\documentclass[12pt,openany,leqno,twocolumn]{book} %Principia package requirements \usepackage{pifont} %This loads the eight-pointed asterisk. \usepackage{marvosym} %This loads the male and female symbol. \usepackage{graphicx} %This loads commands that flip iota for definite descriptions, Lambda for the universal class, and so on. The (superseded) graphics package should also work here, but is not recommended. \usepackage{amssymb} \usepackage{amsmath} \usepackage{fullpage} \usepackage{perpage} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{mathrsfs} \usepackage[hidelinks,pdfencoding=unicode]{hyperref} \usepackage{enumitem} \usepackage{moreenum} \usepackage[normalem]{ulem} \usepackage[perpage,symbol]{footmisc} \usepackage{setspace} %Meta-logical symbols \newcommand{\pmdem}{\textit{Dem}.} %This notation begins a proof. \newcommand{\pmsub}[2]{\bigg \lbrack \small \begin{array}{c} #1 \\ \hline #2 \end{array} \bigg \rbrack} %This is the substitution command. \newcommand{\pmSub}[3]{\bigg \lbrack \normalsize #1 \text{ } \small \begin{array}{c} #2 \\ \hline #3 \end{array} \bigg \rbrack} %This is the substitution command. \newcommand{\pmsubb}[4]{\bigg \lbrack \small \begin{array}{c c} #1, & #3 \\ \hline #2, & #4 \end{array} \bigg \rbrack} %This is the substitution command. \newcommand{\pmSubb}[5]{\bigg \lbrack \normalsize #1 \text{ } \small \begin{array}{c c} #2, & #4 \\ \hline #3, & #5 \end{array} \bigg \rbrack} %This is the substitution command. \newcommand{\pmsubbb}[6]{\bigg \lbrack \small \begin{array}{c c c} #1, & #3, & #5 \\ \hline #2, & #4, & #6 \end{array} \bigg \rbrack} %This is the substitution command. \newcommand{\pmSubbb}[7]{\bigg \lbrack \normalsize #1 \text{ } \small \begin{array}{c c c} #2, & #4, & #6 \\ \hline #3, & #5, & #7 \end{array} \bigg \rbrack} %This is the substitution command. \newcommand{\pmsubbbb}[8]{\bigg \lbrack \small \begin{array}{c c c c} #1, & #3, & #5, & #7 \\ \hline #2, & #4, & #6, & #8 \end{array} \bigg \rbrack} %This is the substitution command. \newcommand{\pmSubbbb}[9]{\bigg \lbrack \normalsize #1 \text{ } \small \begin{array}{c c c c} #1, & #3, & #5, & #7 \\ \hline #2, & #4, & #6, & #8 \end{array} \bigg \rbrack} %This is the substitution command. \newcommand{\pmthm}{\text{\scalebox{.5}[1]{$\boldsymbol\vdash$}}} %This is the theorem sign. \newcommand{\pmast}{\text{\resizebox{!}{.75\height}{\ding{107}}}} %This is the sign introducing a theorem number. \newcommand{\pmcdot}{\text{\raisebox{.05cm}{$\boldsymbol\cdot$}}} %This is a sign introducing a theorem sub-number. \newcommand{\pmdf}{=_\text{Df}} \newcommand{\pmpp}{\text{Pp}} %Square dots for scope, defined for up to six dots \newcommand{\pmdot}{\mathop{\hbox{\rule{.3ex}{.3ex}}}} \newcommand{\pmdott}{\mathop{\overset{\pmdot}{\pmdot}}} \newcommand{\pmdottt}{\pmdott \pmdot} \newcommand{\pmdotttt}{\pmdott\pmdott} \newcommand{\pmdottttt}{\pmdott\pmdott\pmdot} \newcommand{\pmdotttttt}{\pmdott\pmdott\pmdott} %Logical connectives \newcommand{\pmnot}{\mathord{\sim}} \newcommand{\pmimp}{\boldsymbol{\supset}} \newcommand{\pmiff}{\equiv} \newcommand{\pmor}{\boldsymbol{\vee}} \newcommand{\pmall}[1]{(#1)} \newcommand{\pmsome}[1]{(\text{\raisebox{.5em}{\rotatebox{180}{E}}}#1)} \newcommand{\pmSome}{\text{\raisebox{.5em}{\rotatebox{180}{E}}}} \newcommand{\pmand}{\mathrel{\hbox{\rule{.3ex}{.3ex}}}} \newcommand{\pmandd}{\overset{\pmand}{\pmand}} \newcommand{\pmanddd}{\pmandd\hspace{.1em}\pmand} \newcommand{\pmandddd}{\pmandd\hspace{.1em}\pmandd} \newcommand{\pmanddddd}{\pmandd\hspace{.1em}\pmandd\hspace{.1em}\pmand} \newcommand{\pmandddddd}{\pmandd\hspace{.1em}\pmandd\hspace{.1em}\pmandd} %Additional defined logic signs \newcommand{\pmhat}[1]{\mathbf{\hat{\text{$#1$}}}} \newcommand{\pmpf}[2]{#1#2} %for propositional functions of one variable \newcommand{\pmpff}[3]{#1(#2, #3)} %for propositional functions of two variables \newcommand{\pmpfff}[4]{#1(#2, #3, #4)} %for propositional functions of three variables \newcommand{\pmshr}{\textbf{!}} %*12.1 and *12.11, used for predicative propositional functions \newcommand{\pmpred}[2]{#1\pmshr#2} %for predicates (``predicative functions'') of one variable \newcommand{\pmpredd}[3]{#1\pmshr(#2, #3)} %for predicates (``predicative functions'') of two variables \newcommand{\pmpreddd}[4]{#1\pmshr(#2, #3, #4)} %for predicates (``predicative functions'') of three variables \newcommand{\pmnid}{\mathrel{\ooalign{$=$\cr\hidewidth\footnotesize\rotatebox[origin=c]{210}{\textbf{/}}\hidewidth\cr}}} %*13.01 \newcommand{\pmiota}{\rotatebox[origin=c]{180}{$\iota$}} %the rotated Greek iota used in definite descriptions \newcommand{\pmdsc}[1]{(\pmiota#1)} %*14.01 \newcommand{\pmDsc}{\pmiota} %*14.01 \newcommand{\pmexists}{\text{E}\pmshr} %*14.02 %Class signs \newcommand{\pmcuni}{\text{\rotatebox[origin=c]{180}{$\Lambda$}}} \newcommand{\pmcnull}{\Lambda} \newcommand{\pmcls}[2]{\pmhat{#1}(#2)} \newcommand{\pmCls}{\text{Cls}} \newcommand{\pmClsn}[1]{\text{Cls}^{#1}} \newcommand{\pmcexists}{\text{\raisebox{.5em}{\rotatebox{180}{E}}}\mathop{\pmshr}} \newcommand{\pmccmp}[1]{\boldsymbol{-}#1} \newcommand{\pmcmin}[2]{#1\boldsymbol{-}#2} \newcommand{\pmcin}{\mathop{\epsilon}} \newcommand{\pmccup}{\mathop{\scalebox{1.3}[1.75]{$\put(3, 2.5){\oval(4,4)[b]}\phantom{\circ}$}}} \newcommand{\pmccap}{\mathop{\scalebox{1.3}[1.75]{$\put(3, 2){\oval(4,1)[t]}\phantom{\circ}$}}} \newcommand{\pmcinc}{\mathop{\boldsymbol{\subset}}} %Relation signs \newcommand{\pmruni}{\dot{\text{\rotatebox[origin=c]{180}{$\Lambda$}}}} \newcommand{\pmrnull}{\dot{\Lambda}} \newcommand{\pmdscf}[2]{#1\textbf{`}#2} \newcommand{\pmdscff}[2]{#1\textbf{`}\textbf{`}#2} \newcommand{\pmdscfff}[2]{#1\textbf{`}\textbf{`}\textbf{`}#2} \newcommand{\pmdscfr}[2]{#1_{\pmcin}\textbf{`}#2} \newcommand{\pmdscfR}[1]{#1_{\pmcin}} \newcommand{\pmdscfe}[2]{\mathop{\text{E}}\mathop{\pmshr\pmshr}\pmdscff{#1}{#2}} \newcommand{\pmdm}[1]{\text{D}\textbf{`}#1} \newcommand{\pmDm}{\text{D}} \newcommand{\pmcdm}[1]{\text{\rotatebox[origin=c]{180}{D}}\textbf{`}#1} \newcommand{\pmCdm}{\text{\rotatebox[origin=c]{180}{D}}} \newcommand{\pmcmp}[1]{C\textbf{`}#1} \newcommand{\pmCmp}{C} \newcommand{\pmfld}[1]{F\textbf{`}#1} \newcommand{\pmFld}{F} \newcommand{\pmrel}[3]{\pmhat{#1}\pmhat{#2}#3} \newcommand{\pmrele}[5]{#1\{\pmhat{#2}\pmhat{#3}#4(#2, #3)\}#5} \newcommand{\pmrelep}[3]{#1\{#2\}#3} \newcommand{\pmrcmp}[1]{\ooalign{$\hidewidth\raisebox{.25em}{$\cdot$}\hidewidth$\cr$\mathbf{\pmccmp}$}#1} \newcommand{\pmrmin}[2]{#1\mathrel{\ooalign{$\hidewidth\raisebox{.25em}{$\cdot$}\hidewidth$\cr$\mathbf{\pmccmp}$}}#2} \newcommand{\pmrexists}{\dot{\mathop{\text{\raisebox{.5em}{\rotatebox{180}{E}}}}}\mathop{\pmshr}} \newcommand{\pmcrel}[1]{\breve{#1}} \newcommand{\pmCnv}{\text{Cnv}} \newcommand{\pmcnv}[1]{\breve{#1}} \newcommand{\pmcnvr}[1]{\text{Cnv}\textbf{`}#1} \newcommand{\pmrcup}{\mathrel{\ooalign{$\hidewidth\cdot\hidewidth$\cr$\mathbf{\pmccup}$}}} \newcommand{\pmrcap}{\mathrel{\ooalign{$\hidewidth\raisebox{.3em}{$\cdot$}\hidewidth$\cr$\mathbf{\pmccap}$}}} \newcommand{\pmrinc}{\mathrel{\ooalign{$\hidewidth\cdot\hidewidth$\cr$\mathbf{\pmcinc}$}}} \newcommand{\pmrrf}[2]{\overset{\boldsymbol{\rightarrow}}{#1\textbf{`}}#2} \newcommand{\pmRrf}[1]{\overset{\boldsymbol{\rightarrow}}{#1}} \newcommand{\pmrrl}[2]{\overset{\boldsymbol{\leftarrow}}{#1\textbf{`}}#2} \newcommand{\pmRrl}[1]{\overset{\boldsymbol{\leftarrow}}{#1}} \newcommand{\pmsg}[1]{\text{sg}\textbf{`}#1} \newcommand{\pmgs}[1]{\text{gs}\textbf{`}#1} \newcommand{\pmSg}{\text{sg}} \newcommand{\pmGs}{\text{gs}} \newcommand{\pmRprd}{\mathop{|}} \newcommand{\pmrprd}[2]{{#1}\mathop{|}{#2}} \newcommand{\pmrprdn}[2]{#1^{#2}} \newcommand{\pmrld}[2]{#1 \boldsymbol{\upharpoonleft} #2} \newcommand{\pmrlcd}[2]{#1 \boldsymbol{\upharpoonright} #2} \newcommand{\pmrlf}[3]{#1 \boldsymbol{\upharpoonleft} #2 \boldsymbol{\upharpoonright} #3} \newcommand{\pmrl}[2]{#1 \boldsymbol{\uparrow} #2} \newcommand{\pmrlF}[2]{#1 \mathbin{\ooalign{$\upharpoonright$\cr\hidewidth\rotatebox[origin=c]{180}{\text{$\upharpoonleft$}}\hidewidth\cr}} #2} \newcommand{\pmop}{\mathop{\text{\Female}}} \newcommand{\pmopc}[2]{#1 \mathop{\underset{\textbf{''}}{\text{\Female}}} #2} %Products and sums of classes of classes or relations \newcommand{\pmccsum}[1]{p\textbf{`}#1} \newcommand{\pmccprd}[1]{s\textbf{`}#1} \newcommand{\pmcrsum}[1]{\dot{p}\textbf{`}#1} \newcommand{\pmcrprd}[1]{\dot{s}\textbf{`}#1} \newcommand{\pmRprdd}{\mathop{||}} \newcommand{\pmrprdd}[2]{{#1}\mathop{||}{#2}} %Identity and Diversity \newcommand{\pmrid}{I} \newcommand{\pmrdiv}{J} \newcommand{\pmcunit}[1]{\iota\textbf{`}#1} \newcommand{\pmcUnit}{\iota} \newcommand{\pmcunits}[1]{\breve{\iota}\textbf{`}#1} %Cardinal numbers \newcommand{\pmcn}[1]{#1} %Ordinal numbers \newcommand{\pmrn}[1]{#1_r} \newcommand{\pmdn}[1]{\dot{#1}} \newcommand{\pmoc}[2]{#1 \boldsymbol{\downarrow} #2} %Subclasses and subrelations \newcommand{\pmscl}[1]{\text{Cl}\textbf{`}#1} \newcommand{\pmsCl}{\text{Cl}} \newcommand{\pmscle}[1]{\text{Cl ex}\textbf{`}#1} \newcommand{\pmsCle}{\text{Cl ex}} \newcommand{\pmscls}[1]{\text{Cls}\textbf{`}#1} \newcommand{\pmsrl}[1]{\text{Rl}\textbf{`}#1} \newcommand{\pmsRl}{\text{Rl}} \newcommand{\pmsrle}[1]{\text{Rl ex}\textbf{`}#1} \newcommand{\pmsRle}{\text{Rl ex}} \newcommand{\pmsrel}[1]{\text{Rel}\textbf{`}#1} \newcommand{\pmRel}{\text{Rel}} \newcommand{\pmReln}[1]{\text{Rel}^{#1}} \newcommand{\pmrin}{\mathop{\epsilon}} %Relative type symbols \newcommand{\pmrt}[1]{t\textbf{`}#1} \newcommand{\pmrti}[2]{t^{#1}\textbf{`}#2} \newcommand{\pmrtc}[2]{t_{#1}\textbf{`}#2} \newcommand{\pmrtri}[2]{t^{#1}\textbf{`}#2} \newcommand{\pmrtrc}[2]{t_{#1}\textbf{`}#2} \newcommand{\pmrtrci}[3]{t_{#1}^{\text{ }#2}\textbf{`}#3} \newcommand{\pmrtric}[3]{^{#1}t_{#2}\textbf{`}#3} \newcommand{\pmrtdi}[2]{#1_{#2}} \newcommand{\pmrtdc}[2]{#1(#2)} \newcommand{\pmrtdri}[2]{#1_{#2}} \newcommand{\pmrtdrc}[2]{#1(#2)} %Similarity relation signs \newcommand{\pmrdc}[2]{#1\boldsymbol{\to}#2} \newcommand{\pmsm}{\mathrel{\text{sm}}} \newcommand{\pmsmbar}{\mathrel{\overline{\text{sm}}}} \newcommand{\pmsmarr}{\overrightarrow{{\pmsm}}} \newcommand{\pmonemany}{1\boldsymbol{\to}\pmCls} \newcommand{\pmmanyone}{\pmCls\boldsymbol{\to}1} \newcommand{\pmoneone}{1\boldsymbol{\to}1} %Selections \newcommand{\pmselp}[1]{P_{\small\Delta}\mathbf{`}#1} \newcommand{\pmSelp}{P_{\Delta}} \newcommand{\pmsele}[1]{\pmcin_{\small\Delta}\mathbf{`}#1} \newcommand{\pmSele}{\pmcin_{\Delta}} \newcommand{\pmself}[1]{F_{\small\Delta}\mathbf{`}#1} \newcommand{\pmSelf}{F_{\Delta}} \newcommand{\pmexc}{\text{Cls}^2 \mathop{\text{excl}}} \newcommand{\pmexcc}[1]{\text{Cl} \mathop{\text{excl}}\textbf{`}#1} \newcommand{\pmexcn}{\text{Cls} \mathop{\text{ex}}^2 \mathop{\text{excl}}} \newcommand{\pmselc}[2]{#1 \mathrel{\rotatebox[origin=c]{270}{$\boldsymbol{\mapsto}$}} #2} \newcommand{\pmmultr}{\mathop{\text{Rel}} \mathop{\text{Mult}}} \newcommand{\pmmultc}{\mathop{\text{Cls}^2} \mathop{\text{Mult}}} \newcommand{\pmmultax}{\mathop{\text{Mult}} \mathop{\text{ax}}} %Inductive relations \newcommand{\pmanc}[1]{#1_\pmast} \newcommand{\pmancc}[1]{\pmcnv{#1}_\pmast} \newcommand{\pmrst}[1]{#1_\text{st}} \newcommand{\pmrts}[1]{#1_\text{ts}} \newcommand{\pmpot}[1]{\text{Pot}\mathbf{`}#1} \newcommand{\pmpotid}[1]{\text{Potid}\mathbf{`}#1} \newcommand{\pmpo}[1]{#1_\text{po}} \newcommand{\pmB}{B} \newcommand{\pmmin}[1]{\text{min}_{#1}} \newcommand{\pmmax}[1]{\text{max}_{#1}} \newcommand{\pmMin}{\text{min}} \newcommand{\pmMax}{\text{max}} \newcommand{\pmgen}[1]{\text{gen}\mathbf{`}#1} \newcommand{\pmGen}{\text{gen}} \newcommand{\pmefr}[2]{#1\pmast#2} \newcommand{\pmipr}[2]{I_{#1}\textbf{`}#2} \newcommand{\pmjpr}[2]{J_{#1}\textbf{`}#2} \newcommand{\pmfr}[2]{\overset{\boldsymbol{\leftrightarrow}}{#1}\textbf{`}#2} %Cardinality \newcommand{\pmnc}[1]{\text{Nc}\textbf{`}#1} \newcommand{\pmNc}{\text{Nc}} \newcommand{\pmNC}{\text{NC}} \newcommand{\pmnoc}[1]{\text{N}_0\text{c}\textbf{`}#1} \newcommand{\pmNoc}{\text{N}_0\text{c}} \begin{document} \chapter*{\centering LIST OF DEFINITIONS} \onehalfspacing \begin{tabular}{l l} \text{ }$\pmast1\pmcdot01$. & $p \pmimp q$ \\ \text{ }$\pmast2\pmcdot33$. & $p \pmor q \pmor r$ \\ \text{ }$\pmast3\pmcdot01$. & $p \pmand q$ \\ \text{ }$\pmast3\pmcdot02$. & $p \pmimp q \pmimp r$ \\ \text{ }$\pmast4\pmcdot01$. & $p \pmiff q$ \\ \text{ }$\pmast4\pmcdot02$. & $p \pmiff q \pmiff r$ \\ \text{ }$\pmast4\pmcdot34$. & $p \pmand q \pmand r$ \\ \text{ }$\pmast9\pmcdot01$. & $\pmnot\{(\pmall{x})\pmdot \phi x\}$ \\ \text{ }$\pmast9\pmcdot011$. & $\pmnot(\pmall{x})\pmdot \phi x$ \\ \text{ }$\pmast9\pmcdot02$. & $\pmnot\{(\pmsome{x})\pmdot \phi x\}$ \\ \text{ }$\pmast9\pmcdot021$. & $\pmnot(\pmsome{x})\pmdot \phi x$ \\ \text{ }$\pmast9\pmcdot03$. & $(\pmall{x})\pmdot \phi x \pmdot \pmor \pmdot p$ \\ \text{ }$\pmast9\pmcdot04$. & $p \pmdot \pmor \pmdot (\pmall{x})\pmdot \phi x$ \\ \text{ }$\pmast9\pmcdot05$. & $(\pmsome{x})\pmdot \phi x \pmdot \pmor \pmdot p$ \\ \text{ }$\pmast9\pmcdot06$. & $p \pmdot \pmor \pmdot (\pmsome{x})\pmdot \phi x$ \\ \text{ }$\pmast9\pmcdot07$. & $(\pmall{x})\pmdot \phi x \pmdot \pmor \pmdot (\pmsome{x})\pmdot \phi x$ \\ \text{ }$\pmast9\pmcdot08$. & $(\pmsome{x})\pmdot \phi x \pmdot \pmor \pmdot (\pmall{x})\pmdot \phi x$ \\ $\pmast10\pmcdot01$. & $(\pmsome{x})\pmdot \phi x$ \\ $\pmast10\pmcdot02$. & $\phi x \pmimp_x \psi x$ \\ $\pmast10\pmcdot03$. & $\phi x \pmiff_x \psi x$ \\ $\pmast11\pmcdot01$. & $(\pmall{x,y})\pmdot \phi(x, y)$ \\ $\pmast11\pmcdot02$. & $(\pmall{x,y,z})\pmdot \phi(x, y, z)$ \\ $\pmast11\pmcdot03$. & $(\pmsome{x,y})\pmdot \phi(x, y)$ \\ $\pmast11\pmcdot04$. & $(\pmsome{x,y,z})\pmdot \phi(x, y, z)$ \\ $\pmast11\pmcdot05$. & $\phi(x, y) \pmimp_{x, y} \psi(x, y)$ \\ $\pmast11\pmcdot06$. & $\phi(x, y) \pmiff_{x, y} \psi(x, y)$ \\ $\pmast13\pmcdot01$. & $x = y$ \\ $\pmast13\pmcdot02$. & $x \pmnid y$ \end{tabular} \begin{tabular}{l l} $\pmast13\pmcdot03$. & $x = y = z$ \\ $\pmast14\pmcdot01$. & $[(\pmdsc{x})(\phi x)]\pmdot \psi(\pmdsc{x})(\phi x)$ \\ $\pmast14\pmcdot02$. & $\pmexists(\pmdsc{x})(\phi x)$ \\ $\pmast14\pmcdot03$. & $[(\pmdsc{x})(\phi x), (\pmdsc{x})(\psi x)]\pmdot f\{(\pmdsc{x})(\phi x),$\\ & \indent $(\pmdsc{x})(\psi x)\}$ \\ $\pmast14\pmcdot04$. & $[(\pmdsc{x})(\psi x)]\pmdot f\{(\pmdsc{x})(\phi x), (\pmdsc{x})(\psi x)\}$ \\ $\pmast20\pmcdot01$. & $f\{\pmcls{z}{\psi z}\}$ \\ $\pmast20\pmcdot02$. & $x \pmcin \pmpred{\phi}{\pmhat{z}}$ \\ $\pmast20\pmcdot03$. & $\pmsCl$ \\ $\pmast20\pmcdot04$. & $x, y \pmcin \alpha$ \\ $\pmast20\pmcdot05$. & $x, y, z \pmcin \alpha$ \\ $\pmast20\pmcdot06$. & $x \pmnot \pmcin \alpha$ \\ $\pmast20\pmcdot07$. & $(\pmall{\alpha})\pmdot f\alpha$ \\ $\pmast20\pmcdot071$. & $(\pmsome{\alpha})\pmdot f\alpha$ \\ $\pmast20\pmcdot072$. & $[(\pmdsc{\alpha})(\phi \alpha)]\pmdot f(\pmdsc{\alpha})(\phi \alpha)$ \\ $\pmast20\pmcdot08$. & $f\{\pmcls{\alpha}{\psi \alpha}\}$ \\ $\pmast20\pmcdot081$. & $\alpha \pmcin \pmpred{\psi}{\pmhat{z}}$ \\ $\pmast21\pmcdot01$. & $f\{\pmrel{x}{y}{\phi(x,y)}\}$ \\ $\pmast21\pmcdot02$. & $\pmrelep{a}{\pmpredd{\phi}{\pmhat{x}}{\pmhat{y}}}{b}$ \\ $\pmast21\pmcdot03$. & $\pmRel$ \\ $\pmast21\pmcdot07$. & $(\pmall{R})\pmdot fR$ \\ $\pmast21\pmcdot071$. & $(\pmsome{R})\pmdot fR$ \\ $\pmast21\pmcdot072$. & $[(\pmdsc{R})(\phi R)]\pmdot f(\pmdsc{R})(\phi R)$ \\ $\pmast21\pmcdot08$. & $f\{\pmrel{R}{S}{\psi(R, S}\}$ \\ $\pmast21\pmcdot081$. & $\pmrelep{P}{\pmpredd{\phi}{\pmhat{R}}{\pmhat{S}}}{Q}$ \\ $\pmast21\pmcdot082$. & $f\{\pmcls{R}{\psi R}\}$ \\ $\pmast21\pmcdot083$. & $R \pmcin \pmpred{\psi}{\pmhat{R}}$ \\ $\pmast22\pmcdot01$. & $\alpha \pmcin \beta$ \\ $\pmast22\pmcdot02$. & $\alpha \pmccap \beta$ \end{tabular} \begin{tabular}{l l} $\pmast22\pmcdot03$. & $\alpha \pmccup \beta$ \\ $\pmast22\pmcdot04$. & $\pmccmp{\alpha}$ \\ $\pmast22\pmcdot05$. & $\pmcmin{\alpha}{\beta}$ \\ $\pmast22\pmcdot53$. & $\alpha \pmccap \beta \pmccap \gamma$ \\ $\pmast22\pmcdot71$. & $\alpha \pmccup \beta \pmccup \gamma$ \\ $\pmast23\pmcdot01$. & $R \pmrinc S$ \\ $\pmast23\pmcdot02$. & $R \pmrcap S$ \\ $\pmast23\pmcdot03$. & $R \pmrcup S$ \\ $\pmast23\pmcdot04$. & $\pmrcmp{R}$ \\ $\pmast23\pmcdot05$. & $\pmrmin{R}{S}$ \\ $\pmast23\pmcdot53$. & $R \pmrcap S \pmrcap T$ \\ $\pmast23\pmcdot71$. & $R \pmrcup S \pmrcup T$ \\ $\pmast24\pmcdot01$. & $\pmcuni$ \\ $\pmast24\pmcdot02$. & $\pmcnull$ \\ $\pmast24\pmcdot03$. & $\pmcexists \alpha$ \\ $\pmast25\pmcdot01$. & $\pmruni$ \\ $\pmast25\pmcdot02$. & $\pmrnull$ \\ $\pmast25\pmcdot03$. & $\pmrexists R$ \\ $\pmast30\pmcdot01$. & $\pmdscf{R}{y}$ \\ $\pmast30\pmcdot02$. & $\pmdscf{R}{\pmdscf{S}{y}}$ \\ $\pmast31\pmcdot01$. & $\pmCnv$ \\ $\pmast31\pmcdot02$. & $\pmcnv{P}$ \\ $\pmast32\pmcdot01$. & $\pmRrf{R}$ \\ $\pmast32\pmcdot02$. & $\pmRrl{R}$ \\ $\pmast32\pmcdot03$. & $\pmsg$ \\ $\pmast32\pmcdot04$. & $\pmgs$ \\ $\pmast33\pmcdot01$. & $\pmDm$ \\ $\pmast33\pmcdot02$. & $\pmCdm$ \\ $\pmast33\pmcdot03$. & $\pmCmp$ \\ $\pmast33\pmcdot04$. & $\pmFld$ \\ $\pmast34\pmcdot01$. & $\pmrprd{R}{S}$ \\ $\pmast34\pmcdot02$. & $\pmrprdn{R}{2}$ \end{tabular} \begin{tabular}{l l} $\pmast34\pmcdot03$. & $\pmrprdn{R}{3}$ \\ $\pmast35\pmcdot01$. & $\pmrld{\alpha}{R}$ \\ $\pmast35\pmcdot02$. & $\pmrlcd{R}{\beta}$ \\ $\pmast35\pmcdot03$. & $\pmrlf{\alpha}{R}{\beta}$ \\ $\pmast35\pmcdot04$. & $\pmrl{\alpha}{\beta}$ \\ $\pmast35\pmcdot05$. & $\pmrl{\pmdscf{R}{x}}{\beta}$ \\ $\pmast35\pmcdot24$. & $\pmrld{\alpha}{\pmrprd{R}{S}}$ \\ $\pmast35\pmcdot25$. & $\pmrlF{P}{\alpha}$ \\ $\pmast36\pmcdot01$. & $\pmrlf{R}{\beta}$ \\ $\pmast37\pmcdot01$. & $\pmdscf{R}{\beta}$ \\ $\pmast37\pmcdot02$. & $\pmdscfR{R}$ \\ $\pmast37\pmcdot03$. & $\pmcnv{\pmdscfR{R}}$\\ $\pmast37\pmcdot04$. & $\pmdscfff{R}{\kappa}$ \\ $\pmast37\pmcdot05$. & $\pmdscfe{R}{\beta}$ \\ $\pmast38\pmcdot01$. & $x \pmop$ \\ $\pmast38\pmcdot02$. & $\pmop x$ \\ $\pmast38\pmcdot03$. & $\pmopc{\alpha}{y}$\\ $\pmast40\pmcdot01$. & $\pmccsum{\kappa}$ \\ $\pmast40\pmcdot02$. & $\pmccprd{\kappa}$ \\ $\pmast41\pmcdot01$. & $\pmcrsum{\lambda}$ \\ $\pmast41\pmcdot02$. & $\pmcrprd{\lambda}$ \\ $\pmast43\pmcdot01$. & $\pmrprdd{R}{S}$ \\ $\pmast50\pmcdot01$. & $\pmrid$ \\ $\pmast50\pmcdot02$. & $\pmrdiv$ \\ $\pmast51\pmcdot01$. & $\pmcUnit$ \\ $\pmast52\pmcdot01$. & $\pmcn{1}$ \\ $\pmast54\pmcdot01$. & $\pmcn{0}$ \\ $\pmast54\pmcdot02$. & $\pmcn{2}$ \\ $\pmast55\pmcdot01$. & $\pmoc{x}{y}$ \\ $\pmast55\pmcdot02$. & $\pmoc{\pmdscf{R}{x}}{y}$ \\ $\pmast56\pmcdot01$. & $\pmdn{2}$ \\ $\pmast56\pmcdot02$. & $\pmrn{2}$ \end{tabular} \begin{tabular}{l l} $\pmast56\pmcdot03$. & $\pmrn{0}$ \\ $\pmast60\pmcdot01$. & $\pmsCl$ \\ $\pmast60\pmcdot02$. & $\pmsCle$ \\ $\pmast60\pmcdot03$. & $\pmClsn{2}$ \\ $\pmast60\pmcdot04$. & $\pmClsn{3}$ \\ $\pmast61\pmcdot01$. & $\pmsRl$ \\ $\pmast61\pmcdot02$. & $\pmsRle$ \\ $\pmast61\pmcdot03$. & $\pmReln{2}$ \\ $\pmast61\pmcdot04$. & $\pmReln{3}$ \\ $\pmast62\pmcdot01$. & $\pmrin$ \\ $\pmast63\pmcdot01$. & $\pmrt{x}$ \\ $\pmast63\pmcdot011$. & $\pmrtc{1}{x}$ \\ $\pmast63\pmcdot02$. & $\pmrti{0}{\alpha}$ \\ $\pmast63\pmcdot03$. & $\pmrti{1}{\kappa}$ \\ $\pmast63\pmcdot04$. & $\pmrtc{2}{\kappa}$ \\ $\pmast63\pmcdot041$. & $\pmrtc{3}{\kappa}$ \\ $\pmast63\pmcdot05$. & $\pmrti{2}{\kappa}$ \\ $\pmast63\pmcdot051$. & $\pmrti{3}{\kappa}$ \\ $\pmast64\pmcdot01$. & $\pmrtri{00}{\alpha}$ \\ $\pmast64\pmcdot011$. & $\pmrtrc{11}{x}$ \\ $\pmast64\pmcdot012$. & $\pmrtc{12}{x}$ \\ $\pmast64\pmcdot013$. & $\pmrtc{21}{x}$ \\ $\pmast64\pmcdot014$. & $\pmrtc{22}{x}$ \\ $\pmast64\pmcdot02$. & $\pmrti{01}{\alpha}$ \\ $\pmast64\pmcdot021$. & $\pmrti{10}{\alpha}$ \\ $\pmast64\pmcdot022$. & $\pmrti{11}{\alpha}$ \\ $\pmast64\pmcdot03$. & $\pmrtric{0}{1}{\alpha}$ \\ $\pmast64\pmcdot031$. & $\pmrtric{1}{1}{\alpha}$ \\ $\pmast64\pmcdot04$. & $\pmrtrci{1}{0}{\alpha}$ \\ $\pmast64\pmcdot041$. & $\pmrtrci{1}{1}{\alpha}$ \\ $\pmast65\pmcdot01$. & $\pmrtdi{\alpha}{x}$ \\ $\pmast65\pmcdot02$. & $\pmrtdc{\alpha}{x}$ \end{tabular} \begin{tabular}{l l} $\pmast65\pmcdot03$. & $\pmrtdri{R}{x}$ \\ $\pmast65\pmcdot04$. & $\pmrtdrc{R}{x}$ \\ $\pmast65\pmcdot1$. & $\pmrtdri{R}{(x,y)}$ \\ $\pmast65\pmcdot11$. & $\pmrtdrc{R}{x_y}$\\ $\pmast65\pmcdot12$. & $\pmrtdrc{R}{x, y}$ \\ $\pmast70\pmcdot01$. & $\pmrdc{\alpha}{\beta}$ \\ $\pmast73\pmcdot01$. & $\alpha \pmsmbar \beta$ \\ $\pmast73\pmcdot02$. & $\pmsm$\\ $\pmast80\pmcdot01$. & $\pmSelp$ \\ $\pmast84\pmcdot01$. & $\pmexc$ \\ $\pmast84\pmcdot02$. & $\pmexcc{\gamma}$ \\ $\pmast84\pmcdot03$. & $\pmexcn$\\ $\pmast85\pmcdot5$. & $\pmselc{P}{y}$ \\ $\pmast88\pmcdot01$. & $\pmmultr$ \\ $\pmast88\pmcdot02$. & $\pmmultc$ \\ $\pmast88\pmcdot03$. & $\pmmultax$ \\ $\pmast90\pmcdot01$. & $\pmanc{R}$ \\ $\pmast90\pmcdot02$. & $\pmancc{R}$ \\ $\pmast91\pmcdot01$. & $\pmrst{R}$ \\ $\pmast91\pmcdot02$. & $\pmrts{R}$ \\ $\pmast91\pmcdot03$. & $\pmpot{R}$ \\ $\pmast91\pmcdot04$. & $\pmpotid{R}$ \\ $\pmast91\pmcdot05$. & $\pmpo{R}$ \\ $\pmast93\pmcdot01$. & $\pmB$ \\ $\pmast93\pmcdot02$. & $\pmmin{P}$ \\ $\pmast93\pmcdot021$. & $\pmmax{P}$ \\ $\pmast93\pmcdot03$. & $\pmgen{P}$ \\ $\pmast95\pmcdot01$. & $\pmefr{P}{Q}$ \\ $\pmast96\pmcdot01$. & $\pmipr{R}{x}$ \\ $\pmast96\pmcdot02$. & $\pmjpr{R}{x}$ \\ $\pmast97\pmcdot01$. & $\pmfr{R}{x}$ \\ $\pmast100\pmcdot01$. & $\pmNc$ \end{tabular} \end{document}