(* Example proof script for Coq Proof General. This is a legal script for coq 7.x, with imbricated proofs definitions. Replace Section by Module (>= coq-7.4). $Id$ *) Section sect. Goal (A,B:Prop)(A /\ B) -> (B /\ A). Intros A B H. Recursive Tactic Definition bar := Idtac. Elim H. Intros. Lemma foo: (A:Set)Set. Intro A. Exact A. Save. Split. Assumption. Assumption. Save and_comms. End sect. Section newmod. Definition type1:=Set. Axiom A:False. Goal (n:nat)(S n)=n. Apply False_ind. Exact A. Save toto. End newmod. Extract Constant Lemma Lem : (S O)=O. AutoRewrite [db]. Hint Rewrite [toto] in db. AutoRewrite [db].