Import No1. Import No2. Import No3. Import No4. Import No5. Theorem n3_47 : ∀ P Q R S : Prop, ((P → R) ∧ (Q → S)) → (P ∧ Q) → R ∧ S. Proof. intros P Q R S. specialize Simp3_26 with (P→R) (Q→S). intros Simp3_26a. (*Yuelin's book has n2_34. This doesn't exist.*) specialize Fact3_45 with P R Q. intros Fact3_45a. (*Yuelin's book has n2_45. Fact3_45 is meant.*) replace (R∧Q) with (Q∧R) in Fact3_45a. Syll Simp3_26a Fact3_45a Sa. (*Syll2_05*) specialize Simp3_27 with (P→R) (Q→S). intros Simp3_27a. (*Yuelin's book has n2_36. This doesn't exist.*) specialize Fact3_45 with Q S R. intros Fact3_45b. (*Yuelin's book has n2_45. Fact3_45 is meant.*) replace (S∧R) with (R∧S) in Fact3_45b. Syll Simp3_27a Fact3_45b Sb. (*Syll2_05*) clear Simp3_26a. clear Fact3_45a. clear Simp3_27a. clear Fact3_45b. Conj Sa Sb. split. apply Sa. apply Sb. specialize Comp3_43 with ((P→R)∧(Q→S)) ((P∧Q)→(Q∧R)) ((Q∧R)→(R∧S)). intros Comp3_43a. (*Yuelin's book has n2_39. Comp3_43 is meant. PM and I have n2_83 here.*) MP Comp3_43a H. specialize Syll3_33 with (P∧Q) (Q∧R) (R∧S). intros Syll3_33a. (*Yuelin's book has n2_39. Syll3_33 is meant. My n2_83 does this work, too.*) Syll Comp3_43a Syll3_33a Sc. (*Yuelin seems to do another application of Syll3_33, citing the same number n2_39. But that would also require here, as above, Conjunction, which Yuelin does not bother citing.*) apply Sc. apply EqBi. apply n4_3. apply EqBi. apply n4_3. Qed.