Theorem N1_4 : ∀ P Q : Prop, P ∨ Q → Q ∨ P. Proof. intros P Q. specialize n2_2 with Q P. intros n2_2a. specialize Assoc1_5 with P Q P. intros Assoc1_5a. specialize Sum1_6 with P Q (Q ∨ P). intros Sum1_6a. MP Sum1_6a n2_2a. Syll Sum1_6a Assoc1_5a Sa. specialize Taut1_2 with P. intros Taut1_2a. specialize Sum1_6 with Q (P ∨ P) P. intros Sum1_6b. MP Sum1_6b Taut1_2a. Syll Sa Sum1_6b Sb. apply Sb. Qed.