Require Import Unicode.Utf8. Module No1. Import Unicode.Utf8. (*We first give the axioms of Principia for the propositional calculus in *1.*) Axiom MP1_1 : ∀ P Q : Prop, (P → Q) → P → Q. (*Modus ponens*) (**1.11 ommitted: it is MP for propositions containing variables. Likewise, ommitted the well-formedness rules 1.7, 1.71, 1.72*) Axiom Taut1_2 : ∀ P : Prop, P ∨ P→ P. (*Tautology*) Axiom Add1_3 : ∀ P Q : Prop, Q → P ∨ Q. (*Addition*) Axiom Perm1_4 : ∀ P Q : Prop, P ∨ Q → Q ∨ P. (*Permutation*) Axiom Assoc1_5 : ∀ P Q R : Prop, P ∨ (Q ∨ R) → Q ∨ (P ∨ R). Axiom Sum1_6: ∀ P Q R : Prop, (Q → R) → (P ∨ Q → P ∨ R). (*These are all the propositional axioms of Principia Mathematica.*) Axiom Impl1_01 : ∀ P Q : Prop, (P → Q) = (~P ∨ Q). (*This is a definition in Principia: there → is a defined sign and ∨, ~ are primitive ones. So we will use this axiom to switch between disjunction and implication.*) End No1. Module No2. Import No1. (*We proceed to the deductions of of Principia.*) Theorem Abs2_01 : ∀ P : Prop, (P → ~P) → ~P. Proof. intros P. specialize Taut1_2 with (~P). replace (~P ∨ ~P) with (P → ~P). apply MP1_1. apply Impl1_01. Qed. Theorem n2_02 : ∀ P Q : Prop, Q → (P → Q). Proof. intros P Q. specialize Add1_3 with (~P) Q. replace (~P ∨ Q) with (P → Q). apply (MP1_1 Q (P → Q)). apply Impl1_01. Qed. Theorem n2_03 : ∀ P Q : Prop, (P → ~Q) → (Q → ~P). Proof. intros P Q. specialize Perm1_4 with (~P) (~Q). replace (~P ∨ ~Q) with (P → ~Q). replace (~Q ∨ ~P) with (Q → ~P). apply (MP1_1 (P → ~Q) (Q → ~P)). apply Impl1_01. apply Impl1_01. Qed. Theorem Comm2_04 : ∀ P Q R : Prop, (P → (Q → R)) → (Q → (P → R)). Proof. intros P Q R. specialize Assoc1_5 with (~P) (~Q) R. replace (~Q ∨ R) with (Q → R). replace (~P ∨ (Q → R)) with (P → (Q → R)). replace (~P ∨ R) with (P → R). replace (~Q ∨ (P → R)) with (Q → (P → R)). apply (MP1_1 (P → Q → R) (Q → P → R)). apply Impl1_01. apply Impl1_01. apply Impl1_01. apply Impl1_01. Qed. Theorem Syll2_05 : ∀ P Q R : Prop, (Q → R) → ((P → Q) → (P → R)). Proof. intros P Q R. specialize Sum1_6 with (~P) Q R. replace (~P ∨ Q) with (P → Q). replace (~P ∨ R) with (P → R). apply (MP1_1 (Q → R) ((P → Q) → (P → R))). apply Impl1_01. apply Impl1_01. Qed. Theorem Syll2_06 : ∀ P Q R : Prop, (P → Q) → ((Q → R) → (P → R)). Proof. intros P Q R. specialize Comm2_04 with (Q → R) (P → Q) (P → R). intros Comm2_04. specialize Syll2_05 with P Q R. intros Syll2_05. specialize MP1_1 with ((Q → R) → (P → Q) → P → R) ((P → Q) → ((Q → R) → (P → R))). intros MP1_1. apply MP1_1. apply Comm2_04. apply Syll2_05. Qed. Theorem n2_07 : ∀ P : Prop, P → (P ∨ P). Proof. intros P. specialize Add1_3 with P P. apply MP1_1. Qed. Theorem n2_08 : ∀ P : Prop, P → P. Proof. intros P. specialize Syll2_05 with P (P ∨ P) P. intros Syll2_05. specialize Taut1_2 with P. intros Taut1_2. specialize MP1_1 with ((P ∨ P) → P) (P → P). intros MP1_1. apply Syll2_05. apply Taut1_2. apply n2_07. Qed. Theorem n2_1 : ∀ P : Prop, (~P) ∨ P. Proof. intros P. specialize n2_08 with P. replace (~P ∨ P) with (P → P). apply MP1_1. apply Impl1_01. Qed. Theorem n2_11 : ∀ P : Prop, P ∨ ~P. Proof. intros P. specialize Perm1_4 with (~P) P. intros Perm1_4. specialize n2_1 with P. intros Abs2_01. apply Perm1_4. apply n2_1. Qed. Theorem n2_12 : ∀ P : Prop, P → ~~P. Proof. intros P. specialize n2_11 with (~P). intros n2_11. rewrite Impl1_01. assumption. Qed. Theorem n2_13 : ∀ P : Prop, P ∨ ~~~P. Proof. intros P. specialize Sum1_6 with P (~P) (~~~P). intros Sum1_6. specialize n2_12 with (~P). intros n2_12. apply Sum1_6. apply n2_12. apply n2_11. Qed. Theorem n2_14 : ∀ P : Prop, ~~P → P. Proof. intros P. specialize Perm1_4 with P (~~~P). intros Perm1_4. specialize n2_13 with P. intros n2_13. rewrite Impl1_01. apply Perm1_4. apply n2_13. Qed. Theorem Trans2_15 : ∀ P Q : Prop, (~P → Q) → (~Q → P). Proof. intros P Q. specialize Syll2_05 with (~P) Q (~~Q). intros Syll2_05a. specialize n2_12 with Q. intros n2_12. specialize n2_03 with (~P) (~Q). intros n2_03. specialize Syll2_05 with (~Q) (~~P) P. intros Syll2_05b. specialize Syll2_05 with (~P → Q) (~P → ~~Q) (~Q → ~~P). intros Syll2_05c. specialize Syll2_05 with (~P → Q) (~Q → ~~P) (~Q → P). intros Syll2_05d. apply Syll2_05d. apply Syll2_05b. apply n2_14. apply Syll2_05c. apply n2_03. apply Syll2_05a. apply n2_12. Qed. Ltac Syll H1 H2 S := let S := fresh S in match goal with | [ H1 : ?P → ?Q, H2 : ?Q → ?R |- _ ] => assert (S : P → R) by (intros p; apply (H2 (H1 p))) end. Ltac MP H1 H2 := match goal with | [ H1 : ?P → ?Q, H2 : ?P |- _ ] => specialize (H1 H2) end. Theorem Trans2_16 : ∀ P Q : Prop, (P → Q) → (~Q → ~P). Proof. intros P Q. specialize n2_12 with Q. intros n2_12a. specialize Syll2_05 with P Q (~~Q). intros Syll2_05a. specialize n2_03 with P (~Q). intros n2_03a. MP n2_12a Syll2_05a. Syll Syll2_05a n2_03a S. apply S. Qed. Theorem Trans2_17 : ∀ P Q : Prop, (~Q → ~P) → (P → Q). Proof. intros P Q. specialize n2_03 with (~Q) P. intros n2_03a. specialize n2_14 with Q. intros n2_14a. specialize Syll2_05 with P (~~Q) Q. intros Syll2_05a. MP n2_14a Syll2_05a. Syll n2_03a Syll2_05a S. apply S. Qed. Theorem n2_18 : ∀ P : Prop, (~P → P) → P. Proof. intros P. specialize n2_12 with P. intro n2_12a. specialize Syll2_05 with (~P) P (~~P). intro Syll2_05a. MP Syll2_05a n2_12. specialize Abs2_01 with (~P). intros Abs2_01a. Syll Syll2_05a Abs2_01a Sa. specialize n2_14 with P. intros n2_14a. Syll H n2_14a Sb. apply Sb. Qed. Theorem n2_2 : ∀ P Q : Prop, P → (P ∨ Q). Proof. intros P Q. specialize Add1_3 with Q P. intros Add1_3a. specialize Perm1_4 with Q P. intros Perm1_4a. Syll Add1_3a Perm1_4a S. apply S. Qed. Theorem n2_21 : ∀ P Q : Prop, ~P → (P → Q). Proof. intros P Q. specialize n2_2 with (~P) Q. intros n2_2a. specialize Impl1_01 with P Q. intros Impl1_01a. replace (~P∨Q) with (P→Q) in n2_2a. apply n2_2a. Qed. Theorem n2_24 : ∀ P Q : Prop, P → (~P → Q). Proof. intros P Q. specialize n2_21 with P Q. intros n2_21a. specialize Comm2_04 with (~P) P Q. intros Comm2_04a. apply Comm2_04a. apply n2_21a. Qed. Theorem n2_25 : ∀ P Q : Prop, P ∨ ((P ∨ Q) → Q). Proof. intros P Q. specialize n2_1 with (P ∨ Q). intros n2_1a. specialize Assoc1_5 with (~(P∨Q)) P Q. intros Assoc1_5a. MP Assoc1_5a n2_1a. replace (~(P∨Q)∨Q) with (P∨Q→Q) in Assoc1_5a. apply Assoc1_5a. apply Impl1_01. Qed. Theorem n2_26 : ∀ P Q : Prop, ~P ∨ ((P → Q) → Q). Proof. intros P Q. specialize n2_25 with (~P) Q. intros n2_25a. replace (~P∨Q) with (P→Q) in n2_25a. apply n2_25a. apply Impl1_01. Qed. Theorem n2_27 : ∀ P Q : Prop, P → ((P → Q) → Q). Proof. intros P Q. specialize n2_26 with P Q. intros n2_26a. replace (~P∨((P→Q)→Q)) with (P→(P→Q)→Q) in n2_26a. apply n2_26a. apply Impl1_01. Qed. Theorem n2_3 : ∀ P Q R : Prop, (P ∨ (Q ∨ R)) → (P ∨ (R ∨ Q)). Proof. intros P Q R. specialize Perm1_4 with Q R. intros Perm1_4a. specialize Sum1_6 with P (Q∨R) (R∨Q). intros Sum1_6a. MP Sum1_6a Perm1_4a. apply Sum1_6a. Qed. Theorem n2_31 : ∀ P Q R : Prop, (P ∨ (Q ∨ R)) → ((P ∨ Q) ∨ R). Proof. intros P Q R. specialize n2_3 with P Q R. intros n2_3a. specialize Assoc1_5 with P R Q. intros Assoc1_5a. specialize Perm1_4 with R (P∨Q). intros Perm1_4a. Syll Assoc1_5a Perm1_4a Sa. Syll n2_3a Sa Sb. apply Sb. Qed. Theorem n2_32 : ∀ P Q R : Prop, ((P ∨ Q) ∨ R) → (P ∨ (Q ∨ R)). Proof. intros P Q R. specialize Perm1_4 with (P∨Q) R. intros Perm1_4a. specialize Assoc1_5 with R P Q. intros Assoc1_5a. specialize n2_3 with P R Q. intros n2_3a. specialize Syll2_06 with ((P∨Q)∨R) (R∨P∨Q) (P∨R∨Q). intros Syll2_06a. MP Syll2_06a Perm1_4a. MP Syll2_06a Assoc1_5a. specialize Syll2_06 with ((P∨Q)∨R) (P∨R∨Q) (P∨Q∨R). intros Syll2_06b. MP Syll2_06b Syll2_06a. MP Syll2_06b n2_3a. apply Syll2_06b. Qed. Axiom n2_33 : ∀ P Q R : Prop, (P∨Q∨R)=((P∨Q)∨R). (*This definition makes the default left association. The default in Coq is right association, so this will need to be applied to underwrite some inferences.*) Theorem n2_36 : ∀ P Q R : Prop, (Q → R) → ((P ∨ Q) → (R ∨ P)). Proof. intros P Q R. specialize Perm1_4 with P R. intros Perm1_4a. specialize Syll2_05 with (P∨Q) (P∨R) (R∨P). intros Syll2_05a. MP Syll2_05a Perm1_4a. specialize Sum1_6 with P Q R. intros Sum1_6a. Syll Sum1_6a Syll2_05a S. apply S. Qed. Theorem n2_37 : ∀ P Q R : Prop, (Q → R) → ((Q ∨ P) → (P ∨ R)). Proof. intros P Q R. specialize Perm1_4 with Q P. intros Perm1_4a. specialize Syll2_06 with (Q∨P) (P∨Q) (P∨R). intros Syll2_06a. MP Syll2_05a Perm1_4a. specialize Sum1_6 with P Q R. intros Sum1_6a. Syll Sum1_6a Syll2_05a S. apply S. Qed. Theorem n2_38 : ∀ P Q R : Prop, (Q → R) → ((Q ∨ P) → (R ∨ P)). Proof. intros P Q R. specialize Perm1_4 with P R. intros Perm1_4a. specialize Syll2_05 with (Q∨P) (P∨R) (R∨P). intros Syll2_05a. MP Syll2_05a Perm1_4a. specialize Perm1_4 with Q P. intros Perm1_4b. specialize Syll2_06 with (Q∨P) (P∨Q) (P∨R). intros Syll2_06a. MP Syll2_06a Perm1_4b. Syll Syll2_06a Syll2_05a H. specialize Sum1_6 with P Q R. intros Sum1_6a. Syll Sum1_6a H S. apply S. Qed. Theorem n2_4 : ∀ P Q : Prop, (P ∨ (P ∨ Q)) → (P ∨ Q). Proof. intros P Q. specialize n2_31 with P P Q. intros n2_31a. specialize Taut1_2 with P. intros Taut1_2a. specialize n2_38 with Q (P∨P) P. intros n2_38a. MP n2_38a Taut1_2a. Syll n2_31a n2_38a S. apply S. Qed. Theorem n2_41 : ∀ P Q : Prop, (Q ∨ (P ∨ Q)) → (P ∨ Q). Proof. intros P Q. specialize Assoc1_5 with Q P Q. intros Assoc1_5a. specialize Taut1_2 with Q. intros Taut1_2a. specialize Sum1_6 with P (Q∨Q) Q. intros Sum1_6a. MP Sum1_6a Taut1_2a. Syll Assoc1_5a Sum1_6a S. apply S. Qed. Theorem n2_42 : ∀ P Q : Prop, (~P ∨ (P → Q)) → (P → Q). Proof. intros P Q. specialize n2_4 with (~P) Q. intros n2_4a. replace (~P∨Q) with (P→Q) in n2_4a. apply n2_4a. apply Impl1_01. Qed. Theorem n2_43 : ∀ P Q : Prop, (P → (P → Q)) → (P → Q). Proof. intros P Q. specialize n2_42 with P Q. intros n2_42a. replace (~P ∨ (P→Q)) with (P→(P→Q)) in n2_42a. apply n2_42a. apply Impl1_01. Qed. Theorem n2_45 : ∀ P Q : Prop, ~(P ∨ Q) → ~P. Proof. intros P Q. specialize n2_2 with P Q. intros n2_2a. specialize Trans2_16 with P (P∨Q). intros Trans2_16a. MP n2_2 Trans2_16a. apply Trans2_16a. Qed. Theorem n2_46 : ∀ P Q : Prop, ~(P ∨ Q) → ~Q. Proof. intros P Q. specialize Add1_3 with P Q. intros Add1_3a. specialize Trans2_16 with Q (P∨Q). intros Trans2_16a. MP Add1_3a Trans2_16a. apply Trans2_16a. Qed. Theorem n2_47 : ∀ P Q : Prop, ~(P ∨ Q) → (~P ∨ Q). Proof. intros P Q. specialize n2_45 with P Q. intros n2_45a. specialize n2_2 with (~P) Q. intros n2_2a. Syll n2_45a n2_2a S. apply S. Qed. Theorem n2_48 : ∀ P Q : Prop, ~(P ∨ Q) → (P ∨ ~Q). Proof. intros P Q. specialize n2_46 with P Q. intros n2_46a. specialize Add1_3 with P (~Q). intros Add1_3a. Syll n2_46a Add1_3a S. apply S. Qed. Theorem n2_49 : ∀ P Q : Prop, ~(P ∨ Q) → (~P ∨ ~Q). Proof. intros P Q. specialize n2_45 with P Q. intros n2_45a. specialize n2_2 with (~P) (~Q). intros n2_2a. Syll n2_45a n2_2a S. apply S. Qed. Theorem n2_5 : ∀ P Q : Prop, ~(P → Q) → (~P → Q). Proof. intros P Q. specialize n2_47 with (~P) Q. intros n2_47a. replace (~P∨Q) with (P→Q) in n2_47a. replace (~~P∨Q) with (~P→Q) in n2_47a. apply n2_47a. apply Impl1_01. apply Impl1_01. Qed. Theorem n2_51 : ∀ P Q : Prop, ~(P → Q) → (P → ~Q). Proof. intros P Q. specialize n2_48 with (~P) Q. intros n2_48a. replace (~P∨Q) with (P→Q) in n2_48a. replace (~P∨~Q) with (P→~Q) in n2_48a. apply n2_48a. apply Impl1_01. apply Impl1_01. Qed. Theorem n2_52 : ∀ P Q : Prop, ~(P → Q) → (~P → ~Q). Proof. intros P Q. specialize n2_49 with (~P) Q. intros n2_49a. replace (~P∨Q) with (P→Q) in n2_49a. replace (~~P∨~Q) with (~P→~Q) in n2_49a. apply n2_49a. apply Impl1_01. apply Impl1_01. Qed. Theorem n2_521 : ∀ P Q : Prop, ~(P→Q)→(Q→P). Proof. intros P Q. specialize n2_52 with P Q. intros n2_52a. specialize Trans2_17 with Q P. intros Trans2_17a. Syll n2_52a Trans2_17a S. apply S. Qed. Theorem n2_53 : ∀ P Q : Prop, (P ∨ Q) → (~P → Q). Proof. intros P Q. specialize n2_12 with P. intros n2_12a. specialize n2_38 with Q P (~~P). intros n2_38a. MP n2_38a n2_12a. replace (~~P∨Q) with (~P→Q) in n2_38a. apply n2_38a. apply Impl1_01. Qed. Theorem n2_54 : ∀ P Q : Prop, (~P → Q) → (P ∨ Q). Proof. intros P Q. specialize n2_14 with P. intros n2_14a. specialize n2_38 with Q (~~P) P. intros n2_38a. MP n2_38a n2_12a. replace (~~P∨Q) with (~P→Q) in n2_38a. apply n2_38a. apply Impl1_01. Qed. Theorem n2_55 : ∀ P Q : Prop, ~P → ((P ∨ Q) → Q). Proof. intros P Q. specialize n2_53 with P Q. intros n2_53a. specialize Comm2_04 with (P∨Q) (~P) Q. intros Comm2_04a. MP n2_53a Comm2_04a. apply Comm2_04a. Qed. Theorem n2_56 : ∀ P Q : Prop, ~Q → ((P ∨ Q) → P). Proof. intros P Q. specialize n2_55 with Q P. intros n2_55a. specialize Perm1_4 with P Q. intros Perm1_4a. specialize Syll2_06 with (P∨Q) (Q∨P) P. intros Syll2_06a. MP Syll2_06a Perm1_4a. Syll n2_55a Syll2_06a Sa. apply Sa. Qed. Theorem n2_6 : ∀ P Q : Prop, (~P→Q) → ((P → Q) → Q). Proof. intros P Q. specialize n2_38 with Q (~P) Q. intros n2_38a. specialize Taut1_2 with Q. intros Taut1_2a. specialize Syll2_05 with (~P∨Q) (Q∨Q) Q. intros Syll2_05a. MP Syll2_05a Taut1_2a. Syll n2_38a Syll2_05a S. replace (~P∨Q) with (P→Q) in S. apply S. apply Impl1_01. Qed. Theorem n2_61 : ∀ P Q : Prop, (P → Q) → ((~P → Q) → Q). Proof. intros P Q. specialize n2_6 with P Q. intros n2_6a. specialize Comm2_04 with (~P→Q) (P→Q) Q. intros Comm2_04a. MP Comm2_04a n2_6a. apply Comm2_04a. Qed. Theorem n2_62 : ∀ P Q : Prop, (P ∨ Q) → ((P → Q) → Q). Proof. intros P Q. specialize n2_53 with P Q. intros n2_53a. specialize n2_6 with P Q. intros n2_6a. Syll n2_53a n2_6a S. apply S. Qed. Theorem n2_621 : ∀ P Q : Prop, (P → Q) → ((P ∨ Q) → Q). Proof. intros P Q. specialize n2_62 with P Q. intros n2_62a. specialize Comm2_04 with (P ∨ Q) (P→Q) Q. intros Comm2_04a. MP Comm2_04a n2_62a. apply Comm2_04a. Qed. Theorem n2_63 : ∀ P Q : Prop, (P ∨ Q) → ((~P ∨ Q) → Q). Proof. intros P Q. specialize n2_62 with P Q. intros n2_62a. replace (~P∨Q) with (P→Q). apply n2_62a. apply Impl1_01. Qed. Theorem n2_64 : ∀ P Q : Prop, (P ∨ Q) → ((P ∨ ~Q) → P). Proof. intros P Q. specialize n2_63 with Q P. intros n2_63a. specialize Perm1_4 with P Q. intros Perm1_4a. Syll n2_63a Perm1_4a Ha. specialize Syll2_06 with (P∨~Q) (~Q∨P) P. intros Syll2_06a. specialize Perm1_4 with P (~Q). intros Perm1_4b. MP Syll2_05a Perm1_4b. Syll Syll2_05a Ha S. apply S. Qed. Theorem n2_65 : ∀ P Q : Prop, (P → Q) → ((P → ~Q) → ~P). Proof. intros P Q. specialize n2_64 with (~P) Q. intros n2_64a. replace (~P∨Q) with (P→Q) in n2_64a. replace (~P∨~Q) with (P→~Q) in n2_64a. apply n2_64a. apply Impl1_01. apply Impl1_01. Qed. Theorem n2_67 : ∀ P Q : Prop, ((P ∨ Q) → Q) → (P → Q). Proof. intros P Q. specialize n2_54 with P Q. intros n2_54a. specialize Syll2_06 with (~P→Q) (P∨Q) Q. intros Syll2_06a. MP Syll2_06a n2_54a. specialize n2_24 with P Q. intros n2_24. specialize Syll2_06 with P (~P→Q) Q. intros Syll2_06b. MP Syll2_06b n2_24a. Syll Syll2_06b Syll2_06a S. apply S. Qed. Theorem n2_68 : ∀ P Q : Prop, ((P → Q) → Q) → (P ∨ Q). Proof. intros P Q. specialize n2_67 with (~P) Q. intros n2_67a. replace (~P∨Q) with (P→Q) in n2_67a. specialize n2_54 with P Q. intros n2_54a. Syll n2_67a n2_54a S. apply S. apply Impl1_01. Qed. Theorem n2_69 : ∀ P Q : Prop, ((P → Q) → Q) → ((Q → P) → P). Proof. intros P Q. specialize n2_68 with P Q. intros n2_68a. specialize Perm1_4 with P Q. intros Perm1_4a. Syll n2_68a Perm1_4a Sa. specialize n2_62 with Q P. intros n2_62a. Syll Sa n2_62a Sb. apply Sb. Qed. Theorem n2_73 : ∀ P Q R : Prop, (P → Q) → (((P ∨ Q) ∨ R) → (Q ∨ R)). Proof. intros P Q R. specialize n2_621 with P Q. intros n2_621a. specialize n2_38 with R (P∨Q) Q. intros n2_38a. Syll n2_621a n2_38a S. apply S. Qed. Theorem n2_74 : ∀ P Q R : Prop, (Q → P) → ((P ∨ Q) ∨ R) → (P ∨ R). Proof. intros P Q R. specialize n2_73 with Q P R. intros n2_73a. specialize Assoc1_5 with P Q R. intros Assoc1_5a. specialize n2_31 with Q P R. intros n2_31a. (*not cited explicitly!*) Syll Assoc1_5a n2_31a Sa. specialize n2_32 with P Q R. intros n2_32a. (*not cited explicitly!*) Syll n2_32a Sa Sb. specialize Syll2_06 with ((P∨Q)∨R) ((Q∨P)∨R) (P∨R). intros Syll2_06a. MP Syll2_06a Sb. Syll n2_73a Syll2_05a H. apply H. Qed. Theorem n2_75 : ∀ P Q R : Prop, (P ∨ Q) → ((P ∨ (Q → R)) → (P ∨ R)). Proof. intros P Q R. specialize n2_74 with P (~Q) R. intros n2_74a. specialize n2_53 with Q P. intros n2_53a. Syll n2_53a n2_74a Sa. specialize n2_31 with P (~Q) R. intros n2_31a. specialize Syll2_06 with (P∨(~Q)∨R)((P∨(~Q))∨R) (P∨R). intros Syll2_06a. MP Syll2_06a n2_31a. Syll Sa Syll2_06a Sb. specialize Perm1_4 with P Q. intros Perm1_4a. (*not cited!*) Syll Perm1_4a Sb Sc. replace (~Q∨R) with (Q→R) in Sc. apply Sc. apply Impl1_01. Qed. Theorem n2_76 : ∀ P Q R : Prop, (P ∨ (Q → R)) → ((P ∨ Q) → (P ∨ R)). Proof. intros P Q R. specialize n2_75 with P Q R. intros n2_75a. specialize Comm2_04 with (P∨Q) (P∨(Q→R)) (P∨R). intros Comm2_04a. apply Comm2_04a. apply n2_75a. Qed. Theorem n2_77 : ∀ P Q R : Prop, (P → (Q → R)) → ((P → Q) → (P → R)). Proof. intros P Q R. specialize n2_76 with (~P) Q R. intros n2_76a. replace (~P∨(Q→R)) with (P→Q→R) in n2_76a. replace (~P∨Q) with (P→Q) in n2_76a. replace (~P∨R) with (P→R) in n2_76a. apply n2_76a. apply Impl1_01. apply Impl1_01. apply Impl1_01. Qed. Theorem n2_8 : ∀ Q R S : Prop, (Q ∨ R) → ((~R ∨ S) → (Q ∨ S)). Proof. intros Q R S. specialize n2_53 with R Q. intros n2_53a. specialize Perm1_4 with Q R. intros Perm1_4a. Syll Perm1_4a n2_53a Ha. specialize n2_38 with S (~R) Q. intros n2_38a. Syll H n2_38a Hb. apply Hb. Qed. Theorem n2_81 : ∀ P Q R S : Prop, (Q → (R → S)) → ((P ∨ Q) → ((P ∨ R) → (P ∨ S))). Proof. intros P Q R S. specialize Sum1_6 with P Q (R→S). intros Sum1_6a. specialize n2_76 with P R S. intros n2_76a. specialize Syll2_05 with (P∨Q) (P∨(R→S)) ((P∨R)→(P∨S)). intros Syll2_05a. MP Syll2_05a n2_76a. Syll Sum1_6a Syll2_05a H. apply H. Qed. Theorem n2_82 : ∀ P Q R S : Prop, (P ∨ Q ∨ R)→((P ∨ ~R ∨ S)→(P ∨ Q ∨ S)). Proof. intros P Q R S. specialize n2_8 with Q R S. intros n2_8a. specialize n2_81 with P (Q∨R) (~R∨S) (Q∨S). intros n2_81a. MP n2_81a n2_8a. apply n2_81a. Qed. Theorem n2_83 : ∀ P Q R S : Prop, (P→(Q→R))→((P→(R→S))→(P→(Q→S))). Proof. intros P Q R S. specialize n2_82 with (~P) (~Q) R S. intros n2_82a. replace (~Q∨R) with (Q→R) in n2_82a. replace (~P∨(Q→R)) with (P→Q→R) in n2_82a. replace (~R∨S) with (R→S) in n2_82a. replace (~P∨(R→S)) with (P→R→S) in n2_82a. replace (~Q∨S) with (Q→S) in n2_82a. replace (~Q∨S) with (Q→S) in n2_82a. replace (~P∨(Q→S)) with (P→Q→S) in n2_82a. apply n2_82a. apply Impl1_01. apply Impl1_01. apply Impl1_01. apply Impl1_01. apply Impl1_01. apply Impl1_01. apply Impl1_01. Qed. Theorem n2_85 : ∀ P Q R : Prop, ((P ∨ Q) → (P ∨ R)) → (P ∨ (Q → R)). Proof. intros P Q R. specialize Add1_3 with P Q. intros Add1_3a. specialize Syll2_06 with Q (P∨Q) R. intros Syll2_06a. MP Syll2_06a Add1_3a. specialize n2_55 with P R. intros n2_55a. specialize Syll2_05 with (P∨Q) (P∨R) R. intros Syll2_05a. Syll n2_55a Syll2_05a Ha. specialize n2_83 with (~P) ((P∨Q)→(P∨R)) ((P∨Q)→R) (Q→R). intros n2_83a. MP n2_83a Ha. specialize Comm2_04 with (~P) (P∨Q→P∨R) (Q→R). intros Comm2_04a. Syll Ha Comm2_04a Hb. specialize n2_54 with P (Q→R). intros n2_54a. specialize n2_02 with (~P) ((P∨Q→R)→(Q→R)). intros n2_02a. (*Not mentioned! Greg's suggestion per the BRS list in June 25, 2017.*) MP Syll2_06a n2_02a. MP Hb n2_02a. Syll Hb n2_54a Hc. apply Hc. Qed. Theorem n2_86 : ∀ P Q R : Prop, ((P → Q) → (P → R)) → (P → (Q → R)). Proof. intros P Q R. specialize n2_85 with (~P) Q R. intros n2_85a. replace (~P∨Q) with (P→Q) in n2_85a. replace (~P∨R) with (P→R) in n2_85a. replace (~P∨(Q→R)) with (P→Q→R) in n2_85a. apply n2_85a. apply Impl1_01. apply Impl1_01. apply Impl1_01. Qed. End No2.