summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--PL.v281
1 files changed, 147 insertions, 134 deletions
diff --git a/PL.v b/PL.v
index 5ccae7b..6d356df 100644
--- a/PL.v
+++ b/PL.v
@@ -29,10 +29,10 @@ Axiom Perm1_4 : ∀ P Q : Prop,
P ∨ Q → Q ∨ P. (*Permutation*)
Axiom Assoc1_5 : ∀ P Q R : Prop,
- P ∨ (Q ∨ R) → Q ∨ (P ∨ R).
+ P ∨ (Q ∨ R) → Q ∨ (P ∨ R). (*Association*)
Axiom Sum1_6: ∀ P Q R : Prop,
- (Q → R) → (P ∨ Q → P ∨ R).
+ (Q → R) → (P ∨ Q → P ∨ R). (*Summation*)
(*These are all the propositional axioms of Principia.*)
@@ -52,7 +52,7 @@ Proof. intros P.
apply Impl1_01.
Qed.
-Theorem n2_02 : ∀ P Q : Prop,
+Theorem Simp2_02 : ∀ P Q : Prop,
Q → (P → Q).
Proof. intros P Q.
specialize Add1_3 with (~P) Q.
@@ -378,8 +378,8 @@ Proof. intros P Q R.
apply Syll2_06b.
Qed.
-Axiom n2_33 : ∀ P Q R : Prop,
- (P∨Q∨R)=((P∨Q)∨R).
+Axiom Abb2_33 : ∀ P Q R : Prop,
+ (P ∨ Q ∨ R) = ((P ∨ Q) ∨ R).
(*This definition makes the default left association.
The default in Coq is right association, so this will
need to be applied to underwrite some inferences.*)
@@ -405,10 +405,10 @@ Proof. intros P Q R.
intros Perm1_4a.
specialize Syll2_06 with (Q∨P) (P∨Q) (P∨R).
intros Syll2_06a.
- MP Syll2_05a Perm1_4a.
+ MP Syll2_06a Perm1_4a.
specialize Sum1_6 with P Q R.
intros Sum1_6a.
- Syll Sum1_6a Syll2_05a S.
+ Syll Sum1_6a Syll2_06a S.
apply S.
Qed.
@@ -924,11 +924,11 @@ Proof. intros P Q R.
Syll Ha Comm2_04a Hb.
specialize n2_54 with P (Q→R).
intros n2_54a.
- specialize n2_02 with (~P) ((P∨Q→R)→(Q→R)).
- intros n2_02a. (*Not cited.
- Greg's suggestion per the BRS list on June 25, 2017.*)
- MP Syll2_06a n2_02a.
- MP Hb n2_02a.
+ specialize Simp2_02 with (~P) ((P∨Q→R)→(Q→R)).
+ intros Simp2_02a. (*Not cited*)
+ (*Greg's suggestion per the BRS list on June 25, 2017.*)
+ MP Syll2_06a Simp2_02a.
+ MP Hb Simp2_02a.
Syll Hb n2_54a Hc.
apply Hc.
Qed.
@@ -958,7 +958,7 @@ Axiom Prod3_01 : ∀ P Q : Prop,
(P ∧ Q) = ~(~P ∨ ~Q).
Axiom Abb3_02 : ∀ P Q R : Prop,
- (P→Q→R)=(P→Q)∧(Q→R).
+ (P → Q → R) = (P → Q) ∧ (Q → R).
Theorem Conj3_03 : ∀ P Q : Prop, P → Q → (P∧Q).
Proof. intros P Q.
@@ -973,8 +973,14 @@ Proof. intros P Q.
apply Impl1_01.
apply Prod3_01.
Qed.
-(*3.03 is a derived rule permitting an inference from the
- theoremhood of P and that of Q to that of P and Q.*)
+(*3.03 is permits the inference from the theoremhood
+ of P and that of Q to the theoremhood of P and Q. So:*)
+
+Ltac Conj H1 H2 :=
+ match goal with
+ | [ H1 : ?P, H2 : ?Q |- _ ] =>
+ assert (P ∧ Q)
+end.
Theorem n3_1 : ∀ P Q : Prop,
(P ∧ Q) → ~(~P ∨ ~Q).
@@ -1088,16 +1094,16 @@ Qed.
Theorem Simp3_26 : ∀ P Q : Prop,
(P ∧ Q) → P.
Proof. intros P Q.
- specialize n2_02 with Q P.
- intros n2_02a.
- replace (P→(Q→P)) with (~P∨(Q→P)) in n2_02a.
- replace (Q→P) with (~Q∨P) in n2_02a.
+ specialize Simp2_02 with Q P.
+ intros Simp2_02a.
+ replace (P→(Q→P)) with (~P∨(Q→P)) in Simp2_02a.
+ replace (Q→P) with (~Q∨P) in Simp2_02a.
specialize n2_31 with (~P) (~Q) P.
intros n2_31a.
- MP n2_31a n2_02a.
+ MP n2_31a Simp2_02a.
specialize n2_53 with (~P∨~Q) P.
intros n2_53a.
- MP n2_53a n2_02a.
+ MP n2_53a Simp2_02a.
replace (~(~P∨~Q)) with (P∧Q) in n2_53a.
apply n2_53a.
apply Prod3_01.
@@ -1391,11 +1397,13 @@ Import No2.
Import No3.
Axiom Equiv4_01 : ∀ P Q : Prop,
- (P↔Q)=((P→Q) ∧ (Q→P)).
- (*n4_02 defines P iff Q iff R as P iff Q AND Q iff R.*)
+ (P ↔ Q) = ((P → Q) ∧ (Q → P)).
+
+Axiom Abb4_02 : ∀ P Q R : Prop,
+ (P ↔ Q ↔ R) = ((P ↔ Q) ∧ (Q ↔ R)).
Axiom EqBi : ∀ P Q : Prop,
- (P=Q) ↔ (P↔Q).
+ (P = Q) ↔ (P ↔ Q).
Ltac Equiv H1 :=
match goal with
@@ -1403,12 +1411,6 @@ Ltac Equiv H1 :=
replace ((P→Q) ∧ (Q→P)) with (P↔Q) in H1
end.
-Ltac Conj H1 H2 :=
- match goal with
- | [ H1 : ?P, H2 : ?Q |- _ ] =>
- assert (P ∧ Q)
-end.
-
Theorem Trans4_1 : ∀ P Q : Prop,
(P → Q) ↔ (~Q → ~P).
Proof. intros P Q.
@@ -1812,7 +1814,7 @@ Theorem n4_33 : ∀ P Q R : Prop,
apply n2_32a.
Qed.
- Axiom n4_34 : ∀ P Q R : Prop,
+Axiom Abb4_34 : ∀ P Q R : Prop,
P ∧ Q ∧ R = ((P ∧ Q) ∧ R).
(*This axiom ensures left association of brackets.
Coq's default is right association. But Principia
@@ -2628,8 +2630,8 @@ Theorem n4_72 : ∀ P Q : Prop,
Theorem n4_73 : ∀ P Q : Prop,
Q → (P ↔ (P ∧ Q)).
Proof. intros P Q.
- specialize n2_02 with P Q.
- intros n2_02a.
+ specialize Simp2_02 with P Q.
+ intros Simp2_02a.
specialize n4_71 with P Q.
intros n4_71a.
replace ((P → Q) ↔ (P ↔ P ∧ Q)) with
@@ -2638,7 +2640,7 @@ Theorem n4_73 : ∀ P Q : Prop,
((P → Q) → P ↔ P ∧ Q) (P ↔ P ∧ Q → P → Q).
intros Simp3_26a.
MP Simp3_26a n4_71a.
- Syll n2_02a Simp3_26a Sa.
+ Syll Simp2_02a Simp3_26a Sa.
apply Sa.
apply Equiv4_01.
Qed.
@@ -2683,25 +2685,61 @@ Theorem n4_77 : ∀ P Q R : Prop,
Proof. intros P Q R.
specialize n3_44 with P Q R.
intros n3_44a.
+ specialize n2_08 with (Q ∨ R → P).
+ intros n2_08a. (*Not cited*)
+ replace ((Q ∨ R → P) → (Q ∨ R → P)) with
+ ((Q ∨ R → P) → (~(Q ∨ R) ∨ P)) in n2_08a.
+ replace (~(Q ∨ R)) with (~Q ∧ ~R) in n2_08a.
+ replace (~Q ∧ ~R ∨ P) with
+ ((~Q ∨ P) ∧ (~R ∨ P)) in n2_08a.
+ replace (~Q ∨ P) with (Q → P) in n2_08a.
+ replace (~R ∨ P) with (R → P) in n2_08a.
+ Conj n3_44a n2_08a.
split.
apply n3_44a.
- split.
- specialize n2_2 with Q R.
- intros n2_2a.
- Syll n2_2a H Sa.
- apply Sa.
- specialize Add1_3 with Q R.
- intros Add1_3a.
- Syll Add1_3a H Sb.
- apply Sb.
+ apply n2_08a.
+ Equiv H.
+ apply H.
+ apply Equiv4_01.
+ apply Impl1_01.
+ apply Impl1_01.
+ specialize n4_41 with P (~Q) (~R).
+ intros n4_41a. (*Not cited*)
+ replace (P ∨ ~Q) with
+ (~Q ∨ P) in n4_41a.
+ replace (P ∨ ~R) with
+ (~R ∨ P) in n4_41a.
+ replace (P ∨ ~Q ∧ ~R) with (~Q ∧ ~R ∨ P) in n4_41a.
+ replace (~Q ∧ ~R ∨ P ↔ (~Q ∨ P) ∧ (~R ∨ P)) with
+ ((~Q ∨ P) ∧ (~R ∨ P) ↔ ~Q ∧ ~R ∨ P) in n4_41a.
+ apply EqBi.
+ apply n4_41a.
+ apply EqBi.
+ specialize n4_21
+ with ((~Q ∨ P) ∧ (~R ∨ P)) (~Q ∧ ~R ∨ P).
+ intros n4_21a. (*Not cited*)
+ apply n4_21a.
+ specialize n4_31 with (~Q ∧ ~R) P.
+ intros n4_31a. (*Not cited*)
+ apply EqBi.
+ apply n4_31a.
+ specialize n4_31 with (~R) P.
+ intros n4_31b. (*Not cited*)
+ apply EqBi.
+ apply n4_31b.
+ specialize n4_31 with (~Q) P.
+ intros n4_31c. (*Not cited*)
+ apply EqBi.
+ apply n4_31c. (*Not cited*)
+ apply EqBi.
+ specialize n4_56 with Q R.
+ intros n4_56a. (*Not cited*)
+ apply n4_56a.
+ replace (~(Q ∨ R) ∨ P) with (Q∨R→P).
+ reflexivity.
+ apply Impl1_01. (*Not cited*)
Qed.
- (*Note that we used the split tactic on a conditional,
- effectively introducing an assumption for conditional
- proof. It remains to prove that (AvB)→C and A→(AvB)
- together imply A→C, and similarly that (AvB)→C and
- B→(AvB) together imply B→C. This can be proved by
- Syll, but we need a rule of replacement in the context
- of ((AvB)→C)→(A→C)/\(B→C).*)
+ (*Proof sketch cites Add1_3 + n2_2.*)
Theorem n4_78 : ∀ P Q R : Prop,
((P → Q) ∨ (P → R)) ↔ (P → (Q ∨ R)).
@@ -2745,10 +2783,10 @@ Theorem n4_78 : ∀ P Q R : Prop,
apply Impl1_01.
apply EqBi.
apply n4_37b.
- apply n2_33.
+ apply Abb2_33.
replace ((~P ∨ ~P) ∨ Q) with (~P ∨ ~P ∨ Q).
reflexivity.
- apply n2_33.
+ apply Abb2_33.
replace ((~P ∨ ~P ∨ Q) ∨ R) with
(~P ∨ (~P ∨ Q) ∨ R).
reflexivity.
@@ -2758,7 +2796,7 @@ Theorem n4_78 : ∀ P Q R : Prop,
apply n4_37a.
replace ((Q ∨ ~P) ∨ R) with (Q ∨ ~P ∨ R).
reflexivity.
- apply n2_33.
+ apply Abb2_33.
apply EqBi.
apply n4_33a.
replace (~P ∨ Q) with (P→Q).
@@ -2814,12 +2852,12 @@ Theorem n4_8 : ∀ P : Prop,
Proof. intros P.
specialize Abs2_01 with P.
intros Abs2_01a.
- specialize n2_02 with P (~P).
- intros n2_02a.
- Conj Abs2_01a n2_02a.
+ specialize Simp2_02 with P (~P).
+ intros Simp2_02a.
+ Conj Abs2_01a Simp2_02a.
split.
apply Abs2_01a.
- apply n2_02a.
+ apply Simp2_02a.
Equiv H.
apply H.
apply Equiv4_01.
@@ -2830,12 +2868,12 @@ Theorem n4_81 : ∀ P : Prop,
Proof. intros P.
specialize n2_18 with P.
intros n2_18a.
- specialize n2_02 with (~P) P.
- intros n2_02a.
- Conj n2_18a n2_02a.
+ specialize Simp2_02 with (~P) P.
+ intros Simp2_02a.
+ Conj n2_18a Simp2_02a.
split.
apply n2_18a.
- apply n2_02a.
+ apply Simp2_02a.
Equiv H.
apply H.
apply Equiv4_01.
@@ -2879,18 +2917,18 @@ Theorem n4_83 : ∀ P Q : Prop,
specialize Imp3_31 with (P→Q) (~P→Q) (Q).
intros Imp3_31a.
MP Imp3_31a n2_61a.
- specialize n2_02 with P Q.
- intros n2_02a.
- specialize n2_02 with (~P) Q.
- intros n2_02b.
- Conj n2_02a n2_02b.
+ specialize Simp2_02 with P Q.
+ intros Simp2_02a.
+ specialize Simp2_02 with (~P) Q.
+ intros Simp2_02b.
+ Conj Simp2_02a Simp2_02b.
split.
- apply n2_02a.
- apply n2_02b.
+ apply Simp2_02a.
+ apply Simp2_02b.
specialize Comp3_43 with Q (P→Q) (~P→Q).
intros Comp3_43a.
MP Comp3_43a H.
- clear n2_61a. clear n2_02a. clear n2_02b.
+ clear n2_61a. clear Simp2_02a. clear Simp2_02b.
clear H.
Conj Imp3_31a Comp3_43a.
split.
@@ -3103,7 +3141,7 @@ Theorem n5_1 : ∀ P Q : Prop,
apply n3_4a.
apply Sa.
specialize n4_76 with (P∧Q) (P→Q) (Q→P).
- intros n4_76a.
+ intros n4_76a. (*Not cited*)
replace ((P∧Q→P→Q)∧(P∧Q→Q→P)) with
(P ∧ Q → (P → Q) ∧ (Q → P)) in H.
replace ((P→Q)∧(Q→P)) with (P↔Q) in H.
@@ -3115,8 +3153,6 @@ Theorem n5_1 : ∀ P Q : Prop,
apply EqBi.
apply n4_76a.
Qed.
- (*Note that n4_76 is not cited, but it is used to
- move from ((a→b) ∧ (a→c)) to (a→ (b ∧ c)).*)
Theorem n5_11 : ∀ P Q : Prop,
(P → Q) ∨ (~P → Q).
@@ -3150,23 +3186,21 @@ Theorem n5_13 : ∀ P Q : Prop,
replace (~~(P→Q)) with (P→Q) in n2_521a.
apply n2_521a.
apply EqBi.
- apply n4_13.
+ apply n4_13. (*Not cited*)
replace (~~(P → Q) ∨ (Q → P)) with
(~(P → Q) → Q → P).
reflexivity.
apply Impl1_01.
Qed.
- (*n4_13 is not cited, but is needed for
- double negation elimination.*)
Theorem n5_14 : ∀ P Q R : Prop,
(P → Q) ∨ (Q → R).
Proof. intros P Q R.
- specialize n2_02 with P Q.
- intros n2_02a.
+ specialize Simp2_02 with P Q.
+ intros Simp2_02a.
specialize Trans2_16 with Q (P→Q).
intros Trans2_16a.
- MP Trans2_16a n2_02a.
+ MP Trans2_16a Simp2_02a.
specialize n2_21 with Q R.
intros n2_21a.
Syll Trans2_16a n2_21a Sa.
@@ -3521,8 +3555,7 @@ Theorem n5_23 : ∀ P Q : Prop,
apply n5_22a.
Qed.
(*The proof sketch in Principia offers n4_36,
- but we found it far simpler to simply use the
- commutativity of conjunction (n4_3).*)
+ but we found it far simpler to to use n4_3.*)
Theorem n5_24 : ∀ P Q : Prop,
~((P ∧ Q) ∨ (~P ∧ ~Q)) ↔ ((P ∧ ~Q) ∨ (Q ∧ ~P)).
@@ -3547,9 +3580,8 @@ Theorem n5_24 : ∀ P Q : Prop,
(P↔Q) (P ∧ Q ∨ ~P ∧ ~Q).
intros Trans4_11a.
apply EqBi.
- apply Trans4_11a.
+ apply Trans4_11a. (*Not cited*)
Qed.
- (*Note that Trans4_11 is not cited.*)
Theorem n5_25 : ∀ P Q : Prop,
(P ∨ Q) ↔ ((P → Q) → Q).
@@ -3574,7 +3606,7 @@ Theorem n5_3 : ∀ P Q R : Prop,
intros Comp3_43a.
specialize Exp3_3 with
(P ∧ Q → P) (P ∧ Q →R) (P ∧ Q → P ∧ R).
- intros Exp3_3a.
+ intros Exp3_3a. (*Not cited*)
MP Exp3_3a Comp3_43a.
specialize Simp3_26 with P Q.
intros Simp3_26a.
@@ -3594,32 +3626,27 @@ Theorem n5_3 : ∀ P Q R : Prop,
apply H.
apply Equiv4_01.
Qed.
- (*Note that Exp is not cited in the proof sketch,
- but seems necessary.*)
Theorem n5_31 : ∀ P Q R : Prop,
(R ∧ (P → Q)) → (P → (Q ∧ R)).
Proof. intros P Q R.
specialize Comp3_43 with P Q R.
intros Comp3_43a.
- specialize n2_02 with P R.
- intros n2_02a.
- replace ((P→Q) ∧ (P→R)) with
- ((P→R) ∧ (P→Q)) in Comp3_43a.
+ specialize Simp2_02 with P R.
+ intros Simp2_02a.
specialize Exp3_3 with
(P→R) (P→Q) (P→(Q ∧ R)).
- intros Exp3_3a.
- MP Exp3_3a Comp3_43a.
- Syll n2_02a Exp3_3a Sa.
+ intros Exp3_3a. (*Not cited*)
+ specialize n3_22 with (P → R) (P → Q). (*Not cited*)
+ intros n3_22a.
+ Syll n3_22a Comp3_43a Sa.
+ MP Exp3_3a Sa.
+ Syll Simp2_02a Exp3_3a Sb.
specialize Imp3_31 with R (P→Q) (P→(Q ∧ R)).
- intros Imp3_31a.
- MP Imp3_31a Sa.
+ intros Imp3_31a. (*Not cited*)
+ MP Imp3_31a Sb.
apply Imp3_31a.
- apply EqBi.
- apply n4_3. (*with (P→R)∧(P→Q)).*)
Qed.
- (*Note that Exp, Imp, and n4_3 are not cited
- in the proof sketch.*)
Theorem n5_32 : ∀ P Q R : Prop,
(P → (Q ↔ R)) ↔ ((P ∧ Q) ↔ (P ∧ R)).
@@ -3693,7 +3720,7 @@ Theorem n5_33 : ∀ P Q R : Prop,
specialize Simp3_26 with
((P→(Q→R)↔(P∧Q→R))→(P∧(Q→R)↔P∧(P∧Q→R)))
((P∧(Q→R)↔P∧(P∧Q→R)→(P→(Q→R)↔(P∧Q→R)))).
- (*Not cited.*)
+ (*Not cited*)
intros Simp3_26a.
MP Simp3_26a n5_32a.
specialize n4_73 with Q P.
@@ -3705,7 +3732,7 @@ Theorem n5_33 : ∀ P Q R : Prop,
MP Simp3_26a Sa.
apply Simp3_26a.
apply EqBi.
- apply n4_3. (*Not cited.*)
+ apply n4_3. (*Not cited*)
apply Equiv4_01.
Qed.
@@ -3745,21 +3772,20 @@ Theorem n5_36 : ∀ P Q : Prop,
apply EqBi.
apply n5_32a.
Qed.
- (*The proof sketch cites Ass3_35 and n4_38.
- Since I couldn't decipher how that proof would go,
- I used a different one invoking other theorems.*)
+ (*The proof sketch cites Ass3_35 and n4_38, but
+ the sketch was indecipherable.*)
Theorem n5_4 : ∀ P Q : Prop,
(P → (P → Q)) ↔ (P → Q).
Proof. intros P Q.
specialize n2_43 with P Q.
intros n2_43a.
- specialize n2_02 with (P) (P→Q).
- intros n2_02a.
- Conj n2_43a n2_02a.
+ specialize Simp2_02 with (P) (P→Q).
+ intros Simp2_02a.
+ Conj n2_43a Simp2_02a.
split.
apply n2_43a.
- apply n2_02a.
+ apply Simp2_02a.
Equiv H.
apply H.
apply Equiv4_01.
@@ -3819,13 +3845,6 @@ Theorem n5_42 : ∀ P Q R : Prop,
apply H.
apply Equiv4_01.
Qed.
- (*The law n4_87 is really unwieldy to use in Coq.
- It is actually easier to introduce the subformula
- of the importation-exportation law required and
- apply that biconditional. It may be worthwhile
- in later parts of PM to prove a derived rule that
- allows us to manipulate a biconditional's
- subformulas that are biconditionals.*)
Theorem n5_44 : ∀ P Q R : Prop,
(P→Q) → ((P → R) ↔ (P → (Q ∧ R))).
@@ -3839,33 +3858,33 @@ Theorem n5_44 : ∀ P Q R : Prop,
specialize Simp3_26 with
((P→Q)∧(P→R)→(P→Q∧R))
((P→Q∧R)→(P→Q)∧(P→R)).
- intros Simp3_26a. (*Not cited.*)
+ intros Simp3_26a. (*Not cited*)
MP Simp3_26a n4_76a.
specialize Exp3_3 with (P→Q) (P→R) (P→Q∧R).
- intros Exp3_3a. (*Not cited.*)
+ intros Exp3_3a. (*Not cited*)
MP Exp3_3a Simp3_26a.
specialize Simp3_27 with
((P→Q)∧(P→R)→(P→Q∧R))
((P→Q∧R)→(P→Q)∧(P→R)).
- intros Simp3_27a. (*Not cited.*)
+ intros Simp3_27a. (*Not cited*)
MP Simp3_27a n4_76a.
specialize Simp3_26 with (P→R) (P→Q).
intros Simp3_26b.
replace ((P→Q)∧(P→R)) with
((P→R)∧(P→Q)) in Simp3_27a.
Syll Simp3_27a Simp3_26b Sa.
- specialize n2_02 with (P→Q) ((P→Q∧R)→P→R).
- intros n2_02a. (*Not cited.*)
- MP n2_02a Sa.
+ specialize Simp2_02 with (P→Q) ((P→Q∧R)→P→R).
+ intros Simp2_02a. (*Not cited*)
+ MP Simp2_02a Sa.
clear Sa. clear Simp3_26b. clear Simp3_26a.
clear n4_76a. clear Simp3_27a.
- Conj Exp3_3a n2_02a.
+ Conj Exp3_3a Simp2_02a.
split.
apply Exp3_3a.
- apply n2_02a.
+ apply Simp2_02a.
specialize n4_76 with (P→Q)
((P→R)→(P→(Q∧R))) ((P→(Q∧R))→(P→R)).
- intros n4_76b.
+ intros n4_76b. (*Second use not indicated*)
replace
(((P→Q)→(P→R)→P→Q∧R)∧((P→Q)→(P→Q∧R)→P→R))
with
@@ -3880,12 +3899,9 @@ Theorem n5_44 : ∀ P Q R : Prop,
apply EqBi.
apply n4_76b.
apply EqBi.
- apply n4_3. (*Not cited.*)
+ apply n4_3. (*Not cited*)
apply Equiv4_01.
Qed.
- (*This proof does not use either n5_3 or n5_32.
- It instead uses four propositions not cited in
- the proof sketch, plus a second use of n4_76.*)
Theorem n5_5 : ∀ P Q : Prop,
P → ((P → Q) ↔ Q).
@@ -3895,15 +3911,15 @@ Theorem n5_5 : ∀ P Q : Prop,
specialize Exp3_3 with P (P→Q) Q.
intros Exp3_3a.
MP Exp3_3a Ass3_35a.
- specialize n2_02 with P Q.
- intros n2_02a.
+ specialize Simp2_02 with P Q.
+ intros Simp2_02a.
specialize Exp3_3 with P Q (P→Q).
intros Exp3_3b.
specialize n3_42 with P Q (P→Q). (*Not cited*)
intros n3_42a.
- MP n3_42a n2_02a.
+ MP n3_42a Simp2_02a.
MP Exp3_3b n3_42a.
- clear n3_42a. clear n2_02a. clear Ass3_35a.
+ clear n3_42a. clear Simp2_02a. clear Ass3_35a.
Conj Exp3_3a Exp3_3b.
split.
apply Exp3_3a.
@@ -4134,9 +4150,6 @@ Theorem n5_6 : ∀ P Q R : Prop,
apply Equiv4_01.
apply Equiv4_01.
Qed.
- (*A fair amount of manipulation was needed
- here to pull the relevant biconditional out
- of the biconditional of biconditionals.*)
Theorem n5_61 : ∀ P Q : Prop,
((P ∨ Q) ∧ ~Q) ↔ (P ∧ ~Q).