Theorem n3_47a : ∀ P Q R S : Prop, ((P → R) ∧ (Q → S)) → (P ∧ Q) → R ∧ S. Proof. intros P Q R S. specialize Simp3_26 with (P→R) (Q→S). intros Simp3_26a. specialize Fact3_45 with P R Q. intros Fact3_45a. Syll Fact3_45a Simp3_26a Sa. specialize n3_22 with R Q. intros n3_22a. specialize Syll2_05 with (P∧Q) (R∧Q) (Q∧R). intros Syll2_05a. (*Not cited by Jorgensen*) MP Syl2_05a n3_22a. Syll Sa Syll2_05a Sb. specialize Simp3_27 with (P→R) (Q→S). intros Simp3_27a. specialize Fact3_45 with Q S R. intros Fact3_45b. Syll Simp3_26a Fact3_45b Sc. specialize n3_22 with S R. intros n3_22b. specialize Syll2_05 with (Q∧R) (S∧R) (R∧S). intros Syll2_05b. (*Not cited by Jorgensen*) MP Syl2_05b n3_22b. Syll Sc Syll2_05a Sd. specialize n2_83 with ((P→R)∧(Q→S)) (P∧Q) (Q∧R) (R∧S). intros n2_83a. (*This with MP works, but it omits Conj3_03.*) MP n2_83a Sb. MP n2_83a Sd. apply n2_83a. Qed.