in
- let dup_help vl vr =
- match (vl,vr) with
- | (V_vector start direction bits, (V_lit (L_aux (L_num n) _))) ->
- let start : nat = if direction = IInc then 0 else ((natFromInteger n) * (List.length bits)) - 1 in
- (V_vector start direction (repeat_block_helper n bits))
- | (_,V_unknown) -> V_unknown
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint dup_help vl vr
- | _ -> fail ()
-end
-
-
-let rec vec_concat v =
- let fail () = Assert_extra.failwith ("vec_concat given unexpected " ^ (string_of_value v)) in
- let concat_help vl vr =
- match (vl,vr) with
- | (V_vector n d l, V_vector n' d' l') ->
- (* XXX d = d' ? dropping n' ? *)
- V_vector n d (l ++ l')
- | (V_lit l, (V_vector n d l' as x)) -> vec_concat (V_tuple [litV_to_vec l d; x])
- | ((V_vector n d l' as x), V_lit l) -> vec_concat (V_tuple [x; litV_to_vec l d])
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | _ -> fail ()
- end in
- match v with
- | (V_tuple [vl;vr]) -> binary_taint concat_help vl vr
- | _ -> fail ()
-end
-
-let v_length v = retaint v (match detaint v with
- | V_vector n d l -> V_lit (L_aux (L_num (integerFromNat (List.length l))) Unknown)
- | V_unknown -> V_unknown
- | _ -> Assert_extra.failwith ("length given unexpected " ^ (string_of_value v)) end)
-
-let min v = retaint v (match detaint v with
- | V_tuple [v1;v2] ->
- (match (detaint v1,detaint v2) with
- | (V_lit (L_aux (L_num l1) _), V_lit (L_aux (L_num l2) _)) ->
- if l1 < l2
- then retaint v2 v1
- else retaint v1 v2
- | (V_unknown,_) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | (V_lit l1,_) -> Assert_extra.failwith ("Second argument to min not a number " ^ (string_of_value v2))
- | (_,V_lit l2) -> Assert_extra.failwith ("First argument to min not a number " ^ (string_of_value v1))
- | _ ->
- Assert_extra.failwith ("min given unexpected " ^ (string_of_value v1) ^ " and " ^ (string_of_value v2)) end)
- | _ -> Assert_extra.failwith ("min given unexpected " ^ (string_of_value v)) end)
-
-let max v = retaint v (match detaint v with
- | (V_tuple [(V_lit (L_aux (L_num l1) _) as v1); (V_lit (L_aux (L_num l2) _) as v2)]) ->
- if l1 > l2
- then v1
- else v2
- | V_tuple [V_unknown; V_unknown] -> V_unknown
- | _ -> Assert_extra.failwith ("max given unexpected " ^ (string_of_value v)) end)
-
-
-let mask direction v =
- let fail () = Assert_extra.failwith ("shift_op_vec given unexpected " ^ (string_of_value v)) in
- match v with
- | (V_tuple [vsize;v]) ->
- retaint v (match (detaint v,detaint vsize) with
- | (V_vector s d l,V_lit (L_aux (L_num n) _)) ->
- let n = natFromInteger n in
- let current_size = List.length l in
- V_vector (if is_inc(d) then 0 else (n-1)) d (drop (current_size - n) l)
- | (V_unknown,V_lit (L_aux (L_num n) _)) ->
- let nat_n = natFromInteger n in
- let start_num = if is_inc(direction) then 0 else nat_n -1 in
- V_vector start_num direction (List.replicate nat_n V_unknown)
- | (_,V_unknown) -> V_unknown
- | _ -> fail () end)
-| _ -> fail ()
-end
-
-let s_append v =
- let fail () = Assert_extra.failwith ("append given unexpected " ^ (string_of_value v)) in
- match v with
- | (V_tuple [l1;l2]) ->
- retaint v (match (detaint l1,detaint l2) with
- | (V_list vs1, V_list vs2) -> V_list (vs1++vs2)
- | (V_unknown, _) -> V_unknown
- | (_,V_unknown) -> V_unknown
- | _ -> fail () end)
- | _ -> fail ()
-end
-
-let library_functions direction = [
- ("ignore", ignore_sail);
- ("append", s_append);
- ("length", v_length);
- ("add", arith_op (+));
- ("add_vec", arith_op_vec (+) Unsigned 1);
- ("add_vec_range", arith_op_vec_range (+) Unsigned 1);
- ("add_vec_range_range", arith_op_vec_range_range (+) Unsigned);
- ("add_range_vec", arith_op_range_vec (+) Unsigned 1);
- ("add_range_vec_range", arith_op_range_vec_range (+) Unsigned);
- ("add_vec_vec_range", arith_op_vec_vec_range (+) Unsigned);
- ("add_vec_bit", arith_op_vec_bit (+) Unsigned 1);
- ("add_overflow_vec", arith_op_overflow_vec (+) "+" Unsigned 1);
- ("add_signed", arith_op (+));
- ("add_vec_signed", arith_op_vec (+) Signed 1);
- ("add_vec_range_signed", arith_op_vec_range (+) Signed 1);
- ("add_vec_range_range_signed", arith_op_vec_range_range (+) Signed);
- ("add_range_vec_signed", arith_op_range_vec (+) Signed 1);
- ("add_range_vec_range_signed", arith_op_range_vec_range (+) Signed);
- ("add_vec_vec_range_signed", arith_op_vec_vec_range (+) Signed);
- ("add_vec_bit_signed", arith_op_vec_bit (+) Signed 1);
- ("add_overflow_vec_signed", arith_op_overflow_vec (+) "+" Signed 1);
- ("add_overflow_vec_bit_signed", arith_op_overflow_vec_bit (+) Signed 1);
- ("minus", arith_op (-));
- ("minus_vec", arith_op_vec (-) Unsigned 1);
- ("minus_vec_range", arith_op_vec_range (-) Unsigned 1);
- ("minus_range_vec", arith_op_range_vec (-) Unsigned 1);
- ("minus_vec_range_range", arith_op_vec_range_range (-) Unsigned);
- ("minus_range_vec_range", arith_op_range_vec_range (-) Unsigned);
- ("minus_vec_bit", arith_op_vec_bit (-) Unsigned 1);
- ("minus_overflow_vec", arith_op_overflow_vec (-) "+" Unsigned 1);
- ("minus_overflow_vec_bit", arith_op_overflow_vec_bit (-) Unsigned 1);
- ("minus_overflow_vec_signed", arith_op_overflow_vec (-) "+" Signed 1);
- ("minus_overflow_vec_bit_signed", arith_op_overflow_vec_bit (-) Signed 1);
- ("multiply", arith_op ( * ));
- ("multiply_vec", arith_op_vec ( * ) Unsigned 2);
- ("mult_range_vec", arith_op_range_vec ( * ) Unsigned 2);
- ("mult_vec_range", arith_op_vec_range ( * ) Unsigned 2);
- ("mult_overflow_vec", arith_op_overflow_vec ( * ) "*" Unsigned 2);
- ("multiply_vec_signed", arith_op_vec ( * ) Signed 2);
- ("mult_range_vec_signed", arith_op_range_vec ( * ) Signed 2);
- ("mult_vec_range_signed", arith_op_vec_range ( * ) Signed 2);
- ("mult_overflow_vec_signed", arith_op_overflow_vec ( * ) "*" Signed 2);
- ("bitwise_leftshift", shift_op_vec "<<");
- ("bitwise_rightshift", shift_op_vec ">>");
- ("bitwise_rotate", shift_op_vec "<<<");
- ("modulo", arith_op_no0 (mod));
- ("mod_signed", arith_op_no0 hardware_mod);
- ("mod_vec", arith_op_vec_no0 hardware_mod "mod" Unsigned 1);
- ("mod_vec_range", arith_op_vec_range_no0 hardware_mod "mod" Unsigned 1);
- ("mod_signed_vec", arith_op_vec_no0 hardware_mod "mod" Signed 1);
- ("mod_signed_vec_range", arith_op_vec_range_no0 hardware_mod "mod" Signed 1);
- ("quot", arith_op_no0 hardware_quot);
- ("quot_signed", arith_op_no0 hardware_quot);
- ("quot_vec", arith_op_vec_no0 hardware_quot "quot" Unsigned 1);
- ("quot_overflow_vec", arith_op_overflow_vec_no0 hardware_quot "quot" Unsigned 1);
- ("quot_vec_signed", arith_op_vec_no0 hardware_quot "quot" Signed 1);
- ("quot_overflow_vec_signed", arith_op_overflow_vec_no0 hardware_quot "quot" Signed 1);
- ("print", print);
- ("power", arith_op power);
- ("eq", eq);
- ("eq_vec", eq_vec);
- ("eq_vec_range", eq_vec_range);
- ("eq_range_vec", eq_range_vec);
- ("eq_bit", eq);
- ("eq_range", eq);
- ("neq", neq);
- ("neq_vec", neq_vec);
- ("neq_vec_range", neq_vec_range);
- ("neq_range_vec", neq_range_vec);
- ("neq_bit", neq);
- ("neq_range", neq);
- ("vec_concat", vec_concat);
- ("is_one", is_one);
- ("to_num", to_num Unsigned);
- ("exts", exts direction);
- ("extz", extz direction);
- ("to_vec_inc", to_vec_inc);
- ("to_vec_inc_undef", to_vec_inc_undef);
- ("to_vec_dec", to_vec_dec);
- ("to_vec_dec_undef", to_vec_dec_undef);
- ("bitwise_not", bitwise_not);
- ("bitwise_not_bit", bitwise_not_bit);
- ("bitwise_and", bitwise_binop (&&) "&");
- ("bitwise_or", bitwise_binop (||) "|");
- ("bitwise_xor", bitwise_binop xor "^");
- ("bitwise_and_bit", bitwise_binop_bit (&&) "&");
- ("bitwise_or_bit", bitwise_binop_bit (||) "|");
- ("bitwise_xor_bit", bitwise_binop_bit xor "^");
- ("lt", compare_op (<));
- ("lt_signed", compare_op (<));
- ("gt", compare_op (>));
- ("lteq", compare_op (<=));
- ("gteq", compare_op (>=));
- ("lt_vec", compare_op_vec (<) Signed);
- ("gt_vec", compare_op_vec (>) Signed);
- ("lt_vec_range", compare_op_vec_range (<) Signed);
- ("gt_vec_range", compare_op_vec_range (>) Signed);
- ("lt_range_vec", compare_op_range_vec (<) Signed);
- ("gt_range_vec", compare_op_range_vec (>) Signed);
- ("lteq_vec_range", compare_op_vec_range (<=) Signed);
- ("gteq_vec_range", compare_op_vec_range (>=) Signed);
- ("lteq_range_vec", compare_op_range_vec (<=) Signed);
- ("gteq_range_vec", compare_op_range_vec (>=) Signed);
- ("lteq_vec", compare_op_vec (<=) Signed);
- ("gteq_vec", compare_op_vec (>=) Signed);
- ("lt_vec_signed", compare_op_vec (<) Signed);
- ("gt_vec_signed", compare_op_vec (>) Signed);
- ("lteq_vec_signed", compare_op_vec (<=) Signed);
- ("gteq_vec_signed", compare_op_vec (>=) Signed);
- ("lt_vec_unsigned", compare_op_vec (<) Unsigned);
- ("gt_vec_unsigned", compare_op_vec (>) Unsigned);
- ("lteq_vec_unsigned", compare_op_vec (<=) Unsigned);
- ("gteq_vec_unsigned", compare_op_vec (>=) Unsigned);
- ("signed", to_num Signed);
- ("unsigned", to_num Unsigned);
- ("ltu", compare_op_vec_unsigned (<));
- ("gtu", compare_op_vec_unsigned (>));
- ("duplicate", duplicate direction);
- ("duplicate_bits", duplicate_bits);
- ("mask", mask direction);
- ("most_significant", most_significant);
- ("min", min);
- ("max", max);
- ("abs", v_abs);
-] ;;
-
-let eval_external name v = match List.lookup name (library_functions IInc) with
- | Just f -> f v
- | Nothing -> Assert_extra.failwith ("missing library function " ^ name)
- end
diff --git a/src/lem_interp/0.11/interp_utilities.lem b/src/lem_interp/0.11/interp_utilities.lem
deleted file mode 100644
index 1e6c59ff..00000000
--- a/src/lem_interp/0.11/interp_utilities.lem
+++ /dev/null
@@ -1,212 +0,0 @@
-(*========================================================================*)
-(* Sail *)
-(* *)
-(* Copyright (c) 2013-2017 *)
-(* Kathyrn Gray *)
-(* Shaked Flur *)
-(* Stephen Kell *)
-(* Gabriel Kerneis *)
-(* Robert Norton-Wright *)
-(* Christopher Pulte *)
-(* Peter Sewell *)
-(* Alasdair Armstrong *)
-(* Brian Campbell *)
-(* Thomas Bauereiss *)
-(* Anthony Fox *)
-(* Jon French *)
-(* Dominic Mulligan *)
-(* Stephen Kell *)
-(* Mark Wassell *)
-(* *)
-(* All rights reserved. *)
-(* *)
-(* This software was developed by the University of Cambridge Computer *)
-(* Laboratory as part of the Rigorous Engineering of Mainstream Systems *)
-(* (REMS) project, funded by EPSRC grant EP/K008528/1. *)
-(* *)
-(* Redistribution and use in source and binary forms, with or without *)
-(* modification, are permitted provided that the following conditions *)
-(* are met: *)
-(* 1. Redistributions of source code must retain the above copyright *)
-(* notice, this list of conditions and the following disclaimer. *)
-(* 2. Redistributions in binary form must reproduce the above copyright *)
-(* notice, this list of conditions and the following disclaimer in *)
-(* the documentation and/or other materials provided with the *)
-(* distribution. *)
-(* *)
-(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
-(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
-(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
-(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
-(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
-(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
-(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
-(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
-(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
-(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
-(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
-(* SUCH DAMAGE. *)
-(*========================================================================*)
-
-open import Interp_ast
-open import Pervasives
-open import Show_extra
-
-let rec power (a: integer) (b: integer) : integer =
- if b <= 0
- then 1
- else a * (power a (b-1))
-
-let foldr2 f x l l' = List.foldr (Tuple.uncurry f) x (List.zip l l')
-let map2 f l l' = List.map (Tuple.uncurry f) (List.zip l l')
-
-let get_exp_l (E_aux e (l,annot)) = l
-
-val pure : effect
-let pure = Effect_aux(Effect_set []) Unknown
-let unit_t = Typ_aux(Typ_app (Id_aux (Id "unit") Unknown) []) Unknown
-
-let mk_typ_app str args = Typ_aux (Typ_app (Id_aux (Id str) Unknown) (List.map (fun aux -> Typ_arg_aux aux Unknown) args)) Unknown
-let mk_typ_id str = Typ_aux (Typ_id (Id_aux (Id str) Unknown)) Unknown
-
-let mk_typ_var str = Typ_aux (Typ_var (Kid_aux (Var ("'" ^ str)) Unknown)) Unknown
-let mk_typ_tup typs = Typ_aux (Typ_tup typs) Unknown
-
-let nconstant n = Nexp_aux (Nexp_constant n) Unknown
-
-(* Workaround Lem's inability to scrap my (type classes) boilerplate.
- * Implementing only Eq, and only for literals - hopefully this will
- * be enough, but we should in principle implement ordering for everything in
- * Interp_ast *)
-
-val lit_eq: lit -> lit -> bool
-let {ocaml;coq} lit_eq (L_aux left _) (L_aux right _) =
- match (left, right) with
- | (L_zero, L_zero) -> true
- | (L_one, L_one) -> true
- | (L_bin b, L_bin b') -> b = b'
- | (L_hex h, L_hex h') -> h = h'
- | (L_zero, L_num i) -> i = 0
- | (L_num i,L_zero) -> i = 0
- | (L_one, L_num i) -> i = 1
- | (L_num i, L_one) -> i = 1
- | (L_num n, L_num m) -> n = m
- | (L_unit, L_unit) -> true
- | (L_true, L_true) -> true
- | (L_false, L_false) -> true
- | (L_undef, L_undef) -> true
- | (L_string s, L_string s') -> s = s'
- | (_, _) -> false
-end
-let {isabelle;hol} lit_eq = unsafe_structural_equality
-
-let {ocaml;coq} lit_ineq n1 n2 = not (lit_eq n1 n2)
-let {isabelle;hol} lit_ineq = unsafe_structural_inequality
-
-instance (Eq lit)
- let (=) = lit_eq
- let (<>) = lit_ineq
-end
-
-let get_id id = match id with (Id_aux (Id s) _) -> s | (Id_aux (DeIid s) _ ) -> s end
-
-let rec {ocaml} list_to_string format sep lst = match lst with
- | [] -> ""
- | [last] -> format last
- | one::rest -> (format one) ^ sep ^ (list_to_string format sep rest)
-end
-let ~{ocaml} list_to_string format sep list = ""
-
-val has_rmem_effect : list base_effect -> bool
-val has_rmemt_effect : list base_effect -> bool
-val has_barr_effect : list base_effect -> bool
-val has_wmem_effect : list base_effect -> bool
-val has_depend_effect : list base_effect -> bool
-let rec has_effect which efcts =
- match efcts with
- | [] -> false
- | (BE_aux e _)::efcts ->
- match (which,e) with
- | (BE_rreg,BE_rreg) -> true
- | (BE_wreg,BE_wreg) -> true
- | (BE_rmem,BE_rmem) -> true
- | (BE_rmemt,BE_rmemt) -> true
- | (BE_wmem,BE_wmem) -> true
- | (BE_wmv,BE_wmv) -> true
- | (BE_wmvt,BE_wmvt) -> true
- | (BE_eamem,BE_eamem) -> true
- | (BE_exmem,BE_exmem) -> true
- | (BE_barr,BE_barr) -> true
- | (BE_undef,BE_undef) -> true
- | (BE_unspec,BE_unspec) -> true
- | (BE_nondet,BE_nondet) -> true
- | (BE_depend,BE_depend) -> true
- | _ -> has_effect which efcts
- end
- end
-let has_rmem_effect = has_effect BE_rmem
-let has_rmemt_effect = has_effect BE_rmemt
-let has_barr_effect = has_effect BE_barr
-let has_wmem_effect = has_effect BE_wmem
-let has_eamem_effect = has_effect BE_eamem
-let has_exmem_effect = has_effect BE_exmem
-let has_wmv_effect = has_effect BE_wmv
-let has_wmvt_effect = has_effect BE_wmvt
-let has_depend_effect = has_effect BE_depend
-
-let get_typ (TypSchm_aux (TypSchm_ts tq t) _) = t
-let get_effects (Typ_aux t _) =
- match t with
- | Typ_fn a r (Effect_aux (Effect_set eff) _) -> eff
- | _ -> []
- end
-
-let {ocaml} string_of_tag tag = match tag with
- | Tag_empty -> "empty"
- | Tag_global -> "global"
- | Tag_ctor -> "ctor"
- | Tag_extern (Just n) -> "extern " ^ n
- | Tag_extern _ -> "extern"
- | Tag_default -> "default"
- | Tag_spec -> "spec"
- | Tag_enum i -> "enum"
- | Tag_alias -> "alias"
-end
-let ~{ocaml} string_of_tag tag = ""
-
-val find_type_def : defs tannot -> id -> maybe (type_def tannot)
-val find_function : defs tannot -> id -> maybe (list (funcl tannot))
-
-let get_funcls id (FD_aux (FD_function _ _ _ fcls) _) =
- List.filter (fun (FCL_aux (FCL_Funcl name pexp) _) -> (get_id id) = (get_id name)) fcls
-
-let rec find_function (Defs defs) id =
- match defs with
- | [] -> Nothing
- | def::defs ->
- match def with
- | DEF_fundef f -> match get_funcls id f with
- | [] -> find_function (Defs defs) id
- | funcs -> Just funcs end
- | _ -> find_function (Defs defs) id
- end end
-
-
-let rec get_first_index_range (BF_aux i _) = match i with
- | BF_single i -> (natFromInteger i)
- | BF_range i j -> (natFromInteger i)
- | BF_concat s _ -> get_first_index_range s
-end
-
-let rec get_index_range_size (BF_aux i _) = match i with
- | BF_single _ -> 1
- | BF_range i j -> (natFromInteger (abs (i-j))) + 1
- | BF_concat i j -> (get_index_range_size i) + (get_index_range_size j)
-end
-
-let rec string_of_loc l = match l with
- | Unknown -> "Unknown"
- | Int s Nothing -> "Internal " ^ s
- | Int s (Just l) -> "Internal " ^ s ^ " " ^ (string_of_loc l)
- | Range file n1 n2 n3 n4 -> "File " ^ file ^ ": " ^ (show n1) ^ ": " ^ (show (n2:nat)) ^ ": " ^ (show (n3:nat)) ^ ": " ^ (show (n4:nat))
-end
diff --git a/src/lem_interp/0.11/sail2_impl_base.lem b/src/lem_interp/0.11/sail2_impl_base.lem
deleted file mode 100644
index f1cd9f2a..00000000
--- a/src/lem_interp/0.11/sail2_impl_base.lem
+++ /dev/null
@@ -1,1103 +0,0 @@
-(*========================================================================*)
-(* Sail *)
-(* *)
-(* Copyright (c) 2013-2017 *)
-(* Kathyrn Gray *)
-(* Shaked Flur *)
-(* Stephen Kell *)
-(* Gabriel Kerneis *)
-(* Robert Norton-Wright *)
-(* Christopher Pulte *)
-(* Peter Sewell *)
-(* Alasdair Armstrong *)
-(* Brian Campbell *)
-(* Thomas Bauereiss *)
-(* Anthony Fox *)
-(* Jon French *)
-(* Dominic Mulligan *)
-(* Stephen Kell *)
-(* Mark Wassell *)
-(* *)
-(* All rights reserved. *)
-(* *)
-(* This software was developed by the University of Cambridge Computer *)
-(* Laboratory as part of the Rigorous Engineering of Mainstream Systems *)
-(* (REMS) project, funded by EPSRC grant EP/K008528/1. *)
-(* *)
-(* Redistribution and use in source and binary forms, with or without *)
-(* modification, are permitted provided that the following conditions *)
-(* are met: *)
-(* 1. Redistributions of source code must retain the above copyright *)
-(* notice, this list of conditions and the following disclaimer. *)
-(* 2. Redistributions in binary form must reproduce the above copyright *)
-(* notice, this list of conditions and the following disclaimer in *)
-(* the documentation and/or other materials provided with the *)
-(* distribution. *)
-(* *)
-(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
-(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
-(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
-(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
-(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
-(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
-(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
-(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
-(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
-(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
-(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
-(* SUCH DAMAGE. *)
-(*========================================================================*)
-
-open import Pervasives_extra
-open import Sail2_instr_kinds
-
-
-class ( EnumerationType 'a )
- val toNat : 'a -> nat
-end
-
-
-val enumeration_typeCompare : forall 'a. EnumerationType 'a => 'a -> 'a -> ordering
-let ~{ocaml} enumeration_typeCompare e1 e2 =
- compare (toNat e1) (toNat e2)
-let inline {ocaml} enumeration_typeCompare = defaultCompare
-
-
-default_instance forall 'a. EnumerationType 'a => (Ord 'a)
- let compare = enumeration_typeCompare
- let (<) r1 r2 = (enumeration_typeCompare r1 r2) = LT
- let (<=) r1 r2 = (enumeration_typeCompare r1 r2) <> GT
- let (>) r1 r2 = (enumeration_typeCompare r1 r2) = GT
- let (>=) r1 r2 = (enumeration_typeCompare r1 r2) <> LT
-end
-
-
-
-(* maybe isn't a member of type Ord - this should be in the Lem standard library*)
-instance forall 'a. Ord 'a => (Ord (maybe 'a))
- let compare = maybeCompare compare
- let (<) r1 r2 = (maybeCompare compare r1 r2) = LT
- let (<=) r1 r2 = (maybeCompare compare r1 r2) <> GT
- let (>) r1 r2 = (maybeCompare compare r1 r2) = GT
- let (>=) r1 r2 = (maybeCompare compare r1 r2) <> LT
-end
-
-type word8 = nat (* bounded at a byte, for when lem supports it*)
-
-type end_flag =
- | E_big_endian
- | E_little_endian
-
-type bit =
- | Bitc_zero
- | Bitc_one
-
-type bit_lifted =
- | Bitl_zero
- | Bitl_one
- | Bitl_undef (* used for modelling h/w arch unspecified bits *)
- | Bitl_unknown (* used for interpreter analysis exhaustive execution *)
-
-type direction =
- | D_increasing
- | D_decreasing
-
-let dir_of_bool is_inc = if is_inc then D_increasing else D_decreasing
-let bool_of_dir = function
- | D_increasing -> true
- | D_decreasing -> false
- end
-
-(* at some point this should probably not mention bit_lifted anymore *)
-type register_value = <|
- rv_bits: list bit_lifted (* MSB first, smallest index number *);
- rv_dir: direction;
- rv_start: nat ;
- rv_start_internal: nat;
- (*when dir is increasing, rv_start = rv_start_internal.
- Otherwise, tells interpreter how to reconstruct a proper decreasing value*)
- |>
-
-type byte_lifted = Byte_lifted of list bit_lifted (* of length 8 *) (*MSB first everywhere*)
-
-type instruction_field_value = list bit
-
-type byte = Byte of list bit (* of length 8 *) (*MSB first everywhere*)
-
-type address_lifted = Address_lifted of list byte_lifted (* of length 8 for 64bit machines*) * maybe integer
-(* for both values of end_flag, MSBy first *)
-
-type memory_byte = byte_lifted (* of length 8 *) (*MSB first everywhere*)
-
-type memory_value = list memory_byte
-(* the list is of length >=1 *)
-(* the head of the list is the byte stored at the lowest address;
-when calling a Sail function with a wmv effect, the least significant 8
-bits of the bit vector passed to the function will be interpreted as
-the lowest address byte; similarly, when calling a Sail function with
-rmem effect, the lowest address byte will be placed in the least
-significant 8 bits of the bit vector returned by the function; this
-behaviour is consistent with little-endian. *)
-
-
-(* not sure which of these is more handy yet *)
-type address = Address of list byte (* of length 8 *) * integer
-(* type address = Address of integer *)
-
-type opcode = Opcode of list byte (* of length 4 *)
-
-(** typeclass instantiations *)
-
-instance (EnumerationType bit)
- let toNat = function
- | Bitc_zero -> 0
- | Bitc_one -> 1
- end
-end
-
-instance (EnumerationType bit_lifted)
- let toNat = function
- | Bitl_zero -> 0
- | Bitl_one -> 1
- | Bitl_undef -> 2
- | Bitl_unknown -> 3
- end
-end
-
-let ~{ocaml} byte_liftedCompare (Byte_lifted b1) (Byte_lifted b2) = compare b1 b2
-let inline {ocaml} byte_liftedCompare = defaultCompare
-
-let ~{ocaml} byte_liftedLess b1 b2 = byte_liftedCompare b1 b2 = LT
-let ~{ocaml} byte_liftedLessEq b1 b2 = byte_liftedCompare b1 b2 <> GT
-let ~{ocaml} byte_liftedGreater b1 b2 = byte_liftedCompare b1 b2 = GT
-let ~{ocaml} byte_liftedGreaterEq b1 b2 = byte_liftedCompare b1 b2 <> LT
-
-let inline {ocaml} byte_liftedLess = defaultLess
-let inline {ocaml} byte_liftedLessEq = defaultLessEq
-let inline {ocaml} byte_liftedGreater = defaultGreater
-let inline {ocaml} byte_liftedGreaterEq = defaultGreaterEq
-
-instance (Ord byte_lifted)
- let compare = byte_liftedCompare
- let (<) = byte_liftedLess
- let (<=) = byte_liftedLessEq
- let (>) = byte_liftedGreater
- let (>=) = byte_liftedGreaterEq
-end
-
-let ~{ocaml} byteCompare (Byte b1) (Byte b2) = compare b1 b2
-let inline {ocaml} byteCompare = defaultCompare
-
-let ~{ocaml} byteLess b1 b2 = byteCompare b1 b2 = LT
-let ~{ocaml} byteLessEq b1 b2 = byteCompare b1 b2 <> GT
-let ~{ocaml} byteGreater b1 b2 = byteCompare b1 b2 = GT
-let ~{ocaml} byteGreaterEq b1 b2 = byteCompare b1 b2 <> LT
-
-let inline {ocaml} byteLess = defaultLess
-let inline {ocaml} byteLessEq = defaultLessEq
-let inline {ocaml} byteGreater = defaultGreater
-let inline {ocaml} byteGreaterEq = defaultGreaterEq
-
-instance (Ord byte)
- let compare = byteCompare
- let (<) = byteLess
- let (<=) = byteLessEq
- let (>) = byteGreater
- let (>=) = byteGreaterEq
-end
-
-
-
-
-
-let ~{ocaml} opcodeCompare (Opcode o1) (Opcode o2) =
- compare o1 o2
-let {ocaml} opcodeCompare = defaultCompare
-
-let ~{ocaml} opcodeLess b1 b2 = opcodeCompare b1 b2 = LT
-let ~{ocaml} opcodeLessEq b1 b2 = opcodeCompare b1 b2 <> GT
-let ~{ocaml} opcodeGreater b1 b2 = opcodeCompare b1 b2 = GT
-let ~{ocaml} opcodeGreaterEq b1 b2 = opcodeCompare b1 b2 <> LT
-
-let inline {ocaml} opcodeLess = defaultLess
-let inline {ocaml} opcodeLessEq = defaultLessEq
-let inline {ocaml} opcodeGreater = defaultGreater
-let inline {ocaml} opcodeGreaterEq = defaultGreaterEq
-
-instance (Ord opcode)
- let compare = opcodeCompare
- let (<) = opcodeLess
- let (<=) = opcodeLessEq
- let (>) = opcodeGreater
- let (>=) = opcodeGreaterEq
-end
-
-let addressCompare (Address b1 i1) (Address b2 i2) = compare i1 i2
-(* this cannot be defaultCompare for OCaml because addresses contain big ints *)
-
-let addressLess b1 b2 = addressCompare b1 b2 = LT
-let addressLessEq b1 b2 = addressCompare b1 b2 <> GT
-let addressGreater b1 b2 = addressCompare b1 b2 = GT
-let addressGreaterEq b1 b2 = addressCompare b1 b2 <> LT
-
-instance (SetType address)
- let setElemCompare = addressCompare
-end
-
-instance (Ord address)
- let compare = addressCompare
- let (<) = addressLess
- let (<=) = addressLessEq
- let (>) = addressGreater
- let (>=) = addressGreaterEq
-end
-
-let {coq; ocaml} addressEqual a1 a2 = (addressCompare a1 a2) = EQ
-let inline {hol; isabelle} addressEqual = unsafe_structural_equality
-
-let {coq; ocaml} addressInequal a1 a2 = not (addressEqual a1 a2)
-let inline {hol; isabelle} addressInequal = unsafe_structural_inequality
-
-instance (Eq address)
- let (=) = addressEqual
- let (<>) = addressInequal
-end
-
-let ~{ocaml} directionCompare d1 d2 =
- match (d1, d2) with
- | (D_decreasing, D_increasing) -> GT
- | (D_increasing, D_decreasing) -> LT
- | _ -> EQ
- end
-let inline {ocaml} directionCompare = defaultCompare
-
-let ~{ocaml} directionLess b1 b2 = directionCompare b1 b2 = LT
-let ~{ocaml} directionLessEq b1 b2 = directionCompare b1 b2 <> GT
-let ~{ocaml} directionGreater b1 b2 = directionCompare b1 b2 = GT
-let ~{ocaml} directionGreaterEq b1 b2 = directionCompare b1 b2 <> LT
-
-let inline {ocaml} directionLess = defaultLess
-let inline {ocaml} directionLessEq = defaultLessEq
-let inline {ocaml} directionGreater = defaultGreater
-let inline {ocaml} directionGreaterEq = defaultGreaterEq
-
-instance (Ord direction)
- let compare = directionCompare
- let (<) = directionLess
- let (<=) = directionLessEq
- let (>) = directionGreater
- let (>=) = directionGreaterEq
-end
-
-instance (Show direction)
- let show = function D_increasing -> "D_increasing" | D_decreasing -> "D_decreasing" end
-end
-
-let ~{ocaml} register_valueCompare rv1 rv2 =
- compare (rv1.rv_bits, rv1.rv_dir, rv1.rv_start, rv1.rv_start_internal)
- (rv2.rv_bits, rv2.rv_dir, rv2.rv_start, rv2.rv_start_internal)
-let inline {ocaml} register_valueCompare = defaultCompare
-
-let ~{ocaml} register_valueLess b1 b2 = register_valueCompare b1 b2 = LT
-let ~{ocaml} register_valueLessEq b1 b2 = register_valueCompare b1 b2 <> GT
-let ~{ocaml} register_valueGreater b1 b2 = register_valueCompare b1 b2 = GT
-let ~{ocaml} register_valueGreaterEq b1 b2 = register_valueCompare b1 b2 <> LT
-
-let inline {ocaml} register_valueLess = defaultLess
-let inline {ocaml} register_valueLessEq = defaultLessEq
-let inline {ocaml} register_valueGreater = defaultGreater
-let inline {ocaml} register_valueGreaterEq = defaultGreaterEq
-
-instance (Ord register_value)
- let compare = register_valueCompare
- let (<) = register_valueLess
- let (<=) = register_valueLessEq
- let (>) = register_valueGreater
- let (>=) = register_valueGreaterEq
-end
-
-let address_liftedCompare (Address_lifted b1 i1) (Address_lifted b2 i2) =
- compare (i1,b1) (i2,b2)
-(* this cannot be defaultCompare for OCaml because address_lifteds contain big
- ints *)
-
-let address_liftedLess b1 b2 = address_liftedCompare b1 b2 = LT
-let address_liftedLessEq b1 b2 = address_liftedCompare b1 b2 <> GT
-let address_liftedGreater b1 b2 = address_liftedCompare b1 b2 = GT
-let address_liftedGreaterEq b1 b2 = address_liftedCompare b1 b2 <> LT
-
-instance (Ord address_lifted)
- let compare = address_liftedCompare
- let (<) = address_liftedLess
- let (<=) = address_liftedLessEq
- let (>) = address_liftedGreater
- let (>=) = address_liftedGreaterEq
-end
-
-(* Registers *)
-type slice = (nat * nat)
-
-type reg_name =
- (* do we really need this here if ppcmem already has this information by itself? *)
-| Reg of string * nat * nat * direction
-(*Name of the register, accessing the entire register, the start and size of this register, and its direction *)
-
-| Reg_slice of string * nat * direction * slice
-(* Name of the register, accessing from the bit indexed by the first
-to the bit indexed by the second integer of the slice, inclusive. For
-machineDef* the first is a smaller number or equal to the second, adjusted
-to reflect the correct span direction in the interpreter side. *)
-
-| Reg_field of string * nat * direction * string * slice
-(*Name of the register, start and direction, and name of the field of the register
-accessed. The slice specifies where this field is in the register*)
-
-| Reg_f_slice of string * nat * direction * string * slice * slice
-(* The first four components are as in Reg_field; the final slice
-specifies a part of the field, indexed w.r.t. the register as a whole *)
-
-let register_base_name : reg_name -> string = function
- | Reg s _ _ _ -> s
- | Reg_slice s _ _ _ -> s
- | Reg_field s _ _ _ _ -> s
- | Reg_f_slice s _ _ _ _ _ -> s
- end
-
-let slice_of_reg_name : reg_name -> slice = function
- | Reg _ start width D_increasing -> (start, start + width -1)
- | Reg _ start width D_decreasing -> (start - width - 1, start)
- | Reg_slice _ _ _ sl -> sl
- | Reg_field _ _ _ _ sl -> sl
- | Reg_f_slice _ _ _ _ _ sl -> sl
- end
-
-let width_of_reg_name (r: reg_name) : nat =
- let width_of_slice (i, j) = (* j - i + 1 in *)
-
- (integerFromNat j) - (integerFromNat i) + 1
- $> abs $> natFromInteger
- in
- match r with
- | Reg _ _ width _ -> width
- | Reg_slice _ _ _ sl -> width_of_slice sl
- | Reg_field _ _ _ _ sl -> width_of_slice sl
- | Reg_f_slice _ _ _ _ _ sl -> width_of_slice sl
- end
-
-let reg_name_non_empty_intersection (r: reg_name) (r': reg_name) : bool =
- register_base_name r = register_base_name r' &&
- let (i1, i2) = slice_of_reg_name r in
- let (i1', i2') = slice_of_reg_name r' in
- i1' <= i2 && i2' >= i1
-
-let reg_nameCompare r1 r2 =
- compare (register_base_name r1,slice_of_reg_name r1)
- (register_base_name r2,slice_of_reg_name r2)
-
-let reg_nameLess b1 b2 = reg_nameCompare b1 b2 = LT
-let reg_nameLessEq b1 b2 = reg_nameCompare b1 b2 <> GT
-let reg_nameGreater b1 b2 = reg_nameCompare b1 b2 = GT
-let reg_nameGreaterEq b1 b2 = reg_nameCompare b1 b2 <> LT
-
-instance (Ord reg_name)
- let compare = reg_nameCompare
- let (<) = reg_nameLess
- let (<=) = reg_nameLessEq
- let (>) = reg_nameGreater
- let (>=) = reg_nameGreaterEq
-end
-
-let {coq;ocaml} reg_nameEqual a1 a2 = (reg_nameCompare a1 a2) = EQ
-let {hol;isabelle} reg_nameEqual = unsafe_structural_equality
-let {coq;ocaml} reg_nameInequal a1 a2 = not (reg_nameEqual a1 a2)
-let {hol;isabelle} reg_nameInequal = unsafe_structural_inequality
-
-instance (Eq reg_name)
- let (=) = reg_nameEqual
- let (<>) = reg_nameInequal
-end
-
-instance (SetType reg_name)
- let setElemCompare = reg_nameCompare
-end
-
-let direction_of_reg_name r = match r with
- | Reg _ _ _ d -> d
- | Reg_slice _ _ d _ -> d
- | Reg_field _ _ d _ _ -> d
- | Reg_f_slice _ _ d _ _ _ -> d
- end
-
-let start_of_reg_name r = match r with
- | Reg _ start _ _ -> start
- | Reg_slice _ start _ _ -> start
- | Reg_field _ start _ _ _ -> start
- | Reg_f_slice _ start _ _ _ _ -> start
-end
-
-(* Data structures for building up instructions *)
-
-(* read_kind, write_kind, barrier_kind, trans_kind and instruction_kind have
- been moved to sail_instr_kinds.lem. This removes the dependency of the
- shallow embedding on the rest of sail_impl_base.lem, and helps avoid name
- clashes between the different monad types. *)
-
-type event =
- | E_read_mem of read_kind * address_lifted * nat * maybe (list reg_name)
- | E_read_memt of read_kind * address_lifted * nat * maybe (list reg_name)
- | E_write_mem of write_kind * address_lifted * nat * maybe (list reg_name) * memory_value * maybe (list reg_name)
- | E_write_ea of write_kind * address_lifted * nat * maybe (list reg_name)
- | E_excl_res
- | E_write_memv of maybe address_lifted * memory_value * maybe (list reg_name)
- | E_write_memvt of maybe address_lifted * (bit_lifted * memory_value) * maybe (list reg_name)
- | E_barrier of barrier_kind
- | E_footprint
- | E_read_reg of reg_name
- | E_write_reg of reg_name * register_value
- | E_escape
- | E_error of string
-
-
-let eventCompare e1 e2 =
- match (e1,e2) with
- | (E_read_mem rk1 v1 i1 tr1, E_read_mem rk2 v2 i2 tr2) ->
- compare (rk1, (v1,i1,tr1)) (rk2,(v2, i2, tr2))
- | (E_read_memt rk1 v1 i1 tr1, E_read_memt rk2 v2 i2 tr2) ->
- compare (rk1, (v1,i1,tr1)) (rk2,(v2, i2, tr2))
- | (E_write_mem wk1 v1 i1 tr1 v1' tr1', E_write_mem wk2 v2 i2 tr2 v2' tr2') ->
- compare ((wk1,v1,i1),(tr1,v1',tr1')) ((wk2,v2,i2),(tr2,v2',tr2'))
- | (E_write_ea wk1 a1 i1 tr1, E_write_ea wk2 a2 i2 tr2) ->
- compare (wk1, (a1, i1, tr1)) (wk2, (a2, i2, tr2))
- | (E_excl_res, E_excl_res) -> EQ
- | (E_write_memv _ mv1 tr1, E_write_memv _ mv2 tr2) -> compare (mv1,tr1) (mv2,tr2)
- | (E_write_memvt _ mv1 tr1, E_write_memvt _ mv2 tr2) -> compare (mv1,tr1) (mv2,tr2)
- | (E_barrier bk1, E_barrier bk2) -> compare bk1 bk2
- | (E_read_reg r1, E_read_reg r2) -> compare r1 r2
- | (E_write_reg r1 v1, E_write_reg r2 v2) -> compare (r1,v1) (r2,v2)
- | (E_error s1, E_error s2) -> compare s1 s2
- | (E_escape,E_escape) -> EQ
- | (E_read_mem _ _ _ _, _) -> LT
- | (E_write_mem _ _ _ _ _ _, _) -> LT
- | (E_write_ea _ _ _ _, _) -> LT
- | (E_excl_res, _) -> LT
- | (E_write_memv _ _ _, _) -> LT
- | (E_barrier _, _) -> LT
- | (E_read_reg _, _) -> LT
- | (E_write_reg _ _, _) -> LT
- | _ -> GT
- end
-
-let eventLess b1 b2 = eventCompare b1 b2 = LT
-let eventLessEq b1 b2 = eventCompare b1 b2 <> GT
-let eventGreater b1 b2 = eventCompare b1 b2 = GT
-let eventGreaterEq b1 b2 = eventCompare b1 b2 <> LT
-
-instance (Ord event)
- let compare = eventCompare
- let (<) = eventLess
- let (<=) = eventLessEq
- let (>) = eventGreater
- let (>=) = eventGreaterEq
-end
-
-instance (SetType event)
- let setElemCompare = compare
-end
-
-
-(* the address_lifted types should go away here and be replaced by address *)
-type with_aux 'o = 'o * maybe ((unit -> (string * string)) * ((list (reg_name * register_value)) -> list event))
-type outcome 'a 'e =
- (* Request to read memory, value is location to read, integer is size to read,
- followed by registers that were used in computing that size *)
- | Read_mem of (read_kind * address_lifted * nat) * (memory_value -> with_aux (outcome 'a 'e))
- (* Tell the system a write is imminent, at address lifted, of size nat *)
- | Write_ea of (write_kind * address_lifted * nat) * (with_aux (outcome 'a 'e))
- (* Request the result of store-exclusive *)
- | Excl_res of (bool -> with_aux (outcome 'a 'e))
- (* Request to write memory at last signalled address. Memory value should be 8
- times the size given in ea signal *)
- | Write_memv of memory_value * (bool -> with_aux (outcome 'a 'e))
- (* Request a memory barrier *)
- | Barrier of barrier_kind * with_aux (outcome 'a 'e)
- (* Tell the system to dynamically recalculate dependency footprint *)
- | Footprint of with_aux (outcome 'a 'e)
- (* Request to read register, will track dependency when mode.track_values *)
- | Read_reg of reg_name * (register_value -> with_aux (outcome 'a 'e))
- (* Request to write register *)
- | Write_reg of (reg_name * register_value) * with_aux (outcome 'a 'e)
- | Escape of maybe string
- (*Result of a failed assert with possible error message to report*)
- | Fail of maybe string
- (* Exception of type 'e *)
- | Exception of 'e
- | Internal of (maybe string * maybe (unit -> string)) * with_aux (outcome 'a 'e)
- | Done of 'a
- | Error of string
-
-type outcome_s 'a 'e = with_aux (outcome 'a 'e)
-(* first string : output of instruction_stack_to_string
- second string: output of local_variables_to_string *)
-
-(** operations and coercions on basic values *)
-
-val word8_to_bitls : word8 -> list bit_lifted
-val bitls_to_word8 : list bit_lifted -> word8
-
-val integer_of_word8_list : list word8 -> integer
-val word8_list_of_integer : integer -> integer -> list word8
-
-val concretizable_bitl : bit_lifted -> bool
-val concretizable_bytl : byte_lifted -> bool
-val concretizable_bytls : list byte_lifted -> bool
-
-let concretizable_bitl = function
- | Bitl_zero -> true
- | Bitl_one -> true
- | Bitl_undef -> false
- | Bitl_unknown -> false
-end
-
-let concretizable_bytl (Byte_lifted bs) = List.all concretizable_bitl bs
-let concretizable_bytls = List.all concretizable_bytl
-
-(* constructing values *)
-
-val build_register_value : list bit_lifted -> direction -> nat -> nat -> register_value
-let build_register_value bs dir width start_index =
- <| rv_bits = bs;
- rv_dir = dir; (* D_increasing for Power, D_decreasing for ARM *)
- rv_start_internal = start_index;
- rv_start = if dir = D_increasing
- then start_index
- else (start_index+1) - width; (* Smaller index, as in Power, for external interaction *)
- |>
-
-val register_value : bit_lifted -> direction -> nat -> nat -> register_value
-let register_value b dir width start_index =
- build_register_value (List.replicate width b) dir width start_index
-
-val register_value_zeros : direction -> nat -> nat -> register_value
-let register_value_zeros dir width start_index =
- register_value Bitl_zero dir width start_index
-
-val register_value_ones : direction -> nat -> nat -> register_value
-let register_value_ones dir width start_index =
- register_value Bitl_one dir width start_index
-
-val register_value_for_reg : reg_name -> list bit_lifted -> register_value
-let register_value_for_reg r bs : register_value =
- let () = ensure (width_of_reg_name r = List.length bs)
- ("register_value_for_reg (\"" ^ show (register_base_name r) ^ "\") length mismatch: "
- ^ show (width_of_reg_name r) ^ " vs " ^ show (List.length bs))
- in
- let (j1, j2) = slice_of_reg_name r in
- let d = direction_of_reg_name r in
- <| rv_bits = bs;
- rv_dir = d;
- rv_start_internal = if d = D_increasing then j1 else (start_of_reg_name r) - j1;
- rv_start = j1;
- |>
-
-val byte_lifted_undef : byte_lifted
-let byte_lifted_undef = Byte_lifted (List.replicate 8 Bitl_undef)
-
-val byte_lifted_unknown : byte_lifted
-let byte_lifted_unknown = Byte_lifted (List.replicate 8 Bitl_unknown)
-
-val memory_value_unknown : nat (*the number of bytes*) -> memory_value
-let memory_value_unknown (width:nat) : memory_value =
- List.replicate width byte_lifted_unknown
-
-val memory_value_undef : nat (*the number of bytes*) -> memory_value
-let memory_value_undef (width:nat) : memory_value =
- List.replicate width byte_lifted_undef
-
-val match_endianness : forall 'a. end_flag -> list 'a -> list 'a
-let match_endianness endian l =
- match endian with
- | E_little_endian -> List.reverse l
- | E_big_endian -> l
- end
-
-(* lengths *)
-
-val memory_value_length : memory_value -> nat
-let memory_value_length (mv:memory_value) = List.length mv
-
-
-(* aux fns *)
-
-val maybe_all : forall 'a. list (maybe 'a) -> maybe (list 'a)
-let rec maybe_all' xs acc =
- match xs with
- | [] -> Just (List.reverse acc)
- | Nothing :: _ -> Nothing
- | (Just y)::xs' -> maybe_all' xs' (y::acc)
- end
-let maybe_all xs = maybe_all' xs []
-
-(** coercions *)
-
-(* bits and bytes *)
-
-let bit_to_bool = function (* TODO: rename bool_of_bit *)
- | Bitc_zero -> false
- | Bitc_one -> true
-end
-
-
-val bit_lifted_of_bit : bit -> bit_lifted
-let bit_lifted_of_bit b =
- match b with
- | Bitc_zero -> Bitl_zero
- | Bitc_one -> Bitl_one
- end
-
-val bit_of_bit_lifted : bit_lifted -> maybe bit
-let bit_of_bit_lifted bl =
- match bl with
- | Bitl_zero -> Just Bitc_zero
- | Bitl_one -> Just Bitc_one
- | Bitl_undef -> Nothing
- | Bitl_unknown -> Nothing
- end
-
-
-val byte_lifted_of_byte : byte -> byte_lifted
-let byte_lifted_of_byte (Byte bs) : byte_lifted = Byte_lifted (List.map bit_lifted_of_bit bs)
-
-val byte_of_byte_lifted : byte_lifted -> maybe byte
-let byte_of_byte_lifted bl =
- match bl with
- | Byte_lifted bls ->
- match maybe_all (List.map bit_of_bit_lifted bls) with
- | Nothing -> Nothing
- | Just bs -> Just (Byte bs)
- end
- end
-
-
-val bytes_of_bits : list bit -> list byte (*assumes (length bits) mod 8 = 0*)
-let rec bytes_of_bits bits = match bits with
- | [] -> []
- | b0::b1::b2::b3::b4::b5::b6::b7::bits ->
- (Byte [b0;b1;b2;b3;b4;b5;b6;b7])::(bytes_of_bits bits)
- | _ -> failwith "bytes_of_bits not given bits divisible by 8"
-end
-
-val byte_lifteds_of_bit_lifteds : list bit_lifted -> list byte_lifted (*assumes (length bits) mod 8 = 0*)
-let rec byte_lifteds_of_bit_lifteds bits = match bits with
- | [] -> []
- | b0::b1::b2::b3::b4::b5::b6::b7::bits ->
- (Byte_lifted [b0;b1;b2;b3;b4;b5;b6;b7])::(byte_lifteds_of_bit_lifteds bits)
- | _ -> failwith "byte_lifteds of bit_lifteds not given bits divisible by 8"
-end
-
-
-val byte_of_memory_byte : memory_byte -> maybe byte
-let byte_of_memory_byte = byte_of_byte_lifted
-
-val memory_byte_of_byte : byte -> memory_byte
-let memory_byte_of_byte = byte_lifted_of_byte
-
-
-(* to and from nat *)
-
-(* this natFromBoolList could move to the Lem word.lem library *)
-val natFromBoolList : list bool -> nat
-let rec natFromBoolListAux (acc : nat) (bl : list bool) =
- match bl with
- | [] -> acc
- | (true :: bl') -> natFromBoolListAux ((acc * 2) + 1) bl'
- | (false :: bl') -> natFromBoolListAux (acc * 2) bl'
- end
-let natFromBoolList bl =
- natFromBoolListAux 0 (List.reverse bl)
-
-
-val nat_of_bit_list : list bit -> nat
-let nat_of_bit_list b =
- natFromBoolList (List.reverse (List.map bit_to_bool b))
- (* natFromBoolList takes a list with LSB first, for consistency with rest of Lem word library, so we reverse it. twice. *)
-
-
-(* to and from integer *)
-
-val integer_of_bit_list : list bit -> integer
-let integer_of_bit_list b =
- integerFromBoolList (false,(List.reverse (List.map bit_to_bool b)))
- (* integerFromBoolList takes a list with LSB first, so we reverse it *)
-
-val bit_list_of_integer : nat -> integer -> list bit
-let bit_list_of_integer len b =
- List.map (fun b -> if b then Bitc_one else Bitc_zero)
- (reverse (boolListFrombitSeq len (bitSeqFromInteger Nothing b)))
-
-val integer_of_byte_list : list byte -> integer
-let integer_of_byte_list bytes = integer_of_bit_list (List.concatMap (fun (Byte bs) -> bs) bytes)
-
-val byte_list_of_integer : nat -> integer -> list byte
-let byte_list_of_integer (len:nat) (a:integer):list byte =
- let bits = bit_list_of_integer (len * 8) a in bytes_of_bits bits
-
-
-val integer_of_address : address -> integer
-let integer_of_address (a:address):integer =
- match a with
- | Address bs i -> i
- end
-
-val address_of_integer : integer -> address
-let address_of_integer (i:integer):address =
- Address (byte_list_of_integer 8 i) i
-
-(* to and from signed-integer *)
-
-val signed_integer_of_bit_list : list bit -> integer
-let signed_integer_of_bit_list b =
- match b with
- | [] -> failwith "empty bit list"
- | Bitc_zero :: b' ->
- integerFromBoolList (false,(List.reverse (List.map bit_to_bool b)))
- | Bitc_one :: b' ->
- let b'_val = integerFromBoolList (false,(List.reverse (List.map bit_to_bool b'))) in
- (* integerFromBoolList takes a list with LSB first, so we reverse it *)
- let msb_val = integerPow 2 ((List.length b) - 1) in
- b'_val - msb_val
- end
-
-
-(* regarding a list of int as a list of bytes in memory, MSB lowest-address first, convert to an integer *)
-val integer_address_of_int_list : list int -> integer
-let rec integerFromIntListAux (acc: integer) (is: list int) =
- match is with
- | [] -> acc
- | (i :: is') -> integerFromIntListAux ((acc * 256) + integerFromInt i) is'
- end
-let integer_address_of_int_list (is: list int) =
- integerFromIntListAux 0 is
-
-val address_of_byte_list : list byte -> address
-let address_of_byte_list bs =
- if List.length bs <> 8 then failwith "address_of_byte_list given list not of length 8" else
- Address bs (integer_of_byte_list bs)
-
-let address_of_byte_lifted_list bls =
- match maybe_all (List.map byte_of_byte_lifted bls) with
- | Nothing -> Nothing
- | Just bs -> Just (address_of_byte_list bs)
- end
-
-(* operations on addresses *)
-
-val add_address_nat : address -> nat -> address
-let add_address_nat (a:address) (i:nat) : address =
- address_of_integer ((integer_of_address a) + (integerFromNat i))
-
-val clear_low_order_bits_of_address : address -> address
-let clear_low_order_bits_of_address a =
- match a with
- | Address [b0;b1;b2;b3;b4;b5;b6;b7] i ->
- match b7 with
- | Byte [bt0;bt1;bt2;bt3;bt4;bt5;bt6;bt7] ->
- let b7' = Byte [bt0;bt1;bt2;bt3;bt4;bt5;Bitc_zero;Bitc_zero] in
- let bytes = [b0;b1;b2;b3;b4;b5;b6;b7'] in
- Address bytes (integer_of_byte_list bytes)
- | _ -> failwith "Byte does not contain 8 bits"
- end
- | _ -> failwith "Address does not contain 8 bytes"
- end
-
-
-
-val byte_list_of_memory_value : end_flag -> memory_value -> maybe (list byte)
-let byte_list_of_memory_value endian mv =
- match_endianness endian mv
- $> List.map byte_of_memory_byte
- $> maybe_all
-
-
-val integer_of_memory_value : end_flag -> memory_value -> maybe integer
-let integer_of_memory_value endian (mv:memory_value):maybe integer =
- match byte_list_of_memory_value endian mv with
- | Just bs -> Just (integer_of_byte_list bs)
- | Nothing -> Nothing
- end
-
-val memory_value_of_integer : end_flag -> nat -> integer -> memory_value
-let memory_value_of_integer endian (len:nat) (i:integer):memory_value =
- List.map byte_lifted_of_byte (byte_list_of_integer len i)
- $> match_endianness endian
-
-
-val integer_of_register_value : register_value -> maybe integer
-let integer_of_register_value (rv:register_value):maybe integer =
- match maybe_all (List.map bit_of_bit_lifted rv.rv_bits) with
- | Nothing -> Nothing
- | Just bs -> Just (integer_of_bit_list bs)
- end
-
-(* NOTE: register_value_for_reg_of_integer might be easier to use *)
-val register_value_of_integer : nat -> nat -> direction -> integer -> register_value
-let register_value_of_integer (len:nat) (start:nat) (dir:direction) (i:integer):register_value =
- let bs = bit_list_of_integer len i in
- build_register_value (List.map bit_lifted_of_bit bs) dir len start
-
-val register_value_for_reg_of_integer : reg_name -> integer -> register_value
-let register_value_for_reg_of_integer (r: reg_name) (i:integer) : register_value =
- register_value_of_integer (width_of_reg_name r) (start_of_reg_name r) (direction_of_reg_name r) i
-
-(* *)
-
-val opcode_of_bytes : byte -> byte -> byte -> byte -> opcode
-let opcode_of_bytes b0 b1 b2 b3 : opcode = Opcode [b0;b1;b2;b3]
-
-val register_value_of_address : address -> direction -> register_value
-let register_value_of_address (Address bytes _) dir : register_value =
- let bits = List.concatMap (fun (Byte bs) -> List.map bit_lifted_of_bit bs) bytes in
- <| rv_bits = bits;
- rv_dir = dir;
- rv_start = 0;
- rv_start_internal = if dir = D_increasing then 0 else (List.length bits) - 1
- |>
-
-val register_value_of_memory_value : memory_value -> direction -> register_value
-let register_value_of_memory_value bytes dir : register_value =
- let bitls = List.concatMap (fun (Byte_lifted bs) -> bs) bytes in
- <| rv_bits = bitls;
- rv_dir = dir;
- rv_start = 0;
- rv_start_internal = if dir = D_increasing then 0 else (List.length bitls) - 1
- |>
-
-val memory_value_of_register_value: register_value -> memory_value
-let memory_value_of_register_value r =
- (byte_lifteds_of_bit_lifteds r.rv_bits)
-
-val address_lifted_of_register_value : register_value -> maybe address_lifted
-(* returning Nothing iff the register value is not 64 bits wide, but
-allowing Bitl_undef and Bitl_unknown *)
-let address_lifted_of_register_value (rv:register_value) : maybe address_lifted =
- if List.length rv.rv_bits <> 64 then Nothing
- else
- Just (Address_lifted (byte_lifteds_of_bit_lifteds rv.rv_bits)
- (if List.all concretizable_bitl rv.rv_bits
- then match (maybe_all (List.map bit_of_bit_lifted rv.rv_bits)) with
- | (Just(bits)) -> Just (integer_of_bit_list bits)
- | Nothing -> Nothing end
- else Nothing))
-
-val address_of_address_lifted : address_lifted -> maybe address
-(* returning Nothing iff the address contains any Bitl_undef or Bitl_unknown *)
-let address_of_address_lifted (al:address_lifted): maybe address =
- match al with
- | Address_lifted bls (Just i)->
- match maybe_all ((List.map byte_of_byte_lifted) bls) with
- | Nothing -> Nothing
- | Just bs -> Just (Address bs i)
- end
- | _ -> Nothing
-end
-
-val address_of_register_value : register_value -> maybe address
-(* returning Nothing iff the register value is not 64 bits wide, or contains Bitl_undef or Bitl_unknown *)
-let address_of_register_value (rv:register_value) : maybe address =
- match address_lifted_of_register_value rv with
- | Nothing -> Nothing
- | Just al ->
- match address_of_address_lifted al with
- | Nothing -> Nothing
- | Just a -> Just a
- end
- end
-
-let address_of_memory_value (endian: end_flag) (mv:memory_value) : maybe address =
- match byte_list_of_memory_value endian mv with
- | Nothing -> Nothing
- | Just bs ->
- if List.length bs <> 8 then Nothing else
- Just (address_of_byte_list bs)
- end
-
-val byte_of_int : int -> byte
-let byte_of_int (i:int) : byte =
- Byte (bit_list_of_integer 8 (integerFromInt i))
-
-val memory_byte_of_int : int -> memory_byte
-let memory_byte_of_int (i:int) : memory_byte =
- memory_byte_of_byte (byte_of_int i)
-
-(*
-val int_of_memory_byte : int -> maybe memory_byte
-let int_of_memory_byte (mb:memory_byte) : int =
- failwith "TODO"
-*)
-
-
-
-val memory_value_of_address_lifted : end_flag -> address_lifted -> memory_value
-let memory_value_of_address_lifted endian (Address_lifted bs _ :address_lifted) =
- match_endianness endian bs
-
-val byte_list_of_address : address -> list byte
-let byte_list_of_address (Address bs _) : list byte = bs
-
-val memory_value_of_address : end_flag -> address -> memory_value
-let memory_value_of_address endian (Address bs _) =
- match_endianness endian bs
- $> List.map byte_lifted_of_byte
-
-val byte_list_of_opcode : opcode -> list byte
-let byte_list_of_opcode (Opcode bs) : list byte = bs
-
-(** ****************************************** *)
-(** show type class instantiations *)
-(** ****************************************** *)
-
-(* matching printing_functions.ml *)
-val stringFromReg_name : reg_name -> string
-let stringFromReg_name r =
- let norm_sl start dir (first,second) = (first,second)
- (* match dir with
- | D_increasing -> (first,second)
- | D_decreasing -> (start - first, start - second)
- end *)
- in
- match r with
- | Reg s start size dir -> s
- | Reg_slice s start dir sl ->
- let (first,second) = norm_sl start dir sl in
- s ^ "[" ^ show first ^ (if (first = second) then "" else ".." ^ (show second)) ^ "]"
- | Reg_field s start dir f sl ->
- let (first,second) = norm_sl start dir sl in
- s ^ "." ^ f ^ " (" ^ (show start) ^ ", " ^ (show dir) ^ ", " ^ (show first) ^ ", " ^ (show second) ^ ")"
- | Reg_f_slice s start dir f (first1,second1) (first,second) ->
- let (first,second) =
- match dir with
- | D_increasing -> (first,second)
- | D_decreasing -> (start - first, start - second)
- end in
- s ^ "." ^ f ^ "]" ^ show first ^ (if (first = second) then "" else ".." ^ (show second)) ^ "]"
- end
-
-instance (Show reg_name)
- let show = stringFromReg_name
-end
-
-
-(* hex pp of integers, adapting the Lem string_extra.lem code *)
-val stringFromNaturalHexHelper : natural -> list char -> list char
-let rec stringFromNaturalHexHelper n acc =
- if n = 0 then
- acc
- else
- stringFromNaturalHexHelper (n / 16) (String_extra.chr (natFromNatural (let nd = n mod 16 in if nd <=9 then nd + 48 else nd - 10 + 97)) :: acc)
-
-val stringFromNaturalHex : natural -> string
-let (*~{ocaml;hol}*) stringFromNaturalHex n =
- if n = 0 then "0" else toString (stringFromNaturalHexHelper n [])
-
-val stringFromIntegerHex : integer -> string
-let (*~{ocaml}*) stringFromIntegerHex i =
- if i < 0 then
- "-" ^ stringFromNaturalHex (naturalFromInteger i)
- else
- stringFromNaturalHex (naturalFromInteger i)
-
-
-let stringFromAddress (Address bs i) =
- let i' = integer_of_byte_list bs in
- if i=i' then
-(*TODO: ideally this should be made to match the src/pp.ml pp_address; the following very roughly matches what's used in the ppcmem UI, enough to make exceptions readable *)
- if i < 65535 then
- show i
- else
- stringFromIntegerHex i
- else
- "stringFromAddress bytes and integer mismatch"
-
-instance (Show address)
- let show = stringFromAddress
-end
-
-let stringFromByte_lifted bl =
- match byte_of_byte_lifted bl with
- | Nothing -> "u?"
- | Just (Byte bits) ->
- let i = integer_of_bit_list bits in
- show i
- end
-
-instance (Show byte_lifted)
- let show = stringFromByte_lifted
-end
-
-(* possible next instruction address options *)
-type nia =
- | NIA_successor
- | NIA_concrete_address of address
- | NIA_indirect_address
-
-let niaCompare n1 n2 = match (n1,n2) with
- | (NIA_successor, NIA_successor) -> EQ
- | (NIA_successor, _) -> LT
- | (_, NIA_successor) -> GT
- | (NIA_concrete_address a1, NIA_concrete_address a2) -> compare a1 a2
- | (NIA_concrete_address _, _) -> LT
- | (_, NIA_concrete_address _) -> GT
- | (NIA_indirect_address, NIA_indirect_address) -> EQ
- (* | (NIA_indirect_address, _) -> LT
- | (_, NIA_indirect_address) -> GT *)
- end
-
-instance (Ord nia)
- let compare = niaCompare
- let (<) n1 n2 = (niaCompare n1 n2) = LT
- let (<=) n1 n2 = (niaCompare n1 n2) <> GT
- let (>) n1 n2 = (niaCompare n1 n2) = GT
- let (>=) n1 n2 = (niaCompare n1 n2) <> LT
-end
-
-let stringFromNia = function
- | NIA_successor -> "NIA_successor"
- | NIA_concrete_address a -> "NIA_concrete_address " ^ show a
- | NIA_indirect_address -> "NIA_indirect_address"
-end
-
-instance (Show nia)
- let show = stringFromNia
-end
-
-type dia =
- | DIA_none
- | DIA_concrete_address of address
- | DIA_register of reg_name
-
-let diaCompare d1 d2 = match (d1, d2) with
- | (DIA_none, DIA_none) -> EQ
- | (DIA_none, _) -> LT
- | (DIA_concrete_address a1, DIA_none) -> GT
- | (DIA_concrete_address a1, DIA_concrete_address a2) -> compare a1 a2
- | (DIA_concrete_address a1, _) -> LT
- | (DIA_register r1, DIA_register r2) -> compare r1 r2
- | (DIA_register _, _) -> GT
-end
-
-instance (Ord dia)
- let compare = diaCompare
- let (<) n1 n2 = (diaCompare n1 n2) = LT
- let (<=) n1 n2 = (diaCompare n1 n2) <> GT
- let (>) n1 n2 = (diaCompare n1 n2) = GT
- let (>=) n1 n2 = (diaCompare n1 n2) <> LT
-end
-
-let stringFromDia = function
- | DIA_none -> "DIA_none"
- | DIA_concrete_address a -> "DIA_concrete_address " ^ show a
- | DIA_register r -> "DIA_delayed_register " ^ show r
-end
-
-instance (Show dia)
- let show = stringFromDia
-end
diff --git a/src/lem_interp/0.11/sail2_instr_kinds.lem b/src/lem_interp/0.11/sail2_instr_kinds.lem
deleted file mode 100644
index f3cdfbc9..00000000
--- a/src/lem_interp/0.11/sail2_instr_kinds.lem
+++ /dev/null
@@ -1,376 +0,0 @@
-(*========================================================================*)
-(* Sail *)
-(* *)
-(* Copyright (c) 2013-2017 *)
-(* Kathyrn Gray *)
-(* Shaked Flur *)
-(* Stephen Kell *)
-(* Gabriel Kerneis *)
-(* Robert Norton-Wright *)
-(* Christopher Pulte *)
-(* Peter Sewell *)
-(* Alasdair Armstrong *)
-(* Brian Campbell *)
-(* Thomas Bauereiss *)
-(* Anthony Fox *)
-(* Jon French *)
-(* Dominic Mulligan *)
-(* Stephen Kell *)
-(* Mark Wassell *)
-(* *)
-(* All rights reserved. *)
-(* *)
-(* This software was developed by the University of Cambridge Computer *)
-(* Laboratory as part of the Rigorous Engineering of Mainstream Systems *)
-(* (REMS) project, funded by EPSRC grant EP/K008528/1. *)
-(* *)
-(* Redistribution and use in source and binary forms, with or without *)
-(* modification, are permitted provided that the following conditions *)
-(* are met: *)
-(* 1. Redistributions of source code must retain the above copyright *)
-(* notice, this list of conditions and the following disclaimer. *)
-(* 2. Redistributions in binary form must reproduce the above copyright *)
-(* notice, this list of conditions and the following disclaimer in *)
-(* the documentation and/or other materials provided with the *)
-(* distribution. *)
-(* *)
-(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
-(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
-(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
-(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
-(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
-(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
-(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
-(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
-(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
-(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
-(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
-(* SUCH DAMAGE. *)
-(*========================================================================*)
-
-open import Pervasives_extra
-
-
-class ( EnumerationType 'a )
- val toNat : 'a -> nat
-end
-
-
-val enumeration_typeCompare : forall 'a. EnumerationType 'a => 'a -> 'a -> ordering
-let ~{ocaml} enumeration_typeCompare e1 e2 =
- compare (toNat e1) (toNat e2)
-let inline {ocaml} enumeration_typeCompare = defaultCompare
-
-
-default_instance forall 'a. EnumerationType 'a => (Ord 'a)
- let compare = enumeration_typeCompare
- let (<) r1 r2 = (enumeration_typeCompare r1 r2) = LT
- let (<=) r1 r2 = (enumeration_typeCompare r1 r2) <> GT
- let (>) r1 r2 = (enumeration_typeCompare r1 r2) = GT
- let (>=) r1 r2 = (enumeration_typeCompare r1 r2) <> LT
-end
-
-
-(* Data structures for building up instructions *)
-
-(* careful: changes in the read/write/barrier kinds have to be
- reflected in deep_shallow_convert *)
-type read_kind =
- (* common reads *)
- | Read_plain
- (* Power reads *)
- | Read_reserve
- (* AArch64 reads *)
- | Read_acquire | Read_exclusive | Read_exclusive_acquire | Read_stream
- (* RISC-V reads *)
- | Read_RISCV_acquire | Read_RISCV_strong_acquire
- | Read_RISCV_reserved | Read_RISCV_reserved_acquire
- | Read_RISCV_reserved_strong_acquire
- (* x86 reads *)
- | Read_X86_locked (* the read part of a lock'd instruction (rmw) *)
-
-instance (Show read_kind)
- let show = function
- | Read_plain -> "Read_plain"
- | Read_reserve -> "Read_reserve"
- | Read_acquire -> "Read_acquire"
- | Read_exclusive -> "Read_exclusive"
- | Read_exclusive_acquire -> "Read_exclusive_acquire"
- | Read_stream -> "Read_stream"
- | Read_RISCV_acquire -> "Read_RISCV_acquire"
- | Read_RISCV_strong_acquire -> "Read_RISCV_strong_acquire"
- | Read_RISCV_reserved -> "Read_RISCV_reserved"
- | Read_RISCV_reserved_acquire -> "Read_RISCV_reserved_acquire"
- | Read_RISCV_reserved_strong_acquire -> "Read_RISCV_reserved_strong_acquire"
- | Read_X86_locked -> "Read_X86_locked"
- end
-end
-
-type write_kind =
- (* common writes *)
- | Write_plain
- (* Power writes *)
- | Write_conditional
- (* AArch64 writes *)
- | Write_release | Write_exclusive | Write_exclusive_release
- (* RISC-V *)
- | Write_RISCV_release | Write_RISCV_strong_release
- | Write_RISCV_conditional | Write_RISCV_conditional_release
- | Write_RISCV_conditional_strong_release
- (* x86 writes *)
- | Write_X86_locked (* the write part of a lock'd instruction (rmw) *)
-
-instance (Show write_kind)
- let show = function
- | Write_plain -> "Write_plain"
- | Write_conditional -> "Write_conditional"
- | Write_release -> "Write_release"
- | Write_exclusive -> "Write_exclusive"
- | Write_exclusive_release -> "Write_exclusive_release"
- | Write_RISCV_release -> "Write_RISCV_release"
- | Write_RISCV_strong_release -> "Write_RISCV_strong_release"
- | Write_RISCV_conditional -> "Write_RISCV_conditional"
- | Write_RISCV_conditional_release -> "Write_RISCV_conditional_release"
- | Write_RISCV_conditional_strong_release -> "Write_RISCV_conditional_strong_release"
- | Write_X86_locked -> "Write_X86_locked"
- end
-end
-
-type a64_barrier_domain =
- A64_FullShare
- | A64_InnerShare
- | A64_OuterShare
- | A64_NonShare
-
-type a64_barrier_type =
- A64_barrier_all
- | A64_barrier_LD
- | A64_barrier_ST
-
-type barrier_kind =
- (* Power barriers *)
- Barrier_Sync of unit | Barrier_LwSync of unit | Barrier_Eieio of unit | Barrier_Isync of unit
- (* AArch64 barriers *)
- | Barrier_DMB of (a64_barrier_domain * a64_barrier_type)
- | Barrier_DSB of (a64_barrier_domain * a64_barrier_type)
- | Barrier_ISB of unit
- | Barrier_TM_COMMIT of unit
- (* MIPS barriers *)
- | Barrier_MIPS_SYNC of unit
- (* RISC-V barriers *)
- | Barrier_RISCV_rw_rw of unit
- | Barrier_RISCV_r_rw of unit
- | Barrier_RISCV_r_r of unit
- | Barrier_RISCV_rw_w of unit
- | Barrier_RISCV_w_w of unit
- | Barrier_RISCV_w_rw of unit
- | Barrier_RISCV_rw_r of unit
- | Barrier_RISCV_r_w of unit
- | Barrier_RISCV_w_r of unit
- | Barrier_RISCV_tso of unit
- | Barrier_RISCV_i of unit
- (* X86 *)
- | Barrier_x86_MFENCE of unit
-
-let string_a64_barrier_domain = function
- | A64_FullShare -> "A64_FullShare"
- | A64_InnerShare -> "A64_InnerShare"
- | A64_OuterShare -> "A64_OuterShare"
- | A64_NonShare -> "A64_NonShare"
-end
-
-instance (Show a64_barrier_domain)
- let show = string_a64_barrier_domain
-end
-
-let string_a64_barrier_type = function
- | A64_barrier_all -> "A64_barrier_all"
- | A64_barrier_LD -> "A64_barrier_LD"
- | A64_barrier_ST -> "A64_barrier_ST"
-end
-
-instance (Show a64_barrier_type)
- let show = string_a64_barrier_type
-end
-
-instance (Show barrier_kind)
- let show = function
- | Barrier_Sync () -> "Barrier_Sync"
- | Barrier_LwSync () -> "Barrier_LwSync"
- | Barrier_Eieio () -> "Barrier_Eieio"
- | Barrier_Isync () -> "Barrier_Isync"
- | Barrier_DMB (dom,typ) -> "Barrier_DMB (" ^ (show dom) ^ ", " ^ (show typ) ^ ")"
- | Barrier_DSB (dom,typ) -> "Barrier_DSB (" ^ (show dom) ^ ", " ^ (show typ) ^ ")"
- | Barrier_ISB () -> "Barrier_ISB"
- | Barrier_TM_COMMIT () -> "Barrier_TM_COMMIT"
- | Barrier_MIPS_SYNC () -> "Barrier_MIPS_SYNC"
- | Barrier_RISCV_rw_rw () -> "Barrier_RISCV_rw_rw"
- | Barrier_RISCV_r_rw () -> "Barrier_RISCV_r_rw"
- | Barrier_RISCV_r_r () -> "Barrier_RISCV_r_r"
- | Barrier_RISCV_rw_w () -> "Barrier_RISCV_rw_w"
- | Barrier_RISCV_w_w () -> "Barrier_RISCV_w_w"
- | Barrier_RISCV_w_rw () -> "Barrier_RISCV_w_rw"
- | Barrier_RISCV_rw_r () -> "Barrier_RISCV_rw_r"
- | Barrier_RISCV_r_w () -> "Barrier_RISCV_r_w"
- | Barrier_RISCV_w_r () -> "Barrier_RISCV_w_r"
- | Barrier_RISCV_tso () -> "Barrier_RISCV_tso"
- | Barrier_RISCV_i () -> "Barrier_RISCV_i"
- | Barrier_x86_MFENCE () -> "Barrier_x86_MFENCE"
- end
-end
-
-type trans_kind =
- (* AArch64 *)
- | Transaction_start | Transaction_commit | Transaction_abort
-
-instance (Show trans_kind)
- let show = function
- | Transaction_start -> "Transaction_start"
- | Transaction_commit -> "Transaction_commit"
- | Transaction_abort -> "Transaction_abort"
- end
-end
-
-(* cache maintenance instructions *)
-type cache_op_kind =
- (* AArch64 DC *)
- | Cache_op_D_IVAC | Cache_op_D_ISW | Cache_op_D_CSW | Cache_op_D_CISW
- | Cache_op_D_ZVA | Cache_op_D_CVAC | Cache_op_D_CVAU | Cache_op_D_CIVAC
- (* AArch64 IC *)
- | Cache_op_I_IALLUIS | Cache_op_I_IALLU | Cache_op_I_IVAU
-
-instance (Show cache_op_kind)
- let show = function
- | Cache_op_D_IVAC -> "Cache_op_D_IVAC"
- | Cache_op_D_ISW -> "Cache_op_D_ISW"
- | Cache_op_D_CSW -> "Cache_op_D_CSW"
- | Cache_op_D_CISW -> "Cache_op_D_CISW"
- | Cache_op_D_ZVA -> "Cache_op_D_ZVA"
- | Cache_op_D_CVAC -> "Cache_op_D_CVAC"
- | Cache_op_D_CVAU -> "Cache_op_D_CVAU"
- | Cache_op_D_CIVAC -> "Cache_op_D_CIVAC"
- | Cache_op_I_IALLUIS -> "Cache_op_I_IALLUIS"
- | Cache_op_I_IALLU -> "Cache_op_I_IALLU"
- | Cache_op_I_IVAU -> "Cache_op_I_IVAU"
- end
-end
-
-type instruction_kind =
- | IK_barrier of barrier_kind
- | IK_mem_read of read_kind
- | IK_mem_write of write_kind
- | IK_mem_rmw of (read_kind * write_kind)
- | IK_branch of unit(* this includes conditional-branch (multiple nias, none of which is NIA_indirect_address),
- indirect/computed-branch (single nia of kind NIA_indirect_address)
- and branch/jump (single nia of kind NIA_concrete_address) *)
- | IK_trans of trans_kind
- | IK_simple of unit
- | IK_cache_op of cache_op_kind
-
-
-instance (Show instruction_kind)
- let show = function
- | IK_barrier barrier_kind -> "IK_barrier " ^ (show barrier_kind)
- | IK_mem_read read_kind -> "IK_mem_read " ^ (show read_kind)
- | IK_mem_write write_kind -> "IK_mem_write " ^ (show write_kind)
- | IK_mem_rmw (r, w) -> "IK_mem_rmw " ^ (show r) ^ " " ^ (show w)
- | IK_branch () -> "IK_branch"
- | IK_trans trans_kind -> "IK_trans " ^ (show trans_kind)
- | IK_simple () -> "IK_simple"
- | IK_cache_op cache_kind -> "IK_cache_op " ^ (show cache_kind)
- end
-end
-
-
-let read_is_exclusive = function
- | Read_plain -> false
- | Read_reserve -> true
- | Read_acquire -> false
- | Read_exclusive -> true
- | Read_exclusive_acquire -> true
- | Read_stream -> false
- | Read_RISCV_acquire -> false
- | Read_RISCV_strong_acquire -> false
- | Read_RISCV_reserved -> true
- | Read_RISCV_reserved_acquire -> true
- | Read_RISCV_reserved_strong_acquire -> true
- | Read_X86_locked -> true
-end
-
-
-
-instance (EnumerationType read_kind)
- let toNat = function
- | Read_plain -> 0
- | Read_reserve -> 1
- | Read_acquire -> 2
- | Read_exclusive -> 3
- | Read_exclusive_acquire -> 4
- | Read_stream -> 5
- | Read_RISCV_acquire -> 6
- | Read_RISCV_strong_acquire -> 7
- | Read_RISCV_reserved -> 8
- | Read_RISCV_reserved_acquire -> 9
- | Read_RISCV_reserved_strong_acquire -> 10
- | Read_X86_locked -> 11
- end
-end
-
-instance (EnumerationType write_kind)
- let toNat = function
- | Write_plain -> 0
- | Write_conditional -> 1
- | Write_release -> 2
- | Write_exclusive -> 3
- | Write_exclusive_release -> 4
- | Write_RISCV_release -> 5
- | Write_RISCV_strong_release -> 6
- | Write_RISCV_conditional -> 7
- | Write_RISCV_conditional_release -> 8
- | Write_RISCV_conditional_strong_release -> 9
- | Write_X86_locked -> 10
- end
-end
-
-instance (EnumerationType a64_barrier_domain)
- let toNat = function
- | A64_FullShare -> 0
- | A64_InnerShare -> 1
- | A64_OuterShare -> 2
- | A64_NonShare -> 3
- end
-end
-
-instance (EnumerationType a64_barrier_type)
- let toNat = function
- | A64_barrier_all -> 0
- | A64_barrier_LD -> 1
- | A64_barrier_ST -> 2
- end
-end
-
-instance (EnumerationType barrier_kind)
- let toNat = function
- | Barrier_Sync () -> 0
- | Barrier_LwSync () -> 1
- | Barrier_Eieio () -> 2
- | Barrier_Isync () -> 3
- | Barrier_DMB (dom,typ) -> 4 + (toNat dom) + (4 * (toNat typ)) (* 4-15 *)
- | Barrier_DSB (dom,typ) -> 16 + (toNat dom) + (4 * (toNat typ)) (* 16-27 *)
- | Barrier_ISB () -> 28
- | Barrier_TM_COMMIT () -> 29
- | Barrier_MIPS_SYNC () -> 30
- | Barrier_RISCV_rw_rw () -> 31
- | Barrier_RISCV_r_rw () -> 32
- | Barrier_RISCV_r_r () -> 33
- | Barrier_RISCV_rw_w () -> 34
- | Barrier_RISCV_w_w () -> 35
- | Barrier_RISCV_w_rw () -> 36
- | Barrier_RISCV_rw_r () -> 37
- | Barrier_RISCV_r_w () -> 38
- | Barrier_RISCV_w_r () -> 39
- | Barrier_RISCV_tso () -> 40
- | Barrier_RISCV_i () -> 41
- | Barrier_x86_MFENCE () -> 42
- end
-end
diff --git a/src/lem_interp/interp_inter_imp.lem b/src/lem_interp/interp_inter_imp.lem
index 74e43a8f..3413494e 100644
--- a/src/lem_interp/interp_inter_imp.lem
+++ b/src/lem_interp/interp_inter_imp.lem
@@ -579,74 +579,13 @@ let instruction_analysis top_level end_flag thunk_name regn_to_reg_details regis
| Interp_ast.V_ctor (Id_aux (Id "NIAFP_indirect_address") _) _ _ _ ->
NIA_indirect_address
| _ -> failwith "Register footprint analysis did not return nia of expected type" end in
- let readk_to_readk = function
- | "Read_plain" -> Read_plain
- | "Read_reserve" -> Read_reserve
- | "Read_acquire" -> Read_acquire
- | "Read_exclusive" -> Read_exclusive
- | "Read_exclusive_acquire" -> Read_exclusive_acquire
- | "Read_stream" -> Read_stream
- | "Read_RISCV_acquire" -> Read_RISCV_acquire
- | "Read_RISCV_strong_acquire" -> Read_RISCV_strong_acquire
- | "Read_RISCV_reserved" -> Read_RISCV_reserved
- | "Read_RISCV_reserved_acquire" -> Read_RISCV_reserved_acquire
- | "Read_RISCV_reserved_strong_acquire" -> Read_RISCV_reserved_strong_acquire
- | "Read_X86_locked" -> Read_X86_locked
- | r -> failwith ("unknown read kind: " ^ r) end in
- let writek_to_writek = function
- | "Write_plain" -> Write_plain
- | "Write_conditional" -> Write_conditional
- | "Write_release" -> Write_release
- | "Write_exclusive" -> Write_exclusive
- | "Write_exclusive_release" -> Write_exclusive_release
- | "Write_RISCV_release" -> Write_RISCV_release
- | "Write_RISCV_strong_release" -> Write_RISCV_strong_release
- | "Write_RISCV_conditional" -> Write_RISCV_conditional
- | "Write_RISCV_conditional_release" -> Write_RISCV_conditional_release
- | "Write_RISCV_conditional_strong_release" -> Write_RISCV_conditional_strong_release
- | "Write_X86_locked" -> Write_X86_locked
- | w -> failwith ("unknown write kind: " ^ w) end in
- let ik_to_ik = function
- | Interp_ast.V_ctor (Id_aux (Id "IK_barrier") _) _ _
- (Interp_ast.V_ctor (Id_aux (Id b) _) _ _ _) ->
- IK_barrier (match b with
- | "Barrier_Sync" -> Barrier_Sync
- | "Barrier_LwSync" -> Barrier_LwSync
- | "Barrier_Eieio" -> Barrier_Eieio
- | "Barrier_Isync" -> Barrier_Isync
- | "Barrier_DMB" -> Barrier_DMB
- | "Barrier_DMB_ST" -> Barrier_DMB_ST
- | "Barrier_DMB_LD" -> Barrier_DMB_LD
- | "Barrier_DSB" -> Barrier_DSB
- | "Barrier_DSB_ST" -> Barrier_DSB_ST
- | "Barrier_DSB_LD" -> Barrier_DSB_LD
- | "Barrier_ISB" -> Barrier_ISB
- | "Barrier_MIPS_SYNC" -> Barrier_MIPS_SYNC
- | "Barrier_x86_MFENCE" -> Barrier_x86_MFENCE
- end)
- | Interp_ast.V_ctor (Id_aux (Id "IK_mem_read") _) _ _
- (Interp_ast.V_ctor (Id_aux (Id r) _) _ _ _) ->
- IK_mem_read(readk_to_readk r)
- | Interp_ast.V_ctor (Id_aux (Id "IK_mem_write") _) _ _
- (Interp_ast.V_ctor (Id_aux (Id w) _) _ _ _) ->
- IK_mem_write(writek_to_writek w)
- | Interp_ast.V_ctor (Id_aux (Id "IK_mem_rmw") _) _ _
- (Interp_ast.V_tuple [(Interp_ast.V_ctor (Id_aux (Id readk) _) _ _ _) ;
- (Interp_ast.V_ctor (Id_aux (Id writek) _) _ _ _)]) ->
- IK_mem_rmw(readk_to_readk readk, writek_to_writek writek)
- | Interp_ast.V_ctor (Id_aux (Id "IK_branch") _) _ _ _ ->
- IK_branch
- | Interp_ast.V_ctor (Id_aux (Id "IK_simple") _) _ _ _ ->
- IK_simple
- | _ -> failwith "Analysis returned unexpected instruction kind"
- end in
let (regs1,regs2,regs3,nias,dia,ik) =
(List.map reg_to_reg_name regs1,
List.map reg_to_reg_name regs2,
List.map reg_to_reg_name regs3,
List.map nia_to_nia nias,
dia_to_dia dia,
- ik_to_ik ik) in
+ fromInterpValue ik) in
((regs1,regs2,regs3,nias,dia,ik), events)
| _ -> Assert_extra.failwith "Analysis did not return a four-tuple of lists" end)
| Ivh_value_after_exn _ -> Assert_extra.failwith "Instruction analysis failed"
diff --git a/src/lem_interp/sail2_instr_kinds.lem b/src/lem_interp/sail2_instr_kinds.lem
index bd3a3eb7..f3cdfbc9 100644
--- a/src/lem_interp/sail2_instr_kinds.lem
+++ b/src/lem_interp/sail2_instr_kinds.lem
@@ -136,58 +136,86 @@ instance (Show write_kind)
end
end
+type a64_barrier_domain =
+ A64_FullShare
+ | A64_InnerShare
+ | A64_OuterShare
+ | A64_NonShare
+
+type a64_barrier_type =
+ A64_barrier_all
+ | A64_barrier_LD
+ | A64_barrier_ST
+
type barrier_kind =
(* Power barriers *)
- Barrier_Sync | Barrier_LwSync | Barrier_Eieio | Barrier_Isync
+ Barrier_Sync of unit | Barrier_LwSync of unit | Barrier_Eieio of unit | Barrier_Isync of unit
(* AArch64 barriers *)
- | Barrier_DMB | Barrier_DMB_ST | Barrier_DMB_LD | Barrier_DSB
- | Barrier_DSB_ST | Barrier_DSB_LD | Barrier_ISB
- | Barrier_TM_COMMIT
+ | Barrier_DMB of (a64_barrier_domain * a64_barrier_type)
+ | Barrier_DSB of (a64_barrier_domain * a64_barrier_type)
+ | Barrier_ISB of unit
+ | Barrier_TM_COMMIT of unit
(* MIPS barriers *)
- | Barrier_MIPS_SYNC
+ | Barrier_MIPS_SYNC of unit
(* RISC-V barriers *)
- | Barrier_RISCV_rw_rw
- | Barrier_RISCV_r_rw
- | Barrier_RISCV_r_r
- | Barrier_RISCV_rw_w
- | Barrier_RISCV_w_w
- | Barrier_RISCV_w_rw
- | Barrier_RISCV_rw_r
- | Barrier_RISCV_r_w
- | Barrier_RISCV_w_r
- | Barrier_RISCV_tso
- | Barrier_RISCV_i
+ | Barrier_RISCV_rw_rw of unit
+ | Barrier_RISCV_r_rw of unit
+ | Barrier_RISCV_r_r of unit
+ | Barrier_RISCV_rw_w of unit
+ | Barrier_RISCV_w_w of unit
+ | Barrier_RISCV_w_rw of unit
+ | Barrier_RISCV_rw_r of unit
+ | Barrier_RISCV_r_w of unit
+ | Barrier_RISCV_w_r of unit
+ | Barrier_RISCV_tso of unit
+ | Barrier_RISCV_i of unit
(* X86 *)
- | Barrier_x86_MFENCE
+ | Barrier_x86_MFENCE of unit
+let string_a64_barrier_domain = function
+ | A64_FullShare -> "A64_FullShare"
+ | A64_InnerShare -> "A64_InnerShare"
+ | A64_OuterShare -> "A64_OuterShare"
+ | A64_NonShare -> "A64_NonShare"
+end
+
+instance (Show a64_barrier_domain)
+ let show = string_a64_barrier_domain
+end
+
+let string_a64_barrier_type = function
+ | A64_barrier_all -> "A64_barrier_all"
+ | A64_barrier_LD -> "A64_barrier_LD"
+ | A64_barrier_ST -> "A64_barrier_ST"
+end
+
+instance (Show a64_barrier_type)
+ let show = string_a64_barrier_type
+end
instance (Show barrier_kind)
let show = function
- | Barrier_Sync -> "Barrier_Sync"
- | Barrier_LwSync -> "Barrier_LwSync"
- | Barrier_Eieio -> "Barrier_Eieio"
- | Barrier_Isync -> "Barrier_Isync"
- | Barrier_DMB -> "Barrier_DMB"
- | Barrier_DMB_ST -> "Barrier_DMB_ST"
- | Barrier_DMB_LD -> "Barrier_DMB_LD"
- | Barrier_DSB -> "Barrier_DSB"
- | Barrier_DSB_ST -> "Barrier_DSB_ST"
- | Barrier_DSB_LD -> "Barrier_DSB_LD"
- | Barrier_ISB -> "Barrier_ISB"
- | Barrier_TM_COMMIT -> "Barrier_TM_COMMIT"
- | Barrier_MIPS_SYNC -> "Barrier_MIPS_SYNC"
- | Barrier_RISCV_rw_rw -> "Barrier_RISCV_rw_rw"
- | Barrier_RISCV_r_rw -> "Barrier_RISCV_r_rw"
- | Barrier_RISCV_r_r -> "Barrier_RISCV_r_r"
- | Barrier_RISCV_rw_w -> "Barrier_RISCV_rw_w"
- | Barrier_RISCV_w_w -> "Barrier_RISCV_w_w"
- | Barrier_RISCV_w_rw -> "Barrier_RISCV_w_rw"
- | Barrier_RISCV_rw_r -> "Barrier_RISCV_rw_r"
- | Barrier_RISCV_r_w -> "Barrier_RISCV_r_w"
- | Barrier_RISCV_w_r -> "Barrier_RISCV_w_r"
- | Barrier_RISCV_tso -> "Barrier_RISCV_tso"
- | Barrier_RISCV_i -> "Barrier_RISCV_i"
- | Barrier_x86_MFENCE -> "Barrier_x86_MFENCE"
+ | Barrier_Sync () -> "Barrier_Sync"
+ | Barrier_LwSync () -> "Barrier_LwSync"
+ | Barrier_Eieio () -> "Barrier_Eieio"
+ | Barrier_Isync () -> "Barrier_Isync"
+ | Barrier_DMB (dom,typ) -> "Barrier_DMB (" ^ (show dom) ^ ", " ^ (show typ) ^ ")"
+ | Barrier_DSB (dom,typ) -> "Barrier_DSB (" ^ (show dom) ^ ", " ^ (show typ) ^ ")"
+ | Barrier_ISB () -> "Barrier_ISB"
+ | Barrier_TM_COMMIT () -> "Barrier_TM_COMMIT"
+ | Barrier_MIPS_SYNC () -> "Barrier_MIPS_SYNC"
+ | Barrier_RISCV_rw_rw () -> "Barrier_RISCV_rw_rw"
+ | Barrier_RISCV_r_rw () -> "Barrier_RISCV_r_rw"
+ | Barrier_RISCV_r_r () -> "Barrier_RISCV_r_r"
+ | Barrier_RISCV_rw_w () -> "Barrier_RISCV_rw_w"
+ | Barrier_RISCV_w_w () -> "Barrier_RISCV_w_w"
+ | Barrier_RISCV_w_rw () -> "Barrier_RISCV_w_rw"
+ | Barrier_RISCV_rw_r () -> "Barrier_RISCV_rw_r"
+ | Barrier_RISCV_r_w () -> "Barrier_RISCV_r_w"
+ | Barrier_RISCV_w_r () -> "Barrier_RISCV_w_r"
+ | Barrier_RISCV_tso () -> "Barrier_RISCV_tso"
+ | Barrier_RISCV_i () -> "Barrier_RISCV_i"
+ | Barrier_x86_MFENCE () -> "Barrier_x86_MFENCE"
end
end
@@ -304,32 +332,45 @@ instance (EnumerationType write_kind)
end
end
+instance (EnumerationType a64_barrier_domain)
+ let toNat = function
+ | A64_FullShare -> 0
+ | A64_InnerShare -> 1
+ | A64_OuterShare -> 2
+ | A64_NonShare -> 3
+ end
+end
+
+instance (EnumerationType a64_barrier_type)
+ let toNat = function
+ | A64_barrier_all -> 0
+ | A64_barrier_LD -> 1
+ | A64_barrier_ST -> 2
+ end
+end
+
instance (EnumerationType barrier_kind)
let toNat = function
- | Barrier_Sync -> 0
- | Barrier_LwSync -> 1
- | Barrier_Eieio ->2
- | Barrier_Isync -> 3
- | Barrier_DMB -> 4
- | Barrier_DMB_ST -> 5
- | Barrier_DMB_LD -> 6
- | Barrier_DSB -> 7
- | Barrier_DSB_ST -> 8
- | Barrier_DSB_LD -> 9
- | Barrier_ISB -> 10
- | Barrier_TM_COMMIT -> 11
- | Barrier_MIPS_SYNC -> 12
- | Barrier_RISCV_rw_rw -> 13
- | Barrier_RISCV_r_rw -> 14
- | Barrier_RISCV_r_r -> 15
- | Barrier_RISCV_rw_w -> 16
- | Barrier_RISCV_w_w -> 17
- | Barrier_RISCV_w_rw -> 18
- | Barrier_RISCV_rw_r -> 19
- | Barrier_RISCV_r_w -> 20
- | Barrier_RISCV_w_r -> 21
- | Barrier_RISCV_tso -> 22
- | Barrier_RISCV_i -> 23
- | Barrier_x86_MFENCE -> 24
+ | Barrier_Sync () -> 0
+ | Barrier_LwSync () -> 1
+ | Barrier_Eieio () -> 2
+ | Barrier_Isync () -> 3
+ | Barrier_DMB (dom,typ) -> 4 + (toNat dom) + (4 * (toNat typ)) (* 4-15 *)
+ | Barrier_DSB (dom,typ) -> 16 + (toNat dom) + (4 * (toNat typ)) (* 16-27 *)
+ | Barrier_ISB () -> 28
+ | Barrier_TM_COMMIT () -> 29
+ | Barrier_MIPS_SYNC () -> 30
+ | Barrier_RISCV_rw_rw () -> 31
+ | Barrier_RISCV_r_rw () -> 32
+ | Barrier_RISCV_r_r () -> 33
+ | Barrier_RISCV_rw_w () -> 34
+ | Barrier_RISCV_w_w () -> 35
+ | Barrier_RISCV_w_rw () -> 36
+ | Barrier_RISCV_rw_r () -> 37
+ | Barrier_RISCV_r_w () -> 38
+ | Barrier_RISCV_w_r () -> 39
+ | Barrier_RISCV_tso () -> 40
+ | Barrier_RISCV_i () -> 41
+ | Barrier_x86_MFENCE () -> 42
end
end