summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--PL.v903
1 files changed, 607 insertions, 296 deletions
diff --git a/PL.v b/PL.v
index c9b2376..5ccae7b 100644
--- a/PL.v
+++ b/PL.v
@@ -5,13 +5,22 @@ Import Unicode.Utf8.
(*We first give the axioms of Principia
for the propositional calculus in *1.*)
+Axiom Impl1_01 : ∀ P Q : Prop,
+ (P → Q) = (~P ∨ Q).
+ (*This is a definition in Principia: there → is a
+ defined sign and ∨, ~ are primitive ones. So
+ we will use this axiom to switch between
+ disjunction and implication.*)
+
Axiom MP1_1 : ∀ P Q : Prop,
(P → Q) → P → Q. (*Modus ponens*)
- (**1.11 ommitted: it is MP for propositions containing variables. Likewise, ommitted the well-formedness rules 1.7, 1.71, 1.72*)
+ (**1.11 ommitted: it is MP for propositions
+ containing variables. Likewise, ommitted
+ the well-formedness rules 1.7, 1.71, 1.72*)
Axiom Taut1_2 : ∀ P : Prop,
- P ∨ P→ P. (*Tautology*)
+ P ∨ P → P. (*Tautology*)
Axiom Add1_3 : ∀ P Q : Prop,
Q → P ∨ Q. (*Addition*)
@@ -23,10 +32,9 @@ Axiom Assoc1_5 : ∀ P Q R : Prop,
P ∨ (Q ∨ R) → Q ∨ (P ∨ R).
Axiom Sum1_6: ∀ P Q R : Prop,
- (Q → R) → (P ∨ Q → P ∨ R). (*These are all the propositional axioms of Principia Mathematica.*)
-
-Axiom Impl1_01 : ∀ P Q : Prop,
- (P → Q) = (~P ∨ Q). (*This is a definition in Principia: there → is a defined sign and ∨, ~ are primitive ones. So we will use this axiom to switch between disjunction and implication.*)
+ (Q → R) → (P ∨ Q → P ∨ R).
+
+ (*These are all the propositional axioms of Principia.*)
End No1.
@@ -97,7 +105,8 @@ Proof. intros P Q R.
intros Comm2_04.
specialize Syll2_05 with P Q R.
intros Syll2_05.
- specialize MP1_1 with ((Q → R) → (P → Q) → P → R) ((P → Q) → ((Q → R) → (P → R))).
+ specialize MP1_1 with ((Q → R) → (P → Q) → P → R)
+ ((P → Q) → ((Q → R) → (P → R))).
intros MP1_1.
apply MP1_1.
apply Comm2_04.
@@ -370,7 +379,10 @@ Proof. intros P Q R.
Qed.
Axiom n2_33 : ∀ P Q R : Prop,
- (P∨Q∨R)=((P∨Q)∨R). (*This definition makes the default left association. The default in Coq is right association, so this will need to be applied to underwrite some inferences.*)
+ (P∨Q∨R)=((P∨Q)∨R).
+ (*This definition makes the default left association.
+ The default in Coq is right association, so this will
+ need to be applied to underwrite some inferences.*)
Theorem n2_36 : ∀ P Q R : Prop,
(Q → R) → ((P ∨ Q) → (R ∨ P)).
@@ -771,10 +783,10 @@ Proof. intros P Q R.
specialize Assoc1_5 with P Q R.
intros Assoc1_5a.
specialize n2_31 with Q P R.
- intros n2_31a. (*not cited explicitly!*)
+ intros n2_31a. (*not cited*)
Syll Assoc1_5a n2_31a Sa.
specialize n2_32 with P Q R.
- intros n2_32a. (*not cited explicitly!*)
+ intros n2_32a. (*not cited*)
Syll n2_32a Sa Sb.
specialize Syll2_06 with ((P∨Q)∨R) ((Q∨P)∨R) (P∨R).
intros Syll2_06a.
@@ -793,12 +805,12 @@ Proof. intros P Q R.
Syll n2_53a n2_74a Sa.
specialize n2_31 with P (~Q) R.
intros n2_31a.
- specialize Syll2_06 with (P∨(~Q)∨R)((P∨(~Q))∨R) (P∨R).
+ specialize Syll2_06 with (P∨(~Q)∨R)((P∨(~Q))∨R) (P∨R).
intros Syll2_06a.
MP Syll2_06a n2_31a.
Syll Sa Syll2_06a Sb.
specialize Perm1_4 with P Q.
- intros Perm1_4a. (*not cited!*)
+ intros Perm1_4a. (*not cited*)
Syll Perm1_4a Sb Sc.
replace (~Q∨R) with (Q→R) in Sc.
apply Sc.
@@ -913,7 +925,8 @@ Proof. intros P Q R.
specialize n2_54 with P (Q→R).
intros n2_54a.
specialize n2_02 with (~P) ((P∨Q→R)→(Q→R)).
- intros n2_02a. (*Not mentioned! Greg's suggestion per the BRS list in June 25, 2017.*)
+ intros n2_02a. (*Not cited.
+ Greg's suggestion per the BRS list on June 25, 2017.*)
MP Syll2_06a n2_02a.
MP Hb n2_02a.
Syll Hb n2_54a Hc.
@@ -947,7 +960,7 @@ Axiom Prod3_01 : ∀ P Q : Prop,
Axiom Abb3_02 : ∀ P Q R : Prop,
(P→Q→R)=(P→Q)∧(Q→R).
-Theorem Conj3_03 : ∀ P Q : Prop, P → Q → (P∧Q). (*3.03 is a derived rule permitting an inference from the theoremhood of P and that of Q to that of P and Q.*)
+Theorem Conj3_03 : ∀ P Q : Prop, P → Q → (P∧Q).
Proof. intros P Q.
specialize n2_11 with (~P∨~Q). intros n2_11a.
specialize n2_32 with (~P) (~Q) (~(~P ∨ ~Q)). intros n2_32a.
@@ -960,6 +973,8 @@ Proof. intros P Q.
apply Impl1_01.
apply Prod3_01.
Qed.
+(*3.03 is a derived rule permitting an inference from the
+ theoremhood of P and that of Q to that of P and Q.*)
Theorem n3_1 : ∀ P Q : Prop,
(P ∧ Q) → ~(~P ∨ ~Q).
@@ -1376,7 +1391,8 @@ Import No2.
Import No3.
Axiom Equiv4_01 : ∀ P Q : Prop,
- (P↔Q)=((P→Q) ∧ (Q→P)). (*n4_02 defines P iff Q iff R as P iff Q AND Q iff R.*)
+ (P↔Q)=((P→Q) ∧ (Q→P)).
+ (*n4_02 defines P iff Q iff R as P iff Q AND Q iff R.*)
Axiom EqBi : ∀ P Q : Prop,
(P=Q) ↔ (P↔Q).
@@ -1428,7 +1444,8 @@ Proof. intros P Q.
Syll n3_47a n3_22a Sa.
replace ((P → Q) ∧ (Q → P)) with (P↔Q) in Sa.
replace ((~P → ~Q) ∧ (~Q → ~P)) with (~P↔~Q) in Sa.
- clear Trans2_16a. clear H. clear Trans2_16b. clear n3_22a. clear n3_47a.
+ clear Trans2_16a. clear H. clear Trans2_16b.
+ clear n3_22a. clear n3_47a.
specialize Trans2_17 with Q P.
intros Trans2_17a.
specialize Trans2_17 with P Q.
@@ -1443,7 +1460,8 @@ Proof. intros P Q.
specialize n3_22 with (Q→P) (P→Q).
intros n3_22a.
Syll n3_47a n3_22a Sb.
- clear Trans2_17a. clear Trans2_17b. clear H. clear n3_47a. clear n3_22a.
+ clear Trans2_17a. clear Trans2_17b. clear H.
+ clear n3_47a. clear n3_22a.
replace ((P → Q) ∧ (Q → P)) with (P↔Q) in Sb.
replace ((~P → ~Q) ∧ (~Q → ~P)) with (~P↔~Q) in Sb.
Conj Sa Sb.
@@ -1484,7 +1502,8 @@ Theorem n4_12 : ∀ P Q : Prop,
specialize n3_47 with (Q→~P) (~P→Q) (P→~Q) (~Q→P).
intros n3_47b.
MP n3_47b H0.
- clear n2_03a. clear Trans2_15a. clear H. clear n2_03b. clear Trans2_15b. clear H0.
+ clear n2_03a. clear Trans2_15a. clear H. clear n2_03b.
+ clear Trans2_15b. clear H0.
replace ((P → ~Q) ∧ (~Q → P)) with (P↔~Q) in n3_47a.
replace ((Q → ~P) ∧ (~P → Q)) with (Q↔~P) in n3_47a.
replace ((P → ~Q) ∧ (~Q → P)) with (P↔~Q) in n3_47b.
@@ -1557,11 +1576,13 @@ Theorem n4_15 : ∀ P Q R : Prop,
intros n4_13a.
replace (~~R) with R in n4_14a.
rewrite Equiv4_01 in n4_14a.
- specialize Simp3_26 with ((Q ∧ P → ~R) → Q ∧ R → ~P) ((Q ∧ R → ~P) → Q ∧ P → ~R).
+ specialize Simp3_26 with ((Q ∧ P → ~R) → Q ∧ R → ~P)
+ ((Q ∧ R → ~P) → Q ∧ P → ~R).
intros Simp3_26a.
MP Simp3_26a n4_14a.
Syll Syll2_06a Simp3_26a Sa.
- specialize Simp3_27 with ((Q ∧ P → ~R) → Q ∧ R → ~P) ((Q ∧ R → ~P) → Q ∧ P → ~R).
+ specialize Simp3_27 with ((Q ∧ P → ~R) → Q ∧ R → ~P)
+ ((Q ∧ R → ~P) → Q ∧ P → ~R).
intros Simp3_27a.
MP Simp3_27a n4_14a.
specialize n3_22 with P Q.
@@ -1649,7 +1670,10 @@ Proof. intros P Q R.
specialize n2_83 with ((P↔Q)∧(Q↔R)) R Q P.
intros n2_83b.
MP n2_83b Sc. MP n2_83b Sd.
- clear Sd. clear Sb. clear Sc. clear Sa. clear Simp3_26a. clear Simp3_26b. clear Simp3_26c. clear Simp3_26d. clear Simp3_27a. clear Simp3_27b. clear Simp3_27c. clear Simp3_27d.
+ clear Sd. clear Sb. clear Sc. clear Sa. clear Simp3_26a.
+ clear Simp3_26b. clear Simp3_26c. clear Simp3_26d.
+ clear Simp3_27a. clear Simp3_27b. clear Simp3_27c.
+ clear Simp3_27d.
Conj n2_83a n2_83b.
split.
apply n2_83a.
@@ -1741,11 +1765,16 @@ Qed.
replace (Q ∧ R→~P) with (P→~(Q ∧ R)) in n4_15a.
specialize Trans4_11 with (P ∧ Q → ~R) (P → ~(Q ∧ R)).
intros Trans4_11a.
- replace ((P ∧ Q → ~R) ↔ (P → ~(Q ∧ R))) with (~(P ∧ Q → ~R) ↔ ~(P → ~(Q ∧ R))) in n4_15a.
- replace (P ∧ Q → ~R) with (~(P ∧ Q ) ∨ ~R) in n4_15a.
- replace (P → ~(Q ∧ R)) with (~P ∨ ~(Q ∧ R)) in n4_15a.
- replace (~(~(P ∧ Q) ∨ ~R)) with ((P ∧ Q) ∧ R) in n4_15a.
- replace (~(~P ∨ ~(Q ∧ R))) with (P ∧ (Q ∧ R )) in n4_15a.
+ replace ((P ∧ Q → ~R) ↔ (P → ~(Q ∧ R))) with
+ (~(P ∧ Q → ~R) ↔ ~(P → ~(Q ∧ R))) in n4_15a.
+ replace (P ∧ Q → ~R) with
+ (~(P ∧ Q ) ∨ ~R) in n4_15a.
+ replace (P → ~(Q ∧ R)) with
+ (~P ∨ ~(Q ∧ R)) in n4_15a.
+ replace (~(~(P ∧ Q) ∨ ~R)) with
+ ((P ∧ Q) ∧ R) in n4_15a.
+ replace (~(~P ∨ ~(Q ∧ R))) with
+ (P ∧ (Q ∧ R )) in n4_15a.
apply n4_15a.
apply Prod3_01.
apply Prod3_01.
@@ -1753,7 +1782,8 @@ Qed.
reflexivity.
rewrite Impl1_01.
reflexivity.
- replace (~(P ∧ Q → ~R) ↔ ~(P → ~(Q ∧ R))) with ((P ∧ Q → ~R) ↔ (P → ~(Q ∧ R))).
+ replace (~(P ∧ Q → ~R) ↔ ~(P → ~(Q ∧ R))) with
+ ((P ∧ Q → ~R) ↔ (P → ~(Q ∧ R))).
reflexivity.
apply EqBi.
apply Trans4_11a.
@@ -1761,7 +1791,15 @@ Qed.
apply Trans4_1a.
apply EqBi.
apply n4_13.
- Qed. (*Note that the actual proof uses n4_12, but that transposition involves transforming a biconditional into a conditional. This way of doing it - using Trans4_1 to transpose a conditional and then applying n4_13 to double negate - is easier without a derived rule for replacing a biconditional with one of its equivalent implications.*)
+ Qed.
+ (*Note that the actual proof uses n4_12, but
+ that transposition involves transforming a
+ biconditional into a conditional. This way
+ of doing it - using Trans4_1 to transpose a
+ conditional and then applying n4_13 to
+ double negate - is easier without a derived
+ rule for replacing a biconditional with one
+ of its equivalent implications.*)
Theorem n4_33 : ∀ P Q R : Prop,
(P ∨ (Q ∨ R)) ↔ ((P ∨ Q) ∨ R).
@@ -1775,7 +1813,13 @@ Theorem n4_33 : ∀ P Q R : Prop,
Qed.
Axiom n4_34 : ∀ P Q R : Prop,
- P ∧ Q ∧ R = ((P ∧ Q) ∧ R). (*This axiom ensures left association of brackets. Coq's default is right association. But Principia proves associativity of logical product as n4_32. So in effect, this axiom gives us a derived rule that allows us to shift between Coq's and Principia's default rules for brackets of logical products.*)
+ P ∧ Q ∧ R = ((P ∧ Q) ∧ R).
+ (*This axiom ensures left association of brackets.
+ Coq's default is right association. But Principia
+ proves associativity of logical product as n4_32.
+ So in effect, this axiom gives us a derived rule that
+ allows us to shift between Coq's and Principia's
+ default rules for brackets of logical products.*)
Theorem n4_36 : ∀ P Q R : Prop,
(P ↔ Q) → ((P ∧ R) ↔ (Q ∧ R)).
@@ -1788,11 +1832,13 @@ Proof. intros P Q R.
split.
apply Fact3_45a.
apply Fact3_45b.
- specialize n3_47 with (P→Q) (Q→P) (P ∧ R → Q ∧ R) (Q ∧ R → P ∧ R).
+ specialize n3_47 with (P→Q) (Q→P)
+ (P ∧ R → Q ∧ R) (Q ∧ R → P ∧ R).
intros n3_47a.
MP n3_47 H.
replace ((P → Q) ∧ (Q → P)) with (P↔Q) in n3_47a.
- replace ((P ∧ R → Q ∧ R) ∧ (Q ∧ R → P ∧ R)) with (P ∧ R ↔ Q ∧ R) in n3_47a.
+ replace ((P ∧ R → Q ∧ R) ∧ (Q ∧ R → P ∧ R)) with
+ (P ∧ R ↔ Q ∧ R) in n3_47a.
apply n3_47a.
apply Equiv4_01.
apply Equiv4_01.
@@ -1809,11 +1855,13 @@ Proof. intros P Q R.
split.
apply Sum1_6a.
apply Sum1_6b.
- specialize n3_47 with (P → Q) (Q → P) (R ∨ P → R ∨ Q) (R ∨ Q → R ∨ P).
+ specialize n3_47 with (P → Q) (Q → P)
+ (R ∨ P → R ∨ Q) (R ∨ Q → R ∨ P).
intros n3_47a.
MP n3_47 H.
replace ((P → Q) ∧ (Q → P)) with (P↔Q) in n3_47a.
- replace ((R ∨ P → R ∨ Q) ∧ (R ∨ Q → R ∨ P)) with (R ∨ P ↔ R ∨ Q) in n3_47a.
+ replace ((R ∨ P → R ∨ Q) ∧ (R ∨ Q → R ∨ P)) with
+ (R ∨ P ↔ R ∨ Q) in n3_47a.
replace (R ∨ P) with (P ∨ R) in n3_47a.
replace (R ∨ Q) with (Q ∨ R) in n3_47a.
apply n3_47a.
@@ -1836,15 +1884,18 @@ Proof. intros P Q R S.
split.
apply n3_47a.
apply n3_47b.
- specialize n3_47 with ((P→R) ∧ (Q→S)) ((R→P) ∧ (S→Q)) (P ∧ Q → R ∧ S) (R ∧ S → P ∧ Q).
+ specialize n3_47 with ((P→R) ∧ (Q→S))
+ ((R→P) ∧ (S→Q)) (P ∧ Q → R ∧ S) (R ∧ S → P ∧ Q).
intros n3_47c.
MP n3_47c H.
specialize n4_32 with (P→R) (Q→S) ((R→P) ∧ (S → Q)).
intros n4_32a.
- replace (((P → R) ∧ (Q → S)) ∧ (R → P) ∧ (S → Q)) with ((P → R) ∧ (Q → S) ∧ (R → P) ∧ (S → Q)) in n3_47c.
+ replace (((P → R) ∧ (Q → S)) ∧ (R → P) ∧ (S → Q)) with
+ ((P → R) ∧ (Q → S) ∧ (R → P) ∧ (S → Q)) in n3_47c.
specialize n4_32 with (Q→S) (R→P) (S → Q).
intros n4_32b.
- replace ((Q → S) ∧ (R → P) ∧ (S → Q)) with (((Q → S) ∧ (R → P)) ∧ (S → Q)) in n3_47c.
+ replace ((Q → S) ∧ (R → P) ∧ (S → Q)) with
+ (((Q → S) ∧ (R → P)) ∧ (S → Q)) in n3_47c.
specialize n3_22 with (Q→S) (R→P).
intros n3_22a.
specialize n3_22 with (R→P) (Q→S).
@@ -1854,23 +1905,28 @@ Proof. intros P Q R S.
apply n3_22a.
apply n3_22b.
Equiv H0.
- replace ((Q → S) ∧ (R → P)) with ((R → P) ∧ (Q → S)) in n3_47c.
+ replace ((Q → S) ∧ (R → P)) with
+ ((R → P) ∧ (Q → S)) in n3_47c.
specialize n4_32 with (R → P) (Q → S) (S → Q).
intros n4_32c.
- replace (((R → P) ∧ (Q → S)) ∧ (S → Q)) with ((R → P) ∧ (Q → S) ∧ (S → Q)) in n3_47c.
+ replace (((R → P) ∧ (Q → S)) ∧ (S → Q)) with
+ ((R → P) ∧ (Q → S) ∧ (S → Q)) in n3_47c.
specialize n4_32 with (P→R) (R → P) ((Q → S)∧(S → Q)).
intros n4_32d.
- replace ((P → R) ∧ (R → P) ∧ (Q → S) ∧ (S → Q)) with (((P → R) ∧ (R → P)) ∧ (Q → S) ∧ (S → Q)) in n3_47c.
+ replace ((P → R) ∧ (R → P) ∧ (Q → S) ∧ (S → Q)) with
+ (((P → R) ∧ (R → P)) ∧ (Q → S) ∧ (S → Q)) in n3_47c.
replace ((P→R) ∧ (R → P)) with (P↔R) in n3_47c.
replace ((Q → S) ∧ (S → Q)) with (Q↔S) in n3_47c.
- replace ((P ∧ Q → R ∧ S) ∧ (R ∧ S → P ∧ Q)) with ((P ∧ Q) ↔ (R ∧ S)) in n3_47c.
+ replace ((P ∧ Q → R ∧ S) ∧ (R ∧ S → P ∧ Q)) with
+ ((P ∧ Q) ↔ (R ∧ S)) in n3_47c.
apply n3_47c.
apply Equiv4_01.
apply Equiv4_01.
apply Equiv4_01.
apply EqBi.
apply n4_32d.
- replace ((R → P) ∧ (Q → S) ∧ (S → Q)) with (((R → P) ∧ (Q → S)) ∧ (S → Q)).
+ replace ((R → P) ∧ (Q → S) ∧ (S → Q)) with
+ (((R → P) ∧ (Q → S)) ∧ (S → Q)).
reflexivity.
apply EqBi.
apply n4_32c.
@@ -1881,7 +1937,8 @@ Proof. intros P Q R S.
apply Equiv4_01.
apply EqBi.
apply n4_32b.
- replace ((P → R) ∧ (Q → S) ∧ (R → P) ∧ (S → Q)) with (((P → R) ∧ (Q → S)) ∧ (R → P) ∧ (S → Q)).
+ replace ((P → R) ∧ (Q → S) ∧ (R → P) ∧ (S → Q)) with
+ (((P → R) ∧ (Q → S)) ∧ (R → P) ∧ (S → Q)).
reflexivity.
apply EqBi.
apply n4_32a.
@@ -1898,16 +1955,20 @@ Proof. intros P Q R S.
split.
apply n3_48a.
apply n3_48b.
- specialize n3_47 with ((P → R) ∧ (Q → S)) ((R → P) ∧ (S → Q)) (P ∨ Q → R ∨ S) (R ∨ S → P ∨ Q).
+ specialize n3_47 with ((P → R) ∧ (Q → S))
+ ((R → P) ∧ (S → Q)) (P ∨ Q → R ∨ S) (R ∨ S → P ∨ Q).
intros n3_47a.
MP n3_47a H.
- replace ((P ∨ Q → R ∨ S) ∧ (R ∨ S → P ∨ Q)) with ((P ∨ Q) ↔ (R ∨ S)) in n3_47a.
+ replace ((P ∨ Q → R ∨ S) ∧ (R ∨ S → P ∨ Q)) with
+ ((P ∨ Q) ↔ (R ∨ S)) in n3_47a.
specialize n4_32 with ((P → R) ∧ (Q → S)) (R → P) (S → Q).
intros n4_32a.
- replace (((P → R) ∧ (Q → S)) ∧ (R → P) ∧ (S → Q)) with ((((P → R) ∧ (Q → S)) ∧ (R → P)) ∧ (S → Q)) in n3_47a.
+ replace (((P → R) ∧ (Q → S)) ∧ (R → P) ∧ (S → Q)) with
+ ((((P → R) ∧ (Q → S)) ∧ (R → P)) ∧ (S → Q)) in n3_47a.
specialize n4_32 with (P → R) (Q → S) (R → P).
intros n4_32b.
- replace (((P → R) ∧ (Q → S)) ∧ (R → P)) with ((P → R) ∧ (Q → S) ∧ (R → P)) in n3_47a.
+ replace (((P → R) ∧ (Q → S)) ∧ (R → P)) with
+ ((P → R) ∧ (Q → S) ∧ (R → P)) in n3_47a.
specialize n3_22 with (Q → S) (R → P).
intros n3_22a.
specialize n3_22 with (R → P) (Q → S).
@@ -1917,18 +1978,22 @@ Proof. intros P Q R S.
apply n3_22a.
apply n3_22b.
Equiv H0.
- replace ((Q → S) ∧ (R → P)) with ((R → P) ∧ (Q → S)) in n3_47a.
+ replace ((Q → S) ∧ (R → P)) with
+ ((R → P) ∧ (Q → S)) in n3_47a.
specialize n4_32 with (P → R) (R → P) (Q → S).
intros n4_32c.
- replace ((P → R) ∧ (R → P) ∧ (Q → S)) with (((P → R) ∧ (R → P)) ∧ (Q → S)) in n3_47a.
+ replace ((P → R) ∧ (R → P) ∧ (Q → S)) with
+ (((P → R) ∧ (R → P)) ∧ (Q → S)) in n3_47a.
replace ((P → R) ∧ (R → P)) with (P↔R) in n3_47a.
specialize n4_32 with (P↔R) (Q→S) (S→Q).
intros n4_32d.
- replace (((P ↔ R) ∧ (Q → S)) ∧ (S → Q)) with ((P ↔ R) ∧ (Q → S) ∧ (S → Q)) in n3_47a.
+ replace (((P ↔ R) ∧ (Q → S)) ∧ (S → Q)) with
+ ((P ↔ R) ∧ (Q → S) ∧ (S → Q)) in n3_47a.
replace ((Q → S) ∧ (S → Q)) with (Q ↔ S) in n3_47a.
apply n3_47a.
apply Equiv4_01.
- replace ((P ↔ R) ∧ (Q → S) ∧ (S → Q)) with (((P ↔ R) ∧ (Q → S)) ∧ (S → Q)).
+ replace ((P ↔ R) ∧ (Q → S) ∧ (S → Q)) with
+ (((P ↔ R) ∧ (Q → S)) ∧ (S → Q)).
reflexivity.
apply EqBi.
apply n4_32d.
@@ -1940,7 +2005,8 @@ Proof. intros P Q R S.
apply EqBi.
apply H0.
apply Equiv4_01.
- replace ((P → R) ∧ (Q → S) ∧ (R → P)) with (((P → R) ∧ (Q → S)) ∧ (R → P)).
+ replace ((P → R) ∧ (Q → S) ∧ (R → P)) with
+ (((P → R) ∧ (Q → S)) ∧ (R → P)).
reflexivity.
apply EqBi.
apply n4_32b.
@@ -1999,14 +2065,15 @@ Proof. intros P Q R.
specialize Comp3_43 with (P ∧ Q ∨ P ∧ R) P (Q∨R).
intros Comp3_43b.
MP Comp3_43b H1.
- clear H1. clear H0. clear n3_44a. clear n3_48b. clear Simp3_26a. clear Simp3_26b.
+ clear H1. clear H0. clear n3_44a. clear n3_48b.
+ clear Simp3_26a. clear Simp3_26b.
Conj Imp3_31a Comp3_43b.
split.
-apply Imp3_31a.
-apply Comp3_43b.
-Equiv H0.
-apply H0.
-apply Equiv4_01.
+ apply Imp3_31a.
+ apply Comp3_43b.
+ Equiv H0.
+ apply H0.
+ apply Equiv4_01.
Qed.
Theorem n4_41 : ∀ P Q R : Prop,
@@ -2108,7 +2175,8 @@ Proof. intros P Q.
intros Imp3_31a.
MP Imp3_31a n2_65a.
Syll n3_47a Imp3_31a Sa.
- clear n2_2a. clear n2_2b. clear H. clear n2_53a. clear n2_53b. clear H0. clear n2_65a. clear n3_47a. clear Imp3_31a.
+ clear n2_2a. clear n2_2b. clear H. clear n2_53a. clear n2_53b.
+ clear H0. clear n2_65a. clear n3_47a. clear Imp3_31a.
Conj Comp3_43a Sa.
split.
apply Comp3_43a.
@@ -2182,9 +2250,12 @@ Theorem n4_51 : ∀ P Q : Prop,
intros n4_5a.
specialize n4_12 with (P ∧ Q) (~P ∨ ~Q).
intros n4_12a.
- replace ((P ∧ Q ↔ ~(~P ∨ ~Q)) ↔ (~P ∨ ~Q ↔ ~(P ∧ Q))) with ((P ∧ Q ↔ ~(~P ∨ ~Q)) = (~P ∨ ~Q ↔ ~(P ∧ Q))) in n4_12a.
- replace (P ∧ Q ↔ ~(~P ∨ ~Q)) with (~P ∨ ~Q ↔ ~(P ∧ Q)) in n4_5a.
- replace (~P ∨ ~Q ↔ ~(P ∧ Q)) with (~(P ∧ Q) ↔ (~P ∨ ~Q)) in n4_5a.
+ replace ((P∧Q ↔ ~(~P∨~Q))↔(~P∨~Q ↔ ~(P∧Q))) with
+ ((P∧Q ↔ ~(~P∨~Q)) = (~P∨~Q ↔ ~(P∧Q))) in n4_12a.
+ replace (P ∧ Q ↔ ~(~P ∨ ~Q)) with
+ (~P ∨ ~Q ↔ ~(P ∧ Q)) in n4_5a.
+ replace (~P ∨ ~Q ↔ ~(P ∧ Q)) with
+ (~(P ∧ Q) ↔ (~P ∨ ~Q)) in n4_5a.
apply n4_5a.
specialize n4_21 with (~(P ∧ Q)) (~P ∨ ~Q).
intros n4_21a.
@@ -2214,9 +2285,12 @@ Theorem n4_53 : ∀ P Q : Prop,
intros n4_52a.
specialize n4_12 with ( P ∧ ~Q) ((~P ∨ Q)).
intros n4_12a.
- replace ((P ∧ ~Q ↔ ~(~P ∨ Q)) ↔ (~P ∨ Q ↔ ~(P ∧ ~Q))) with ((P ∧ ~Q ↔ ~(~P ∨ Q)) = (~P ∨ Q ↔ ~(P ∧ ~Q))) in n4_12a.
- replace (P ∧ ~Q ↔ ~(~P ∨ Q)) with (~P ∨ Q ↔ ~(P ∧ ~Q)) in n4_52a.
- replace (~P ∨ Q ↔ ~(P ∧ ~Q)) with (~(P ∧ ~Q) ↔ (~P ∨ Q)) in n4_52a.
+ replace ((P∧~Q ↔ ~(~P∨Q))↔(~P∨Q ↔ ~(P∧~Q))) with
+ ((P∧~Q ↔ ~(~P∨Q)) = (~P∨Q ↔ ~(P∧~Q))) in n4_12a.
+ replace (P ∧ ~Q ↔ ~(~P ∨ Q)) with
+ (~P ∨ Q ↔ ~(P ∧ ~Q)) in n4_52a.
+ replace (~P ∨ Q ↔ ~(P ∧ ~Q)) with
+ (~(P ∧ ~Q) ↔ (~P ∨ Q)) in n4_52a.
apply n4_52a.
specialize n4_21 with (~(P ∧ ~Q)) (~P ∨ Q).
intros n4_21a.
@@ -2246,14 +2320,17 @@ Theorem n4_55 : ∀ P Q : Prop,
intros n4_54a.
specialize n4_12 with (~P ∧ Q) (P ∨ ~Q).
intros n4_12a.
- replace (~P ∧ Q ↔ ~(P ∨ ~Q)) with (P ∨ ~Q ↔ ~(~P ∧ Q)) in n4_54a.
- replace (P ∨ ~Q ↔ ~(~P ∧ Q)) with (~(~P ∧ Q) ↔ (P ∨ ~Q)) in n4_54a.
+ replace (~P ∧ Q ↔ ~(P ∨ ~Q)) with
+ (P ∨ ~Q ↔ ~(~P ∧ Q)) in n4_54a.
+ replace (P ∨ ~Q ↔ ~(~P ∧ Q)) with
+ (~(~P ∧ Q) ↔ (P ∨ ~Q)) in n4_54a.
apply n4_54a.
specialize n4_21 with (~(~P ∧ Q)) (P ∨ ~Q).
intros n4_21a.
apply EqBi.
apply n4_21a.
- replace ((~P ∧ Q ↔ ~(P ∨ ~Q)) ↔ (P ∨ ~Q ↔ ~(~P ∧ Q))) with ((~P ∧ Q ↔ ~(P ∨ ~Q)) = (P ∨ ~Q ↔ ~(~P ∧ Q))) in n4_12a.
+ replace ((~P ∧ Q ↔ ~(P ∨ ~Q)) ↔ (P ∨ ~Q ↔ ~(~P ∧ Q))) with
+ ((~P ∧ Q ↔ ~(P ∨ ~Q)) = (P ∨ ~Q ↔ ~(~P ∧ Q))) in n4_12a.
rewrite n4_12a.
reflexivity.
apply EqBi.
@@ -2278,18 +2355,22 @@ Theorem n4_57 : ∀ P Q : Prop,
intros n4_56a.
specialize n4_12 with (~P ∧ ~Q) (P ∨ Q).
intros n4_12a.
- replace (~P ∧ ~Q ↔ ~(P ∨ Q)) with (P ∨ Q ↔ ~(~P ∧ ~Q)) in n4_56a.
- replace (P ∨ Q ↔ ~(~P ∧ ~Q)) with (~(~P ∧ ~Q) ↔ P ∨ Q) in n4_56a.
+ replace (~P ∧ ~Q ↔ ~(P ∨ Q)) with
+ (P ∨ Q ↔ ~(~P ∧ ~Q)) in n4_56a.
+ replace (P ∨ Q ↔ ~(~P ∧ ~Q)) with
+ (~(~P ∧ ~Q) ↔ P ∨ Q) in n4_56a.
apply n4_56a.
specialize n4_21 with (~(~P ∧ ~Q)) (P ∨ Q).
intros n4_21a.
apply EqBi.
apply n4_21a.
- replace ((~P ∧ ~Q ↔ ~(P ∨ Q)) ↔ (P ∨ Q ↔ ~(~P ∧ ~Q))) with ((P ∨ Q ↔ ~(~P ∧ ~Q)) ↔ (~P ∧ ~Q ↔ ~(P ∨ Q))) in n4_12a.
+ replace ((~P∧~Q↔~(P∨Q))↔(P∨Q↔~(~P∧~Q))) with
+ ((P∨Q↔~(~P∧~Q))↔(~P∧~Q↔~(P∨Q))) in n4_12a.
apply EqBi.
apply n4_12a.
apply EqBi.
- specialize n4_21 with (P ∨ Q ↔ ~(~P ∧ ~Q)) (~P ∧ ~Q ↔ ~(P ∨ Q)).
+ specialize n4_21 with
+ (P ∨ Q ↔ ~(~P ∧ ~Q)) (~P ∧ ~Q ↔ ~(P ∨ Q)).
intros n4_21b.
apply n4_21b.
Qed.
@@ -2312,12 +2393,14 @@ Theorem n4_61 : ∀ P Q : Prop,
intros Trans4_11a.
specialize n4_52 with P Q.
intros n4_52a.
- replace ((P → Q) ↔ ~P ∨ Q) with (~(P → Q) ↔ ~(~P ∨ Q)) in n4_6a.
+ replace ((P → Q) ↔ ~P ∨ Q) with
+ (~(P → Q) ↔ ~(~P ∨ Q)) in n4_6a.
replace (~(~P ∨ Q)) with (P ∧ ~Q) in n4_6a.
apply n4_6a.
apply EqBi.
apply n4_52a.
- replace (((P → Q) ↔ ~P ∨ Q) ↔ (~(P → Q) ↔ ~(~P ∨ Q))) with ((~(P → Q) ↔ ~(~P ∨ Q)) ↔ ((P → Q) ↔ ~P ∨ Q)) in Trans4_11a.
+ replace (((P→Q)↔~P∨Q)↔(~(P→Q)↔~(~P∨Q))) with
+ ((~(P→Q)↔~(~P∨Q))↔((P→Q)↔~P∨Q)) in Trans4_11a.
apply EqBi.
apply Trans4_11a.
apply EqBi.
@@ -2342,12 +2425,15 @@ Theorem n4_63 : ∀ P Q : Prop,
specialize n4_5 with P Q.
intros n4_5a.
replace (~(~P ∨ ~Q)) with (P ∧ Q) in Trans4_11a.
- replace ((P → ~Q) ↔ ~P ∨ ~Q) with ((~(P → ~Q) ↔ P ∧ Q)) in n4_62a.
+ replace ((P → ~Q) ↔ ~P ∨ ~Q) with
+ ((~(P → ~Q) ↔ P ∧ Q)) in n4_62a.
apply n4_62a.
- replace (((P → ~Q) ↔ ~P ∨ ~Q) ↔ (~(P → ~Q) ↔ P ∧ Q)) with ((~(P → ~Q) ↔ P ∧ Q) ↔ ((P → ~Q) ↔ ~P ∨ ~Q)) in Trans4_11a.
+ replace (((P→~Q)↔~P∨~Q)↔(~(P→~Q)↔P∧Q)) with
+ ((~(P→~Q)↔P∧Q)↔((P→~Q)↔~P∨~Q)) in Trans4_11a.
apply EqBi.
apply Trans4_11a.
- specialize n4_21 with (~(P → ~Q) ↔ P ∧ Q) ((P → ~Q) ↔ ~P ∨ ~Q).
+ specialize n4_21 with
+ (~(P → ~Q) ↔ P ∧ Q) ((P → ~Q) ↔ ~P ∨ ~Q).
intros n4_21a.
apply EqBi.
apply n4_21a.
@@ -2380,8 +2466,10 @@ Theorem n4_65 : ∀ P Q : Prop,
intros Trans4_11a.
specialize n4_56 with P Q.
intros n4_56a.
- replace (((~P → Q) ↔ P ∨ Q) ↔ (~(~P → Q) ↔ ~(P ∨ Q))) with ((~(~P → Q) ↔ ~(P ∨ Q)) ↔ ((~P → Q) ↔ P ∨ Q)) in Trans4_11a.
- replace ((~P → Q) ↔ P ∨ Q) with (~(~P → Q) ↔ ~(P ∨ Q)) in n4_64a.
+ replace (((~P→Q)↔P∨Q)↔(~(~P→Q)↔~(P∨Q))) with
+ ((~(~P→Q)↔~(P∨Q))↔((~P→Q)↔P∨Q)) in Trans4_11a.
+ replace ((~P → Q) ↔ P ∨ Q) with
+ (~(~P → Q) ↔ ~(P ∨ Q)) in n4_64a.
replace (~(P ∨ Q)) with (~P ∧ ~Q) in n4_64a.
apply n4_64a.
apply EqBi.
@@ -2407,14 +2495,16 @@ Theorem n4_67 : ∀ P Q : Prop,
intros n4_66a.
specialize Trans4_11 with (~P → ~Q) (P ∨ ~Q).
intros Trans4_11a.
- replace ((~P → ~Q) ↔ P ∨ ~Q) with (~(~P → ~Q) ↔ ~(P ∨ ~Q)) in n4_66a.
+ replace ((~P → ~Q) ↔ P ∨ ~Q) with
+ (~(~P → ~Q) ↔ ~(P ∨ ~Q)) in n4_66a.
specialize n4_54 with P Q.
intros n4_54a.
replace (~(P ∨ ~Q)) with (~P ∧ Q) in n4_66a.
apply n4_66a.
apply EqBi.
apply n4_54a.
- replace (((~P → ~Q) ↔ P ∨ ~Q) ↔ (~(~P → ~Q) ↔ ~(P ∨ ~Q))) with ((~(~P → ~Q) ↔ ~(P ∨ ~Q)) ↔ ((~P → ~Q) ↔ P ∨ ~Q)) in Trans4_11a.
+ replace (((~P→~Q)↔P∨~Q)↔(~(~P→~Q)↔~(P∨~Q))) with
+ ((~(~P→~Q)↔~(P∨~Q))↔((~P→~Q)↔P∨~Q)) in Trans4_11a.
apply EqBi.
apply Trans4_11a.
apply EqBi.
@@ -2426,7 +2516,8 @@ Theorem n4_7 : ∀ P Q : Prop,
Proof. intros P Q.
specialize Comp3_43 with P P Q.
intros Comp3_43a.
- specialize Exp3_3 with (P → P) (P → Q) (P → P ∧ Q).
+ specialize Exp3_3 with
+ (P → P) (P → Q) (P → P ∧ Q).
intros Exp3_3a.
MP Exp3_3a Comp3_43a.
specialize n2_08 with P.
@@ -2454,13 +2545,15 @@ Theorem n4_71 : ∀ P Q : Prop,
intros n4_7a.
specialize n3_21 with (P→(P∧Q)) ((P∧Q)→P).
intros n3_21a.
- replace ((P → P ∧ Q) ∧ (P ∧ Q → P)) with (P↔(P ∧ Q)) in n3_21a.
+ replace ((P → P ∧ Q) ∧ (P ∧ Q → P)) with
+ (P↔(P ∧ Q)) in n3_21a.
specialize Simp3_26 with P Q.
intros Simp3_26a.
MP n3_21a Simp3_26a.
specialize Simp3_26 with (P→(P∧Q)) ((P∧Q)→P).
intros Simp3_26b.
- replace ((P → P ∧ Q) ∧ (P ∧ Q → P)) with (P↔(P ∧ Q)) in Simp3_26b. clear Simp3_26a.
+ replace ((P → P ∧ Q) ∧ (P ∧ Q → P)) with
+ (P↔(P ∧ Q)) in Simp3_26b. clear Simp3_26a.
Conj n3_21a Simp3_26b.
split.
apply n3_21a.
@@ -2491,7 +2584,8 @@ Theorem n4_72 : ∀ P Q : Prop,
split.
apply Trans4_1a.
apply n4_71a.
- specialize n4_22 with (P→Q) (~Q→~P) (~Q↔~Q ∧ ~ P).
+ specialize n4_22 with
+ (P→Q) (~Q→~P) (~Q↔~Q ∧ ~P).
intros n4_22a.
MP n4_22a H.
specialize n4_21 with (~Q) (~Q ∧ ~P).
@@ -2500,16 +2594,18 @@ Theorem n4_72 : ∀ P Q : Prop,
split.
apply n4_22a.
apply n4_21a.
- specialize n4_22 with (P→Q) (~Q ↔ ~Q ∧ ~P) (~Q ∧ ~P ↔ ~Q).
+ specialize n4_22 with
+ (P→Q) (~Q ↔ ~Q ∧ ~P) (~Q ∧ ~P ↔ ~Q).
intros n4_22b.
MP n4_22b H0.
- specialize n4_12 with (~Q ∧ ~ P) (Q).
+ specialize n4_12 with (~Q ∧ ~P) (Q).
intros n4_12a.
Conj n4_22b n4_12a.
split.
apply n4_22b.
apply n4_12a.
- specialize n4_22 with (P → Q) ((~Q ∧ ~ P) ↔ ~Q) (Q ↔ ~(~Q ∧ ~P)).
+ specialize n4_22 with
+ (P → Q) ((~Q ∧ ~P) ↔ ~Q) (Q ↔ ~(~Q ∧ ~P)).
intros n4_22c.
MP n4_22b H0.
specialize n4_57 with Q P.
@@ -2522,7 +2618,8 @@ Theorem n4_72 : ∀ P Q : Prop,
apply EqBi.
apply n4_31a.
apply EqBi.
- replace (~(~Q ∧ ~P) ↔ Q ∨ P) with (Q ∨ P ↔~(~Q ∧ ~P)) in n4_57a.
+ replace (~(~Q ∧ ~P) ↔ Q ∨ P) with
+ (Q ∨ P ↔~(~Q ∧ ~P)) in n4_57a.
apply n4_57a.
apply EqBi.
apply n4_21.
@@ -2535,8 +2632,10 @@ Theorem n4_73 : ∀ P Q : Prop,
intros n2_02a.
specialize n4_71 with P Q.
intros n4_71a.
- replace ((P → Q) ↔ (P ↔ P ∧ Q)) with (((P → Q) → (P ↔ P ∧ Q)) ∧ ((P ↔ P ∧ Q)→(P→Q))) in n4_71a.
- specialize Simp3_26 with ((P → Q) → P ↔ P ∧ Q) (P ↔ P ∧ Q → P → Q).
+ replace ((P → Q) ↔ (P ↔ P ∧ Q)) with
+ (((P→Q)→(P↔P∧Q))∧((P↔P∧Q)→(P→Q))) in n4_71a.
+ specialize Simp3_26 with
+ ((P → Q) → P ↔ P ∧ Q) (P ↔ P ∧ Q → P → Q).
intros Simp3_26a.
MP Simp3_26a n4_71a.
Syll n2_02a Simp3_26a Sa.
@@ -2554,7 +2653,8 @@ Theorem n4_74 : ∀ P Q : Prop,
replace (P → Q) with (Q ↔ P ∨ Q) in n2_21a.
apply n2_21a.
apply EqBi.
- replace ((P → Q) ↔ (Q ↔ P ∨ Q)) with ((Q ↔ P ∨ Q) ↔ (P → Q)) in n4_72a.
+ replace ((P → Q) ↔ (Q ↔ P ∨ Q)) with
+ ((Q ↔ P ∨ Q) ↔ (P → Q)) in n4_72a.
apply n4_72a.
apply EqBi.
apply n4_21.
@@ -2568,7 +2668,8 @@ Theorem n4_76 : ∀ P Q R : Prop,
replace (~P ∨ Q) with (P→Q) in n4_41a.
replace (~P ∨ R) with (P→R) in n4_41a.
replace (~P ∨ Q ∧ R) with (P → Q ∧ R) in n4_41a.
- replace ((P → Q ∧ R) ↔ (P → Q) ∧ (P → R)) with ((P → Q) ∧ (P → R) ↔ (P → Q ∧ R)) in n4_41a.
+ replace ((P → Q ∧ R) ↔ (P → Q) ∧ (P → R)) with
+ ((P → Q) ∧ (P → R) ↔ (P → Q ∧ R)) in n4_41a.
apply n4_41a.
apply EqBi.
apply n4_21.
@@ -2593,36 +2694,53 @@ Theorem n4_77 : ∀ P Q R : Prop,
intros Add1_3a.
Syll Add1_3a H Sb.
apply Sb.
- Qed. (*Note that we used the split tactic on a conditional, effectively introducing an assumption for conditional proof. It remains to prove that (AvB)→C and A→(AvB) together imply A→C, and similarly that (AvB)→C and B→(AvB) together imply B→C. This can be proved by Syll, but we need a rule of replacement in the context of ((AvB)→C)→(A→C)/\(B→C).*)
+ Qed.
+ (*Note that we used the split tactic on a conditional,
+ effectively introducing an assumption for conditional
+ proof. It remains to prove that (AvB)→C and A→(AvB)
+ together imply A→C, and similarly that (AvB)→C and
+ B→(AvB) together imply B→C. This can be proved by
+ Syll, but we need a rule of replacement in the context
+ of ((AvB)→C)→(A→C)/\(B→C).*)
Theorem n4_78 : ∀ P Q R : Prop,
((P → Q) ∨ (P → R)) ↔ (P → (Q ∨ R)).
Proof. intros P Q R.
specialize n4_2 with ((P→Q) ∨ (P → R)).
intros n4_2a.
- replace (((P → Q) ∨ (P → R))↔((P → Q) ∨ (P → R))) with (((P → Q) ∨ (P → R))↔((~P ∨ Q) ∨ ~P ∨ R)) in n4_2a.
+ replace (((P→Q)∨(P→R))↔((P→Q)∨(P→R))) with
+ (((P → Q) ∨ (P → R))↔((~P ∨ Q) ∨ ~P ∨ R)) in n4_2a.
specialize n4_33 with (~P) Q (~P ∨ R).
intros n4_33a.
- replace ((~P ∨ Q) ∨ ~P ∨ R) with (~P ∨ Q ∨ ~P ∨ R) in n4_2a.
+ replace ((~P ∨ Q) ∨ ~P ∨ R) with
+ (~P ∨ Q ∨ ~P ∨ R) in n4_2a.
specialize n4_31 with (~P) Q.
intros n4_31a.
specialize n4_37 with (~P∨Q) (Q ∨ ~P) R.
intros n4_37a.
MP n4_37a n4_31a.
- replace (Q ∨ ~P ∨ R) with ((Q ∨ ~P) ∨ R) in n4_2a.
- replace ((Q ∨ ~P) ∨ R) with ((~P ∨ Q) ∨ R) in n4_2a.
+ replace (Q ∨ ~P ∨ R) with
+ ((Q ∨ ~P) ∨ R) in n4_2a.
+ replace ((Q ∨ ~P) ∨ R) with
+ ((~P ∨ Q) ∨ R) in n4_2a.
specialize n4_33 with (~P) (~P∨Q) R.
intros n4_33b.
- replace (~P ∨ (~P ∨ Q) ∨ R) with ((~P ∨ (~P ∨ Q)) ∨ R) in n4_2a.
+ replace (~P ∨ (~P ∨ Q) ∨ R) with
+ ((~P ∨ (~P ∨ Q)) ∨ R) in n4_2a.
specialize n4_25 with (~P).
intros n4_25a.
- specialize n4_37 with (~P) (~P ∨ ~P) (Q ∨ R).
+ specialize n4_37 with
+ (~P) (~P ∨ ~P) (Q ∨ R).
intros n4_37b.
MP n4_37b n4_25a.
- replace (~P ∨ ~P ∨ Q) with ((~P ∨ ~P) ∨ Q) in n4_2a.
- replace (((~P ∨ ~P) ∨ Q) ∨ R) with ((~P ∨ ~P) ∨ Q ∨ R) in n4_2a.
- replace ((~P ∨ ~P) ∨ Q ∨ R) with ((~P) ∨ (Q ∨ R)) in n4_2a.
- replace (~P ∨ Q ∨ R) with (P → (Q ∨ R)) in n4_2a.
+ replace (~P ∨ ~P ∨ Q) with
+ ((~P ∨ ~P) ∨ Q) in n4_2a.
+ replace (((~P ∨ ~P) ∨ Q) ∨ R) with
+ ((~P ∨ ~P) ∨ Q ∨ R) in n4_2a.
+ replace ((~P ∨ ~P) ∨ Q ∨ R) with
+ ((~P) ∨ (Q ∨ R)) in n4_2a.
+ replace (~P ∨ Q ∨ R) with
+ (P → (Q ∨ R)) in n4_2a.
apply n4_2a.
apply Impl1_01.
apply EqBi.
@@ -2631,7 +2749,8 @@ Theorem n4_78 : ∀ P Q R : Prop,
replace ((~P ∨ ~P) ∨ Q) with (~P ∨ ~P ∨ Q).
reflexivity.
apply n2_33.
- replace ((~P ∨ ~P ∨ Q) ∨ R) with (~P ∨ (~P ∨ Q) ∨ R).
+ replace ((~P ∨ ~P ∨ Q) ∨ R) with
+ (~P ∨ (~P ∨ Q) ∨ R).
reflexivity.
apply EqBi.
apply n4_33b.
@@ -2660,25 +2779,31 @@ Theorem n4_79 : ∀ P Q R : Prop,
split.
apply Trans4_1a.
apply Trans4_1b.
- specialize n4_39 with (Q→P) (R→P) (~P→~Q) (~P→~R).
+ specialize n4_39 with
+ (Q→P) (R→P) (~P→~Q) (~P→~R).
intros n4_39a.
MP n4_39a H.
specialize n4_78 with (~P) (~Q) (~R).
intros n4_78a.
- replace ((~P → ~Q) ∨ (~P → ~R)) with (~P → ~Q ∨ ~R) in n4_39a.
+ replace ((~P → ~Q) ∨ (~P → ~R)) with
+ (~P → ~Q ∨ ~R) in n4_39a.
specialize Trans2_15 with P (~Q ∨ ~R).
intros Trans2_15a.
- replace (~P → ~Q ∨ ~R) with (~(~Q ∨ ~R) → P) in n4_39a.
- replace (~(~Q ∨ ~R)) with (Q ∧ R) in n4_39a.
+ replace (~P → ~Q ∨ ~R) with
+ (~(~Q ∨ ~R) → P) in n4_39a.
+ replace (~(~Q ∨ ~R)) with
+ (Q ∧ R) in n4_39a.
apply n4_39a.
apply Prod3_01.
- replace (~(~Q ∨ ~R) → P) with (~P → ~Q ∨ ~R).
+ replace (~(~Q ∨ ~R) → P) with
+ (~P → ~Q ∨ ~R).
reflexivity.
apply EqBi.
split.
apply Trans2_15a.
apply Trans2_15.
- replace (~P → ~Q ∨ ~R) with ((~P → ~Q) ∨ (~P → ~R)).
+ replace (~P → ~Q ∨ ~R) with
+ ((~P → ~Q) ∨ (~P → ~R)).
reflexivity.
apply EqBi.
apply n4_78a.
@@ -2787,12 +2912,16 @@ Theorem n4_84 : ∀ P Q R : Prop,
split.
apply Syll2_06a.
apply Syll2_06b.
- specialize n3_47 with (P→Q) (Q→P) ((Q→R)→P→R) ((P→R)→Q→R).
+ specialize n3_47 with
+ (P→Q) (Q→P) ((Q→R)→P→R) ((P→R)→Q→R).
intros n3_47a.
MP n3_47a H.
- replace ((P→Q) ∧ (Q → P)) with (P↔Q) in n3_47a.
- replace (((Q → R) → P → R) ∧ ((P → R) → Q → R)) with ((Q → R) ↔ (P → R)) in n3_47a.
- replace ((Q → R) ↔ (P → R)) with ((P→ R) ↔ (Q → R)) in n3_47a.
+ replace ((P→Q) ∧ (Q → P)) with
+ (P↔Q) in n3_47a.
+ replace (((Q→R)→P→R)∧((P→R)→Q→R)) with
+ ((Q → R) ↔ (P → R)) in n3_47a.
+ replace ((Q → R) ↔ (P → R)) with
+ ((P→ R) ↔ (Q → R)) in n3_47a.
apply n3_47a.
apply EqBi.
apply n4_21.
@@ -2811,11 +2940,13 @@ Theorem n4_85 : ∀ P Q R : Prop,
split.
apply Syll2_05a.
apply Syll2_05b.
- specialize n3_47 with (P→Q) (Q→P) ((R→P)→R→Q) ((R→Q)→R→P).
+ specialize n3_47 with
+ (P→Q) (Q→P) ((R→P)→R→Q) ((R→Q)→R→P).
intros n3_47a.
MP n3_47a H.
replace ((P→Q) ∧ (Q → P)) with (P↔Q) in n3_47a.
- replace (((R → P) → R → Q) ∧ ((R → Q) → R → P)) with ((R → P) ↔ (R → Q)) in n3_47a.
+ replace (((R→P)→R→Q)∧((R→Q)→R→P)) with
+ ((R → P) ↔ (R → Q)) in n3_47a.
apply n3_47a.
apply Equiv4_01.
apply Equiv4_01.
@@ -2847,7 +2978,8 @@ Theorem n4_86 : ∀ P Q R : Prop,
split.
apply H.
apply H0.
- replace ((P ↔ Q) ∧ (R ↔ P)) with ((R ↔ P) ∧ (P ↔ Q)) in H1.
+ replace ((P ↔ Q) ∧ (R ↔ P)) with
+ ((R ↔ P) ∧ (P ↔ Q)) in H1.
specialize n4_22 with R P Q.
intros n4_22a.
MP n4_22a H1.
@@ -2891,7 +3023,8 @@ Theorem n4_86 : ∀ P Q R : Prop,
Qed.
Theorem n4_87 : ∀ P Q R : Prop,
- (((P ∧ Q) → R) ↔ (P → Q → R)) ↔ ((Q → (P → R)) ↔ (Q ∧ P → R)).
+ (((P ∧ Q) → R) ↔ (P → Q → R)) ↔
+ ((Q → (P → R)) ↔ (Q ∧ P → R)).
Proof. intros P Q R.
specialize Exp3_3 with P Q R.
intros Exp3_3a.
@@ -2920,11 +3053,14 @@ Theorem n4_87 : ∀ P Q R : Prop,
apply Comm2_04a.
apply Comm2_04b.
Equiv H1.
- clear Exp3_3a. clear Imp3_31a. clear Exp3_3b. clear Imp3_31b. clear Comm2_04a. clear Comm2_04b.
+ clear Exp3_3a. clear Imp3_31a. clear Exp3_3b.
+ clear Imp3_31b. clear Comm2_04a.
+ clear Comm2_04b.
replace (P∧Q→R) with (P → Q → R).
replace (Q∧P→R) with (Q → P → R).
replace (Q→P→R) with (P → Q → R).
- specialize n4_2 with ((P → Q → R) ↔ (P → Q → R)).
+ specialize n4_2 with
+ ((P → Q → R) ↔ (P → Q → R)).
intros n4_2a.
apply n4_2a.
apply EqBi.
@@ -2968,22 +3104,26 @@ Theorem n5_1 : ∀ P Q : Prop,
apply Sa.
specialize n4_76 with (P∧Q) (P→Q) (Q→P).
intros n4_76a.
- replace ((P ∧ Q → P → Q) ∧ (P ∧ Q → Q → P)) with (P ∧ Q → (P → Q) ∧ (Q → P)) in H.
+ replace ((P∧Q→P→Q)∧(P∧Q→Q→P)) with
+ (P ∧ Q → (P → Q) ∧ (Q → P)) in H.
replace ((P→Q)∧(Q→P)) with (P↔Q) in H.
apply H.
apply Equiv4_01.
- replace (P ∧ Q → (P → Q) ∧ (Q → P)) with ((P ∧ Q → P → Q) ∧ (P ∧ Q → Q → P)).
+ replace (P ∧ Q → (P → Q) ∧ (Q → P)) with
+ ((P ∧ Q → P → Q) ∧ (P ∧ Q → Q → P)).
reflexivity.
apply EqBi.
apply n4_76a.
- Qed. (*Note that n4_76 is not cited, but it is used to move from ((a→b) ∧ (a→c)) to (a→ (b ∧ c)).*)
+ Qed.
+ (*Note that n4_76 is not cited, but it is used to
+ move from ((a→b) ∧ (a→c)) to (a→ (b ∧ c)).*)
Theorem n5_11 : ∀ P Q : Prop,
(P → Q) ∨ (~P → Q).
Proof. intros P Q.
specialize n2_5 with P Q.
intros n2_5a.
- specialize n2_54 with ((P → Q)) (~ P → Q).
+ specialize n2_54 with ((P → Q)) (~P → Q).
intros n2_54a.
MP n2_54a n2_5a.
apply n2_54a.
@@ -2994,7 +3134,7 @@ Theorem n5_12 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n2_51 with P Q.
intros n2_51a.
- specialize n2_54 with ((P → Q)) (P → ~ Q).
+ specialize n2_54 with ((P → Q)) (P → ~Q).
intros n2_54a.
MP n2_54a n2_5a.
apply n2_54a.
@@ -3005,15 +3145,19 @@ Theorem n5_13 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n2_521 with P Q.
intros n2_521a.
- replace (~ (P → Q) → Q → P) with (~~ (P → Q) ∨ (Q → P)) in n2_521a.
+ replace (~(P → Q) → Q → P) with
+ (~~(P → Q) ∨ (Q → P)) in n2_521a.
replace (~~(P→Q)) with (P→Q) in n2_521a.
apply n2_521a.
apply EqBi.
apply n4_13.
- replace (~~ (P → Q) ∨ (Q → P)) with (~ (P → Q) → Q → P).
+ replace (~~(P → Q) ∨ (Q → P)) with
+ (~(P → Q) → Q → P).
reflexivity.
apply Impl1_01.
- Qed. (*n4_13 is not cited, but is needed for double negation elimination.*)
+ Qed.
+ (*n4_13 is not cited, but is needed for
+ double negation elimination.*)
Theorem n5_14 : ∀ P Q R : Prop,
(P → Q) ∨ (Q → R).
@@ -3026,12 +3170,14 @@ Theorem n5_14 : ∀ P Q R : Prop,
specialize n2_21 with Q R.
intros n2_21a.
Syll Trans2_16a n2_21a Sa.
- replace (~(P→Q)→(Q→R)) with (~~(P→Q)∨(Q→R)) in Sa.
+ replace (~(P→Q)→(Q→R)) with
+ (~~(P→Q)∨(Q→R)) in Sa.
replace (~~(P→Q)) with (P→Q) in Sa.
apply Sa.
apply EqBi.
apply n4_13.
- replace (~~(P→Q)∨(Q→R)) with (~(P→Q)→(Q→R)).
+ replace (~~(P→Q)∨(Q→R)) with
+ (~(P→Q)→(Q→R)).
reflexivity.
apply Impl1_01.
Qed.
@@ -3041,8 +3187,10 @@ Theorem n5_15 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n4_61 with P Q.
intros n4_61a.
- replace (~ (P → Q) ↔ P ∧ ~ Q) with ((~ (P → Q) → P ∧ ~ Q) ∧ ((P ∧ ~ Q) → ~ (P → Q))) in n4_61a.
- specialize Simp3_26 with (~ (P → Q) → P ∧ ~ Q) ((P ∧ ~ Q) → ~ (P → Q)).
+ replace (~(P → Q) ↔ P ∧ ~Q) with
+ ((~(P→Q)→P∧~Q)∧((P∧~Q)→~(P→Q))) in n4_61a.
+ specialize Simp3_26 with
+ (~(P → Q) → P ∧ ~Q) ((P ∧ ~Q) → ~(P → Q)).
intros Simp3_26a.
MP Simp3_26a n4_61a.
specialize n5_1 with P (~Q).
@@ -3053,8 +3201,10 @@ Theorem n5_15 : ∀ P Q : Prop,
MP n2_54a Sa.
specialize n4_61 with Q P.
intros n4_61b.
- replace ((~(Q → P)) ↔ (Q ∧ ~P)) with (((~(Q → P)) → (Q ∧ ~P)) ∧ ((Q ∧ ~P) → (~(Q → P)))) in n4_61b.
- specialize Simp3_26 with (~(Q → P)→ (Q ∧ ~P)) ((Q ∧ ~P)→ (~(Q → P))).
+ replace ((~(Q → P)) ↔ (Q ∧ ~P)) with
+ (((~(Q→P))→(Q∧~P))∧((Q∧~P)→(~(Q→P)))) in n4_61b.
+ specialize Simp3_26 with
+ (~(Q → P)→ (Q ∧ ~P)) ((Q ∧ ~P)→ (~(Q → P))).
intros Simp3_26b.
MP Simp3_26b n4_61b.
specialize n5_1 with Q (~P).
@@ -3066,10 +3216,14 @@ Theorem n5_15 : ∀ P Q : Prop,
specialize n2_54 with (Q→P) (P↔~Q).
intros n2_54b.
MP n2_54b Sb.
- clear n4_61a. clear Simp3_26a. clear n5_1a. clear n2_54a. clear n4_61b. clear Simp3_26b. clear n5_1b. clear n4_12a. clear n2_54b.
- replace (~(P → Q) → P ↔ ~Q) with (~~ (P → Q) ∨ (P ↔ ~Q)) in Sa.
+ clear n4_61a. clear Simp3_26a. clear n5_1a.
+ clear n2_54a. clear n4_61b. clear Simp3_26b.
+ clear n5_1b. clear n4_12a. clear n2_54b.
+ replace (~(P → Q) → P ↔ ~Q) with
+ (~~(P → Q) ∨ (P ↔ ~Q)) in Sa.
replace (~~(P→Q)) with (P→Q) in Sa.
- replace (~(Q → P) → (P ↔ ~Q)) with (~~(Q → P) ∨ (P ↔ ~Q)) in Sb.
+ replace (~(Q → P) → (P ↔ ~Q)) with
+ (~~(Q → P) ∨ (P ↔ ~Q)) in Sb.
replace (~~(Q→P)) with (Q→P) in Sb.
Conj Sa Sb.
split.
@@ -3077,11 +3231,15 @@ Theorem n5_15 : ∀ P Q : Prop,
apply Sb.
specialize n4_41 with (P↔~Q) (P→Q) (Q→P).
intros n4_41a.
- replace ((P → Q) ∨ (P ↔ ~Q)) with ((P ↔ ~Q) ∨ (P → Q)) in H.
- replace ((Q → P) ∨ (P ↔ ~Q)) with ((P ↔ ~Q) ∨ (Q → P)) in H.
- replace (((P ↔ ~Q) ∨ (P → Q)) ∧ ((P ↔ ~Q) ∨ (Q → P))) with ((P ↔ ~Q) ∨ (P → Q) ∧ (Q → P)) in H.
+ replace ((P → Q) ∨ (P ↔ ~Q)) with
+ ((P ↔ ~Q) ∨ (P → Q)) in H.
+ replace ((Q → P) ∨ (P ↔ ~Q)) with
+ ((P ↔ ~Q) ∨ (Q → P)) in H.
+ replace (((P↔~Q)∨(P→Q))∧((P↔~Q)∨(Q→P))) with
+ ((P ↔ ~Q) ∨ (P → Q) ∧ (Q → P)) in H.
replace ((P→Q) ∧ (Q → P)) with (P↔Q) in H.
- replace ((P ↔ ~Q) ∨ (P ↔ Q)) with ((P ↔ Q) ∨ (P ↔ ~Q)) in H.
+ replace ((P ↔ ~Q) ∨ (P ↔ Q)) with
+ ((P ↔ Q) ∨ (P ↔ ~Q)) in H.
apply H.
apply EqBi.
apply n4_31.
@@ -3094,12 +3252,14 @@ Theorem n5_15 : ∀ P Q : Prop,
apply n4_31.
apply EqBi.
apply n4_13.
- replace (~~(Q → P) ∨ (P ↔ ~Q)) with (~(Q → P) → (P ↔ ~Q)).
+ replace (~~(Q → P) ∨ (P ↔ ~Q)) with
+ (~(Q → P) → (P ↔ ~Q)).
reflexivity.
apply Impl1_01.
apply EqBi.
apply n4_13.
- replace (~~ (P → Q) ∨ (P ↔ ~Q)) with (~(P → Q) → P ↔ ~Q).
+ replace (~~(P → Q) ∨ (P ↔ ~Q)) with
+ (~(P → Q) → P ↔ ~Q).
reflexivity.
apply Impl1_01.
apply EqBi.
@@ -3115,58 +3275,77 @@ Theorem n5_16 : ∀ P Q : Prop,
intros Simp3_26a.
specialize n2_08 with ((P ↔ Q) ∧ (P → ~Q)).
intros n2_08a.
- replace (((P → Q) ∧ (P → ~Q)) ∧ (Q → P)) with ((P → Q) ∧ ((P → ~Q) ∧ (Q → P))) in Simp3_26a.
- replace ((P → ~Q) ∧ (Q → P)) with ((Q → P) ∧ (P → ~Q)) in Simp3_26a.
- replace ((P→Q) ∧ (Q → P)∧ (P → ~Q)) with (((P→Q) ∧ (Q → P)) ∧ (P → ~Q)) in Simp3_26a.
- replace ((P → Q) ∧ (Q → P)) with (P↔Q) in Simp3_26a.
+ replace (((P → Q) ∧ (P → ~Q)) ∧ (Q → P)) with
+ ((P→Q)∧((P→~Q)∧(Q→P))) in Simp3_26a.
+ replace ((P → ~Q) ∧ (Q → P)) with
+ ((Q → P) ∧ (P → ~Q)) in Simp3_26a.
+ replace ((P→Q) ∧ (Q → P)∧ (P → ~Q)) with
+ (((P→Q) ∧ (Q → P)) ∧ (P → ~Q)) in Simp3_26a.
+ replace ((P → Q) ∧ (Q → P)) with
+ (P↔Q) in Simp3_26a.
Syll n2_08a Simp3_26a Sa.
specialize n4_82 with P Q.
intros n4_82a.
replace ((P → Q) ∧ (P → ~Q)) with (~P) in Sa.
- specialize Simp3_27 with (P→Q) ((Q→P)∧ (P → ~Q)).
+ specialize Simp3_27 with
+ (P→Q) ((Q→P)∧ (P → ~Q)).
intros Simp3_27a.
- replace ((P→Q) ∧ (Q → P)∧ (P → ~Q)) with (((P→Q) ∧ (Q → P)) ∧ (P → ~Q)) in Simp3_27a.
- replace ((P → Q) ∧ (Q → P)) with (P↔Q) in Simp3_27a.
+ replace ((P→Q) ∧ (Q → P)∧ (P → ~Q)) with
+ (((P→Q) ∧ (Q → P)) ∧ (P → ~Q)) in Simp3_27a.
+ replace ((P → Q) ∧ (Q → P)) with
+ (P↔Q) in Simp3_27a.
specialize Syll3_33 with Q P (~Q).
intros Syll3_33a.
Syll Simp3_27a Syll2_06a Sb.
specialize Abs2_01 with Q.
intros Abs2_01a.
Syll Sb Abs2_01a Sc.
- clear Sb. clear Simp3_26a. clear n2_08a. clear n4_82a. clear Simp3_27a. clear Syll3_33a. clear Abs2_01a.
+ clear Sb. clear Simp3_26a. clear n2_08a.
+ clear n4_82a. clear Simp3_27a. clear Syll3_33a.
+ clear Abs2_01a.
Conj Sa Sc.
split.
apply Sa.
apply Sc.
- specialize Comp3_43 with ((P ↔ Q) ∧ (P → ~Q)) (~P) (~Q).
+ specialize Comp3_43 with
+ ((P ↔ Q) ∧ (P → ~Q)) (~P) (~Q).
intros Comp3_43a.
MP Comp3_43a H.
specialize n4_65 with Q P.
intros n4_65a.
replace (~Q ∧ ~P) with (~P ∧ ~Q) in n4_65a.
- replace (~P ∧ ~Q) with (~(~Q→P)) in Comp3_43a.
- specialize Exp3_3 with (P↔Q) (P→~Q) (~(~Q→P)).
+ replace (~P ∧ ~Q) with
+ (~(~Q→P)) in Comp3_43a.
+ specialize Exp3_3 with
+ (P↔Q) (P→~Q) (~(~Q→P)).
intros Exp3_3a.
MP Exp3_3a Comp3_43a.
- replace ((P→~Q)→~(~Q→P)) with (~(P→~Q)∨~(~Q→P)) in Exp3_3a.
+ replace ((P→~Q)→~(~Q→P)) with
+ (~(P→~Q)∨~(~Q→P)) in Exp3_3a.
specialize n4_51 with (P→~Q) (~Q→P).
intros n4_51a.
- replace (~(P → ~Q) ∨ ~(~Q → P)) with (~((P → ~Q) ∧ (~Q → P))) in Exp3_3a.
- replace ((P→~Q) ∧ (~ Q → P)) with (P↔~Q) in Exp3_3a.
- replace ((P↔Q)→~(P↔~Q)) with (~(P↔Q)∨~(P↔~Q)) in Exp3_3a.
+ replace (~(P → ~Q) ∨ ~(~Q → P)) with
+ (~((P → ~Q) ∧ (~Q → P))) in Exp3_3a.
+ replace ((P→~Q) ∧ (~Q → P)) with
+ (P↔~Q) in Exp3_3a.
+ replace ((P↔Q)→~(P↔~Q)) with
+ (~(P↔Q)∨~(P↔~Q)) in Exp3_3a.
specialize n4_51 with (P↔Q) (P↔~Q).
intros n4_51b.
- replace (~(P ↔ Q) ∨ ~(P ↔ ~Q)) with (~((P ↔ Q) ∧ (P ↔ ~Q))) in Exp3_3a.
+ replace (~(P ↔ Q) ∨ ~(P ↔ ~Q)) with
+ (~((P ↔ Q) ∧ (P ↔ ~Q))) in Exp3_3a.
apply Exp3_3a.
apply EqBi.
apply n4_51b.
- replace (~(P ↔ Q) ∨ ~(P ↔ ~Q)) with (P ↔ Q → ~(P ↔ ~Q)).
+ replace (~(P ↔ Q) ∨ ~(P ↔ ~Q)) with
+ (P ↔ Q → ~(P ↔ ~Q)).
reflexivity.
apply Impl1_01.
apply Equiv4_01.
apply EqBi.
apply n4_51a.
- replace (~(P → ~Q) ∨ ~(~Q → P)) with ((P → ~Q) → ~(~Q → P)).
+ replace (~(P → ~Q) ∨ ~(~Q → P)) with
+ ((P → ~Q) → ~(~Q → P)).
reflexivity.
apply Impl1_01.
apply EqBi.
@@ -3185,7 +3364,8 @@ Theorem n5_16 : ∀ P Q : Prop,
apply n4_32.
apply EqBi.
apply n4_3.
- replace ((P → Q) ∧ (P → ~Q) ∧ (Q → P)) with (((P → Q) ∧ (P → ~Q)) ∧ (Q → P)).
+ replace ((P → Q) ∧ (P → ~Q) ∧ (Q → P)) with
+ (((P → Q) ∧ (P → ~Q)) ∧ (Q → P)).
reflexivity.
apply EqBi.
apply n4_32.
@@ -3198,24 +3378,30 @@ Theorem n5_17 : ∀ P Q : Prop,
intros n4_64a.
specialize n4_21 with (Q∨P) (~Q→P).
intros n4_21a.
- replace ((~Q→P)↔(Q∨P)) with ((Q∨P)↔(~Q→P)) in n4_64a.
+ replace ((~Q→P)↔(Q∨P)) with
+ ((Q∨P)↔(~Q→P)) in n4_64a.
replace (Q∨P) with (P∨Q) in n4_64a.
specialize n4_63 with P Q.
intros n4_63a.
- replace (~(P → ~Q) ↔ P ∧ Q) with (P ∧ Q ↔ ~(P → ~Q)) in n4_63a.
+ replace (~(P → ~Q) ↔ P ∧ Q) with
+ (P ∧ Q ↔ ~(P → ~Q)) in n4_63a.
specialize Trans4_11 with (P∧Q) (~(P→~Q)).
intros Trans4_11a.
- replace (~~(P→~Q)) with (P→~Q) in Trans4_11a.
- replace (P ∧ Q ↔ ~(P → ~Q)) with (~(P ∧ Q) ↔ (P → ~Q)) in n4_63a.
+ replace (~~(P→~Q)) with
+ (P→~Q) in Trans4_11a.
+ replace (P ∧ Q ↔ ~(P → ~Q)) with
+ (~(P ∧ Q) ↔ (P → ~Q)) in n4_63a.
clear Trans4_11a. clear n4_21a.
Conj n4_64a n4_63a.
split.
apply n4_64a.
apply n4_63a.
- specialize n4_38 with (P ∨ Q) (~(P ∧ Q)) (~Q → P) (P → ~Q).
+ specialize n4_38 with
+ (P ∨ Q) (~(P ∧ Q)) (~Q → P) (P → ~Q).
intros n4_38a.
MP n4_38a H.
- replace ((~Q→P) ∧ (P → ~Q)) with (~Q↔P) in n4_38a.
+ replace ((~Q→P) ∧ (P → ~Q)) with
+ (~Q↔P) in n4_38a.
specialize n4_21 with P (~Q).
intros n4_21b.
replace (~Q↔P) with (P↔~Q) in n4_38a.
@@ -3223,7 +3409,8 @@ Theorem n5_17 : ∀ P Q : Prop,
apply EqBi.
apply n4_21b.
apply Equiv4_01.
- replace (~(P ∧ Q) ↔ (P → ~Q)) with (P ∧ Q ↔ ~(P → ~Q)).
+ replace (~(P ∧ Q) ↔ (P → ~Q)) with
+ (P ∧ Q ↔ ~(P → ~Q)).
reflexivity.
apply EqBi.
apply Trans4_11a.
@@ -3250,7 +3437,8 @@ Theorem n5_18 : ∀ P Q : Prop,
apply n5_16a.
specialize n5_17 with (P↔Q) (P↔~Q).
intros n5_17a.
- replace ((P ↔ Q) ↔ ~(P ↔ ~Q)) with (((P ↔ Q) ∨ (P ↔ ~Q)) ∧ ~((P ↔ Q) ∧ (P ↔ ~Q))).
+ replace ((P ↔ Q) ↔ ~(P ↔ ~Q)) with
+ (((P↔Q)∨(P↔~Q))∧~((P↔Q)∧(P↔~Q))).
apply H.
apply EqBi.
apply n5_17a.
@@ -3293,13 +3481,16 @@ Theorem n5_22 : ∀ P Q : Prop,
split.
apply n4_61a.
apply n4_61b.
- specialize n4_39 with (~(P → Q)) (~(Q → P)) (P ∧ ~Q) (Q ∧ ~P).
+ specialize n4_39 with
+ (~(P → Q)) (~(Q → P)) (P ∧ ~Q) (Q ∧ ~P).
intros n4_39a.
MP n4_39a H.
specialize n4_51 with (P→Q) (Q→P).
intros n4_51a.
- replace (~(P → Q) ∨ ~(Q → P)) with (~((P → Q) ∧ (Q → P))) in n4_39a.
- replace ((P → Q) ∧ (Q → P)) with (P↔Q) in n4_39a.
+ replace (~(P → Q) ∨ ~(Q → P)) with
+ (~((P → Q) ∧ (Q → P))) in n4_39a.
+ replace ((P → Q) ∧ (Q → P)) with
+ (P↔Q) in n4_39a.
apply n4_39a.
apply Equiv4_01.
apply EqBi.
@@ -3315,7 +3506,8 @@ Theorem n5_23 : ∀ P Q : Prop,
intros n5_22a.
specialize n4_13 with Q.
intros n4_13a.
- replace (~(P↔~Q)) with ((P ∧ ~~Q) ∨ (~Q ∧ ~P)) in n5_18a.
+ replace (~(P↔~Q)) with
+ ((P ∧ ~~Q) ∨ (~Q ∧ ~P)) in n5_18a.
replace (~~Q) with Q in n5_18a.
replace (~Q ∧ ~P) with (~P ∧ ~Q) in n5_18a.
apply n5_18a.
@@ -3327,7 +3519,10 @@ Theorem n5_23 : ∀ P Q : Prop,
reflexivity.
apply EqBi.
apply n5_22a.
- Qed. (*The proof sketch in Principia offers n4_36, but we found it far simpler to simply use the commutativity of conjunction (n4_3).*)
+ Qed.
+ (*The proof sketch in Principia offers n4_36,
+ but we found it far simpler to simply use the
+ commutativity of conjunction (n4_3).*)
Theorem n5_24 : ∀ P Q : Prop,
~((P ∧ Q) ∨ (~P ∧ ~Q)) ↔ ((P ∧ ~Q) ∨ (Q ∧ ~P)).
@@ -3336,20 +3531,25 @@ Theorem n5_24 : ∀ P Q : Prop,
intros n5_22a.
specialize n5_23 with P Q.
intros n5_23a.
- replace ((P↔Q)↔((P∧ Q) ∨(~P ∧ ~Q))) with ((~(P↔Q)↔~((P∧ Q) ∨(~P ∧ ~Q)))) in n5_23a.
- replace (~(P↔Q)) with (~((P ∧ Q) ∨ (~P ∧ ~Q))) in n5_22a.
+ replace ((P↔Q)↔((P∧ Q) ∨(~P ∧ ~Q))) with
+ ((~(P↔Q)↔~((P∧ Q)∨(~P ∧ ~Q)))) in n5_23a.
+ replace (~(P↔Q)) with
+ (~((P ∧ Q) ∨ (~P ∧ ~Q))) in n5_22a.
apply n5_22a.
- replace (~((P ∧ Q) ∨ (~P ∧ ~Q))) with (~(P ↔ Q)).
+ replace (~((P ∧ Q)∨(~P ∧ ~Q))) with (~(P↔Q)).
reflexivity.
apply EqBi.
apply n5_23a.
- replace (~(P ↔ Q) ↔ ~(P ∧ Q ∨ ~P ∧ ~Q)) with ((P ↔ Q) ↔ P ∧ Q ∨ ~P ∧ ~Q).
+ replace (~(P ↔ Q) ↔ ~(P ∧ Q ∨ ~P ∧ ~Q)) with
+ ((P ↔ Q) ↔ P ∧ Q ∨ ~P ∧ ~Q).
reflexivity.
- specialize Trans4_11 with (P↔Q) (P ∧ Q ∨ ~P ∧ ~Q).
+ specialize Trans4_11 with
+ (P↔Q) (P ∧ Q ∨ ~P ∧ ~Q).
intros Trans4_11a.
apply EqBi.
apply Trans4_11a.
- Qed. (*Note that Trans4_11 is not cited explicitly.*)
+ Qed.
+ (*Note that Trans4_11 is not cited.*)
Theorem n5_25 : ∀ P Q : Prop,
(P ∨ Q) ↔ ((P → Q) → Q).
@@ -3372,7 +3572,8 @@ Theorem n5_3 : ∀ P Q R : Prop,
Proof. intros P Q R.
specialize Comp3_43 with (P ∧ Q) P R.
intros Comp3_43a.
- specialize Exp3_3 with (P ∧ Q → P) (P ∧ Q →R) (P ∧ Q → P ∧ R).
+ specialize Exp3_3 with
+ (P ∧ Q → P) (P ∧ Q →R) (P ∧ Q → P ∧ R).
intros Exp3_3a.
MP Exp3_3a Comp3_43a.
specialize Simp3_26 with P Q.
@@ -3383,7 +3584,8 @@ Theorem n5_3 : ∀ P Q R : Prop,
specialize Simp3_27 with P R.
intros Simp3_27a.
MP Syll2_05a Simp3_27a.
- clear Comp3_43a. clear Simp3_27a. clear Simp3_26a.
+ clear Comp3_43a. clear Simp3_27a.
+ clear Simp3_26a.
Conj Exp3_3a Syll2_05a.
split.
apply Exp3_3a.
@@ -3391,7 +3593,9 @@ Theorem n5_3 : ∀ P Q R : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- Qed. (*Note that Exp is not cited in the proof sketch, but seems necessary.*)
+ Qed.
+ (*Note that Exp is not cited in the proof sketch,
+ but seems necessary.*)
Theorem n5_31 : ∀ P Q R : Prop,
(R ∧ (P → Q)) → (P → (Q ∧ R)).
@@ -3400,8 +3604,10 @@ Theorem n5_31 : ∀ P Q R : Prop,
intros Comp3_43a.
specialize n2_02 with P R.
intros n2_02a.
- replace ((P→Q) ∧ (P→R)) with ((P→R) ∧ (P→Q)) in Comp3_43a.
- specialize Exp3_3 with (P→R) (P→Q) (P→(Q ∧ R)).
+ replace ((P→Q) ∧ (P→R)) with
+ ((P→R) ∧ (P→Q)) in Comp3_43a.
+ specialize Exp3_3 with
+ (P→R) (P→Q) (P→(Q ∧ R)).
intros Exp3_3a.
MP Exp3_3a Comp3_43a.
Syll n2_02a Exp3_3a Sa.
@@ -3411,7 +3617,9 @@ Theorem n5_31 : ∀ P Q R : Prop,
apply Imp3_31a.
apply EqBi.
apply n4_3. (*with (P→R)∧(P→Q)).*)
- Qed. (*Note that Exp, Imp, and n4_3 are not cited in the proof sketch.*)
+ Qed.
+ (*Note that Exp, Imp, and n4_3 are not cited
+ in the proof sketch.*)
Theorem n5_32 : ∀ P Q R : Prop,
(P → (Q ↔ R)) ↔ ((P ∧ Q) ↔ (P ∧ R)).
@@ -3444,13 +3652,15 @@ Theorem n5_32 : ∀ P Q R : Prop,
replace (P∧Q→R) with (P∧Q→P∧R) in n4_76a.
replace (P→R→Q) with (P∧R→Q) in n4_76a.
replace (P∧R→Q) with (P∧R→P∧Q) in n4_76a.
- replace ((P∧Q→P∧R)∧(P∧R→P∧Q)) with ((P∧Q)↔(P∧R)) in n4_76a.
- replace ((P∧Q ↔ P∧R)↔(P→(Q→R)∧(R→Q))) with ((P→(Q→R)∧(R→Q))↔(P∧Q ↔ P∧R)) in n4_76a.
+ replace ((P∧Q→P∧R)∧(P∧R→P∧Q)) with
+ ((P∧Q)↔(P∧R)) in n4_76a.
+ replace ((P∧Q↔P∧R)↔(P→(Q→R)∧(R→Q))) with
+ ((P→(Q→R)∧(R→Q))↔(P∧Q ↔ P∧R)) in n4_76a.
replace ((Q→R)∧(R→Q)) with (Q↔R) in n4_76a.
apply n4_76a.
apply Equiv4_01.
apply EqBi.
- apply n4_3. (*to commute the biconditional to get the theorem.*)
+ apply n4_3. (*to commute the biconditional*)
apply Equiv4_01.
replace (P ∧ R → P ∧ Q) with (P ∧ R → Q).
reflexivity.
@@ -3473,8 +3683,17 @@ Theorem n5_33 : ∀ P Q R : Prop,
Proof. intros P Q R.
specialize n5_32 with P (Q→R) ((P∧Q)→R).
intros n5_32a.
- replace ((P→(Q→R)↔(P∧Q→R))↔(P∧(Q→R)↔P∧(P∧Q→R))) with (((P→(Q→R)↔(P∧Q→R))→(P∧(Q→R)↔P∧(P∧Q→R)))∧((P∧(Q→R)↔P∧(P∧Q→R)→(P→(Q→R)↔(P∧Q→R))))) in n5_32a.
- specialize Simp3_26 with ((P→(Q→R)↔(P∧Q→R))→(P∧(Q→R)↔P∧(P∧Q→R))) ((P∧(Q→R)↔P∧(P∧Q→R)→(P→(Q→R)↔(P∧Q→R)))). (*Not cited.*)
+ replace
+ ((P→(Q→R)↔(P∧Q→R))↔(P∧(Q→R)↔P∧(P∧Q→R)))
+ with
+ (((P→(Q→R)↔(P∧Q→R))→(P∧(Q→R)↔P∧(P∧Q→R)))
+ ∧
+ ((P∧(Q→R)↔P∧(P∧Q→R)→(P→(Q→R)↔(P∧Q→R)))))
+ in n5_32a.
+ specialize Simp3_26 with
+ ((P→(Q→R)↔(P∧Q→R))→(P∧(Q→R)↔P∧(P∧Q→R)))
+ ((P∧(Q→R)↔P∧(P∧Q→R)→(P→(Q→R)↔(P∧Q→R)))).
+ (*Not cited.*)
intros Simp3_26a.
MP Simp3_26a n5_32a.
specialize n4_73 with Q P.
@@ -3511,7 +3730,8 @@ Theorem n5_36 : ∀ P Q : Prop,
intros n5_32a.
specialize n2_08 with (P↔Q).
intros n2_08a.
- replace (P↔Q→P↔Q) with ((P↔Q)∧P↔(P↔Q)∧Q) in n2_08a.
+ replace (P↔Q→P↔Q) with
+ ((P↔Q)∧P↔(P↔Q)∧Q) in n2_08a.
replace ((P↔Q)∧P) with (P∧(P↔Q)) in n2_08a.
replace ((P↔Q)∧Q) with (Q∧(P↔Q)) in n2_08a.
apply n2_08a.
@@ -3519,11 +3739,15 @@ Theorem n5_36 : ∀ P Q : Prop,
apply n4_3.
apply EqBi.
apply n4_3.
- replace ((P ↔ Q) ∧ P ↔ (P ↔ Q) ∧ Q) with (P ↔ Q → P ↔ Q).
+ replace ((P ↔ Q) ∧ P ↔ (P ↔ Q) ∧ Q) with
+ (P ↔ Q → P ↔ Q).
reflexivity.
apply EqBi.
apply n5_32a.
- Qed. (*The proof sketch cites Ass3_35 and n4_38. Since I couldn't decipher how that proof would go, I used a different one invoking other theorems.*)
+ Qed.
+ (*The proof sketch cites Ass3_35 and n4_38.
+ Since I couldn't decipher how that proof would go,
+ I used a different one invoking other theorems.*)
Theorem n5_4 : ∀ P Q : Prop,
(P → (P → Q)) ↔ (P → Q).
@@ -3567,7 +3791,8 @@ Theorem n5_42 : ∀ P Q R : Prop,
replace ((P∧Q)→R) with (P→Q→R) in n5_3a.
specialize n4_87 with P Q (P∧R).
intros n4_87b.
- replace ((P∧Q)→(P∧R)) with (P→Q→(P∧R)) in n5_3a.
+ replace ((P∧Q)→(P∧R)) with
+ (P→Q→(P∧R)) in n5_3a.
apply n5_3a.
specialize Imp3_31 with P Q (P∧R).
intros Imp3_31b.
@@ -3593,49 +3818,74 @@ Theorem n5_42 : ∀ P Q R : Prop,
apply EqBi.
apply H.
apply Equiv4_01.
- Qed. (*The law n4_87 is really unwieldy to use in Coq. It is actually easier to introduce the subformula of the importation-exportation law required and apply that biconditional. It may be worthwhile in later parts of PM to prove a derived rule that allows us to manipulate a biconditional's subformulas that are biconditionals.*)
+ Qed.
+ (*The law n4_87 is really unwieldy to use in Coq.
+ It is actually easier to introduce the subformula
+ of the importation-exportation law required and
+ apply that biconditional. It may be worthwhile
+ in later parts of PM to prove a derived rule that
+ allows us to manipulate a biconditional's
+ subformulas that are biconditionals.*)
Theorem n5_44 : ∀ P Q R : Prop,
(P→Q) → ((P → R) ↔ (P → (Q ∧ R))).
Proof. intros P Q R.
specialize n4_76 with P Q R.
intros n4_76a.
- replace ((P→Q)∧(P→R)↔(P→Q∧R)) with (((P→Q)∧(P→R)→(P→Q∧R))∧((P→Q∧R)→(P→Q)∧(P→R))) in n4_76a.
- specialize Simp3_26 with ((P→Q)∧(P→R)→(P→Q∧R)) ((P→Q∧R)→(P→Q)∧(P→R)).
+ replace ((P→Q)∧(P→R)↔(P→Q∧R)) with
+ (((P→Q)∧(P→R)→(P→Q∧R))
+ ∧
+ ((P→Q∧R)→(P→Q)∧(P→R))) in n4_76a.
+ specialize Simp3_26 with
+ ((P→Q)∧(P→R)→(P→Q∧R))
+ ((P→Q∧R)→(P→Q)∧(P→R)).
intros Simp3_26a. (*Not cited.*)
MP Simp3_26a n4_76a.
specialize Exp3_3 with (P→Q) (P→R) (P→Q∧R).
intros Exp3_3a. (*Not cited.*)
MP Exp3_3a Simp3_26a.
- specialize Simp3_27 with ((P→Q)∧(P→R)→(P→Q∧R)) ((P→Q∧R)→(P→Q)∧(P→R)).
+ specialize Simp3_27 with
+ ((P→Q)∧(P→R)→(P→Q∧R))
+ ((P→Q∧R)→(P→Q)∧(P→R)).
intros Simp3_27a. (*Not cited.*)
MP Simp3_27a n4_76a.
specialize Simp3_26 with (P→R) (P→Q).
intros Simp3_26b.
- replace ((P→Q)∧(P→R)) with ((P→R)∧(P→Q)) in Simp3_27a.
+ replace ((P→Q)∧(P→R)) with
+ ((P→R)∧(P→Q)) in Simp3_27a.
Syll Simp3_27a Simp3_26b Sa.
specialize n2_02 with (P→Q) ((P→Q∧R)→P→R).
intros n2_02a. (*Not cited.*)
MP n2_02a Sa.
- clear Sa. clear Simp3_26b. clear Simp3_26a. clear n4_76a. clear Simp3_27a.
+ clear Sa. clear Simp3_26b. clear Simp3_26a.
+ clear n4_76a. clear Simp3_27a.
Conj Exp3_3a n2_02a.
split.
apply Exp3_3a.
apply n2_02a.
- specialize n4_76 with (P→Q) ((P→R)→(P→(Q∧R))) ((P→(Q∧R))→(P→R)).
+ specialize n4_76 with (P→Q)
+ ((P→R)→(P→(Q∧R))) ((P→(Q∧R))→(P→R)).
intros n4_76b.
- replace (((P→Q)→(P→R)→P→Q∧R)∧((P→Q)→(P→Q∧R)→P→R)) with ((P→Q)→((P→R)→P→Q∧R)∧((P→Q∧R)→P→R)) in H.
- replace (((P→R)→P→Q∧R)∧((P→Q∧R)→P→R)) with ((P→R)↔(P→Q∧R)) in H.
+ replace
+ (((P→Q)→(P→R)→P→Q∧R)∧((P→Q)→(P→Q∧R)→P→R))
+ with
+ ((P→Q)→((P→R)→P→Q∧R)∧((P→Q∧R)→P→R)) in H.
+ replace (((P→R)→P→Q∧R)∧((P→Q∧R)→P→R)) with
+ ((P→R)↔(P→Q∧R)) in H.
apply H.
apply Equiv4_01.
- replace ((P→Q)→((P→R)→P→Q∧R)∧((P→Q∧R)→P→R)) with (((P→Q)→(P→R)→P→Q∧R)∧((P→Q)→(P→Q∧R)→P→R)).
+ replace ((P→Q)→((P→R)→P→Q∧R)∧((P→Q∧R)→P→R)) with
+ (((P→Q)→(P→R)→P→Q∧R)∧((P→Q)→(P→Q∧R)→P→R)).
reflexivity.
apply EqBi.
apply n4_76b.
apply EqBi.
apply n4_3. (*Not cited.*)
apply Equiv4_01.
- Qed. (*This proof does not use either n5_3 or n5_32. It instead uses four propositions not cited in the proof sketch, plus a second use of n4_76.*)
+ Qed.
+ (*This proof does not use either n5_3 or n5_32.
+ It instead uses four propositions not cited in
+ the proof sketch, plus a second use of n4_76.*)
Theorem n5_5 : ∀ P Q : Prop,
P → ((P → Q) ↔ Q).
@@ -3649,7 +3899,7 @@ Theorem n5_5 : ∀ P Q : Prop,
intros n2_02a.
specialize Exp3_3 with P Q (P→Q).
intros Exp3_3b.
- specialize n3_42 with P Q (P→Q). (*Not mentioned explicitly.*)
+ specialize n3_42 with P Q (P→Q). (*Not cited*)
intros n3_42a.
MP n3_42a n2_02a.
MP Exp3_3b n3_42a.
@@ -3662,7 +3912,8 @@ Theorem n5_5 : ∀ P Q : Prop,
intros n3_47a.
MP n3_47a H.
replace (P∧P) with P in n3_47a.
- replace (((P→Q)→Q)∧(Q→(P→Q))) with ((P→Q)↔Q) in n3_47a.
+ replace (((P→Q)→Q)∧(Q→(P→Q))) with
+ ((P→Q)↔Q) in n3_47a.
apply n3_47a.
apply Equiv4_01.
apply EqBi.
@@ -3680,33 +3931,39 @@ Theorem n5_501 : ∀ P Q : Prop,
specialize Ass3_35 with P Q.
intros Ass3_35a.
specialize Simp3_26 with (P∧(P→Q)) (Q→P).
- intros Simp3_26a. (*Not cited.*)
+ intros Simp3_26a. (*Not cited*)
Syll Simp3_26a Ass3_35a Sa.
- replace ((P∧(P→Q))∧(Q→P)) with (P∧((P→Q)∧(Q→P))) in Sa.
+ replace ((P∧(P→Q))∧(Q→P)) with
+ (P∧((P→Q)∧(Q→P))) in Sa.
replace ((P→Q)∧(Q→P)) with (P↔Q) in Sa.
specialize Exp3_3 with P (P↔Q) Q.
intros Exp3_3b.
MP Exp3_3b Sa.
- clear n5_1a. clear Ass3_35a. clear Simp3_26a. clear Sa.
+ clear n5_1a. clear Ass3_35a.
+ clear Simp3_26a. clear Sa.
Conj Exp3_3a Exp3_3b.
split.
apply Exp3_3a.
apply Exp3_3b.
specialize n4_76 with P (Q→(P↔Q)) ((P↔Q)→Q).
- intros n4_76a. (*Not cited.*)
- replace ((P→Q→P↔Q)∧(P→P↔Q→Q)) with ((P→(Q→P↔Q)∧(P↔Q→Q))) in H.
- replace ((Q→(P↔Q))∧((P↔Q)→Q)) with (Q↔(P↔Q)) in H.
+ intros n4_76a. (*Not cited*)
+ replace ((P→Q→P↔Q)∧(P→P↔Q→Q)) with
+ ((P→(Q→P↔Q)∧(P↔Q→Q))) in H.
+ replace ((Q→(P↔Q))∧((P↔Q)→Q)) with
+ (Q↔(P↔Q)) in H.
apply H.
apply Equiv4_01.
- replace (P→(Q→P↔Q)∧(P↔Q→Q)) with ((P→Q→P↔Q)∧(P→P↔Q→Q)).
+ replace (P→(Q→P↔Q)∧(P↔Q→Q)) with
+ ((P→Q→P↔Q)∧(P→P↔Q→Q)).
reflexivity.
apply EqBi.
apply n4_76a.
apply Equiv4_01.
- replace (P∧(P→Q)∧(Q→P)) with ((P∧(P→Q))∧(Q→P)).
+ replace (P∧(P→Q)∧(Q→P)) with
+ ((P∧(P→Q))∧(Q→P)).
reflexivity.
apply EqBi.
- apply n4_32. (*Not cited.*)
+ apply n4_32. (*Not cited*)
Qed.
Theorem n5_53 : ∀ P Q R S : Prop,
@@ -3716,11 +3973,15 @@ Theorem n5_53 : ∀ P Q R S : Prop,
intros n4_77a.
specialize n4_77 with S P Q.
intros n4_77b.
- replace (P ∨ Q → S) with ((P→S)∧(Q→S)) in n4_77a.
- replace ((((P→S)∧(Q→S))∧(R→S))↔(((P∨Q)∨R)→S)) with ((((P∨Q)∨R)→S)↔(((P→S)∧(Q→S))∧(R→S))) in n4_77a.
+ replace (P ∨ Q → S) with
+ ((P→S)∧(Q→S)) in n4_77a.
+ replace ((((P→S)∧(Q→S))∧(R→S))↔(((P∨Q)∨R)→S))
+ with
+ ((((P∨Q)∨R)→S)↔(((P→S)∧(Q→S))∧(R→S)))
+ in n4_77a.
apply n4_77a.
apply EqBi.
- apply n4_3. (*Not cited explicitly.*)
+ apply n4_3. (*Not cited*)
apply EqBi.
apply n4_77b.
Qed.
@@ -3738,13 +3999,16 @@ Theorem n5_54 : ∀ P Q : Prop,
specialize Trans4_11 with Q (Q∨(P∧Q)).
intros Trans4_11a.
replace (Q∧P) with (P∧Q) in n4_44a.
- replace (Q↔Q∨P∧Q) with (~Q↔~(Q∨P∧Q)) in n4_44a.
+ replace (Q↔Q∨P∧Q) with
+ (~Q↔~(Q∨P∧Q)) in n4_44a.
replace (~Q) with (~(Q∨P∧Q)) in Trans2_16a.
- replace (~(Q∨P∧Q)) with (~Q∧~(P∧Q)) in Trans2_16a.
+ replace (~(Q∨P∧Q)) with
+ (~Q∧~(P∧Q)) in Trans2_16a.
specialize n5_1 with (~Q) (~(P∧Q)).
intros n5_1a.
Syll Trans2_16a n5_1a Sa.
- replace (~(P↔P∧Q)→(~Q↔~(P∧Q))) with (~~(P↔P∧Q)∨(~Q↔~(P∧Q))) in Sa.
+ replace (~(P↔P∧Q)→(~Q↔~(P∧Q))) with
+ (~~(P↔P∧Q)∨(~Q↔~(P∧Q))) in Sa.
replace (~~(P↔P∧Q)) with (P↔P∧Q) in Sa.
specialize Trans4_11 with Q (P∧Q).
intros Trans4_11b.
@@ -3753,18 +4017,19 @@ Theorem n5_54 : ∀ P Q : Prop,
replace (P↔(P∧Q)) with ((P∧Q)↔P) in Sa.
apply Sa.
apply EqBi.
- apply n4_21. (*Not cited.*)
+ apply n4_21. (*Not cited*)
apply EqBi.
apply n4_21.
apply EqBi.
apply Trans4_11b.
apply EqBi.
- apply n4_13. (*Not cited.*)
- replace (~~(P↔P∧Q)∨(~Q↔~(P∧Q))) with (~(P↔P∧Q)→~Q↔~(P∧Q)).
+ apply n4_13. (*Not cited*)
+ replace (~~(P↔P∧Q)∨(~Q↔~(P∧Q))) with
+ (~(P↔P∧Q)→~Q↔~(P∧Q)).
reflexivity.
- apply Impl1_01. (*Not cited.*)
+ apply Impl1_01. (*Not cited*)
apply EqBi.
- apply n4_56. (*Not cited.*)
+ apply n4_56. (*Not cited*)
replace (~(Q∨P∧Q)) with (~Q).
reflexivity.
apply EqBi.
@@ -3774,7 +4039,7 @@ Theorem n5_54 : ∀ P Q : Prop,
apply EqBi.
apply Trans4_11a.
apply EqBi.
- apply n4_3. (*Not cited.*)
+ apply n4_3. (*Not cited*)
Qed.
Theorem n5_55 : ∀ P Q : Prop,
@@ -3791,36 +4056,39 @@ Theorem n5_55 : ∀ P Q : Prop,
specialize n4_74 with P Q.
intros n4_74a.
specialize Trans2_15 with P (Q↔P∨Q).
- intros Trans2_15a. (*Not cited.*)
+ intros Trans2_15a. (*Not cited*)
MP Trans2_15a n4_74a.
Syll Trans2_15a Sa Sb.
- replace (~(Q↔(P∨Q))→(P↔(P∨Q))) with (~~(Q↔(P∨Q))∨(P↔(P∨Q))) in Sb.
+ replace (~(Q↔(P∨Q))→(P↔(P∨Q))) with
+ (~~(Q↔(P∨Q))∨(P↔(P∨Q))) in Sb.
replace (~~(Q↔(P∨Q))) with (Q↔(P∨Q)) in Sb.
replace (Q↔(P∨Q)) with ((P∨Q)↔Q) in Sb.
replace (P↔(P∨Q)) with ((P∨Q)↔P) in Sb.
- replace ((P∨Q↔Q)∨(P∨Q↔P)) with ((P∨Q↔P)∨(P∨Q↔Q)) in Sb.
+ replace ((P∨Q↔Q)∨(P∨Q↔P)) with
+ ((P∨Q↔P)∨(P∨Q↔Q)) in Sb.
apply Sb.
apply EqBi.
- apply n4_31. (*Not cited.*)
+ apply n4_31. (*Not cited*)
apply EqBi.
- apply n4_21. (*Not cited.*)
+ apply n4_21. (*Not cited*)
apply EqBi.
apply n4_21.
apply EqBi.
- apply n4_13. (*Not cited.*)
- replace (~~(Q↔P∨Q)∨(P↔P∨Q)) with (~(Q↔P∨Q)→P↔P∨Q).
+ apply n4_13. (*Not cited*)
+ replace (~~(Q↔P∨Q)∨(P↔P∨Q)) with
+ (~(Q↔P∨Q)→P↔P∨Q).
reflexivity.
apply Impl1_01.
apply EqBi.
apply n4_31.
apply EqBi.
- apply n4_25. (*Not cited.*)
+ apply n4_25. (*Not cited*)
replace ((P∨P)∧(Q∨P)) with ((P∧Q)∨P).
reflexivity.
replace ((P∧Q)∨P) with (P∨(P∧Q)).
replace (Q∨P) with (P∨Q).
apply EqBi.
- apply n4_41. (*Not cited.*)
+ apply n4_41. (*Not cited*)
apply EqBi.
apply n4_31.
apply EqBi.
@@ -3836,8 +4104,15 @@ Theorem n5_6 : ∀ P Q R : Prop,
intros n4_64a.
specialize n4_85 with P Q R.
intros n4_85a.
- replace (((P ∧ ~Q → R) ↔ (P → ~Q → R)) ↔ ((~Q → P → R) ↔ (~Q ∧ P → R))) with ((((P ∧ ~Q → R) ↔ (P → ~Q → R)) → ((~Q → P → R) ↔ (~Q ∧ P → R)))∧((((~Q → P → R) ↔ (~Q ∧ P → R)))→(((P ∧ ~Q → R) ↔ (P → ~Q → R))))) in n4_87a.
- specialize Simp3_27 with (((P ∧ ~Q → R) ↔ (P → ~Q → R) → (~Q → P → R) ↔ (~Q ∧ P → R))) (((~Q → P → R) ↔ (~Q ∧ P → R) → (P ∧ ~Q → R) ↔ (P → ~Q → R))).
+ replace (((P∧~Q→R)↔(P→~Q→R))↔((~Q→P→R)↔(~Q∧P→R)))
+ with
+ ((((P∧~Q→R)↔(P→~Q→R))→((~Q→P→R)↔(~Q∧P→R)))
+ ∧
+ ((((~Q→P→R)↔(~Q∧P→R)))→(((P∧~Q→R)↔(P→~Q→R)))))
+ in n4_87a.
+ specialize Simp3_27 with
+ (((P∧~Q→R)↔(P→~Q→R)→(~Q→P→R)↔(~Q∧P→R)))
+ (((~Q→P→R)↔(~Q∧P→R)→(P∧~Q→R)↔(P→~Q→R))).
intros Simp3_27a.
MP Simp3_27a n4_87a.
specialize Imp3_31 with (~Q) P R.
@@ -3858,7 +4133,10 @@ Theorem n5_6 : ∀ P Q R : Prop,
apply n4_64a.
apply Equiv4_01.
apply Equiv4_01.
- Qed. (*A fair amount of manipulation was needed here to pull the relevant biconditional out of the biconditional of biconditionals.*)
+ Qed.
+ (*A fair amount of manipulation was needed
+ here to pull the relevant biconditional out
+ of the biconditional of biconditionals.*)
Theorem n5_61 : ∀ P Q : Prop,
((P ∨ Q) ∧ ~Q) ↔ (P ∧ ~Q).
@@ -3867,21 +4145,24 @@ Theorem n5_61 : ∀ P Q : Prop,
intros n4_74a.
specialize n5_32 with (~Q) P (Q∨P).
intros n5_32a.
- replace (~Q → P ↔ Q ∨ P) with (~Q ∧ P ↔ ~Q ∧ (Q ∨ P)) in n4_74a.
+ replace (~Q → P ↔ Q ∨ P) with
+ (~Q ∧ P ↔ ~Q ∧ (Q ∨ P)) in n4_74a.
replace (~Q∧P) with (P∧~Q) in n4_74a.
replace (~Q∧(Q∨P)) with ((Q∨P)∧~Q) in n4_74a.
replace (Q∨P) with (P∨Q) in n4_74a.
- replace (P ∧ ~Q ↔ (P ∨ Q) ∧ ~Q) with ((P ∨ Q) ∧ ~Q ↔ P ∧ ~Q) in n4_74a.
+ replace (P ∧ ~Q ↔ (P ∨ Q) ∧ ~Q) with
+ ((P ∨ Q) ∧ ~Q ↔ P ∧ ~Q) in n4_74a.
apply n4_74a.
apply EqBi.
- apply n4_3. (*Not cited exlicitly.*)
+ apply n4_3. (*Not cited*)
apply EqBi.
- apply n4_31. (*Not cited explicitly.*)
+ apply n4_31. (*Not cited*)
apply EqBi.
- apply n4_3. (*Not cited explicitly.*)
+ apply n4_3. (*Not cited*)
apply EqBi.
- apply n4_3. (*Not cited explicitly.*)
- replace (~Q ∧ P ↔ ~Q ∧ (Q ∨ P)) with (~Q → P ↔ Q ∨ P).
+ apply n4_3. (*Not cited*)
+ replace (~Q ∧ P ↔ ~Q ∧ (Q ∨ P)) with
+ (~Q → P ↔ Q ∨ P).
reflexivity.
apply EqBi.
apply n5_32a.
@@ -3897,24 +4178,25 @@ Theorem n5_62 : ∀ P Q : Prop,
replace (~Q∨(Q∧P)) with ((Q∧P)∨~Q) in n4_7a.
replace (~Q∨P) with (P∨~Q) in n4_7a.
replace (Q∧P) with (P∧Q) in n4_7a.
- replace (P ∨ ~Q ↔ P ∧ Q ∨ ~Q) with (P ∧ Q ∨ ~Q ↔ P ∨ ~Q) in n4_7a.
+ replace (P ∨ ~Q ↔ P ∧ Q ∨ ~Q) with
+ (P ∧ Q ∨ ~Q ↔ P ∨ ~Q) in n4_7a.
apply n4_7a.
apply EqBi.
- apply n4_21. (*Not cited explicitly.*)
+ apply n4_21. (*Not cited*)
apply EqBi.
- apply n4_3. (*Not cited explicitly.*)
+ apply n4_3. (*Not cited*)
apply EqBi.
- apply n4_31. (*Not cited explicitly.*)
+ apply n4_31. (*Not cited*)
apply EqBi.
- apply n4_31. (*Not cited explicitly.*)
+ apply n4_31. (*Not cited*)
replace (~Q ∨ Q ∧ P) with (Q → Q ∧ P).
reflexivity.
apply EqBi.
- apply n4_6. (*Not cited explicitly.*)
+ apply n4_6. (*Not cited*)
replace (~Q ∨ P) with (Q → P).
reflexivity.
apply EqBi.
- apply n4_6. (*Not cited explicitly.*)
+ apply n4_6. (*Not cited*)
Qed.
Theorem n5_63 : ∀ P Q : Prop,
@@ -3925,60 +4207,66 @@ Theorem n5_63 : ∀ P Q : Prop,
replace (~~P) with P in n5_62a.
replace (Q ∨ P) with (P ∨ Q) in n5_62a.
replace ((Q∧~P)∨P) with (P∨(Q∧~P)) in n5_62a.
- replace (P ∨ Q ∧ ~ P ↔ P ∨ Q) with (P ∨ Q ↔ P ∨ Q ∧ ~ P) in n5_62a.
+ replace (P ∨ Q ∧ ~P ↔ P ∨ Q) with
+ (P ∨ Q ↔ P ∨ Q ∧ ~P) in n5_62a.
replace (Q∧~P) with (~P∧Q) in n5_62a.
apply n5_62a.
apply EqBi.
- apply n4_3. (*Not cited explicitly.*)
+ apply n4_3. (*Not cited*)
apply EqBi.
- apply n4_21. (*Not cited explicitly.*)
+ apply n4_21. (*Not cited*)
apply EqBi.
- apply n4_31. (*Not cited explicitly.*)
+ apply n4_31. (*Not cited*)
apply EqBi.
- apply n4_31. (*Not cited explicitly.*)
+ apply n4_31. (*Not cited*)
apply EqBi.
- apply n4_13. (*Not cited explicitly.*)
+ apply n4_13. (*Not cited*)
Qed.
Theorem n5_7 : ∀ P Q R : Prop,
((P ∨ R) ↔ (Q ∨ R)) ↔ (R ∨ (P ↔ Q)).
Proof. intros P Q R.
specialize n5_32 with (~R) (~P) (~Q).
- intros n5_32a. (*Not cited.*)
+ intros n5_32a. (*Not cited*)
replace (~R∧~P) with (~(R∨P)) in n5_32a.
replace (~R∧~Q) with (~(R∨Q)) in n5_32a.
- replace ((~(R∨P))↔(~(R∨Q))) with ((R∨P)↔(R∨Q)) in n5_32a.
+ replace ((~(R∨P))↔(~(R∨Q))) with
+ ((R∨P)↔(R∨Q)) in n5_32a.
replace ((~P)↔(~Q)) with (P↔Q) in n5_32a.
- replace (~R→(P↔Q)) with (~~R∨(P↔Q)) in n5_32a.
+ replace (~R→(P↔Q)) with
+ (~~R∨(P↔Q)) in n5_32a.
replace (~~R) with R in n5_32a.
replace (R∨P) with (P∨R) in n5_32a.
replace (R∨Q) with (Q∨R) in n5_32a.
- replace ((R∨(P↔Q))↔(P∨R↔Q∨R)) with ((P∨R↔Q∨R)↔(R∨(P↔Q))) in n5_32a.
- apply n5_32a. (*Not cited.*)
+ replace ((R∨(P↔Q))↔(P∨R↔Q∨R)) with
+ ((P∨R↔Q∨R)↔(R∨(P↔Q))) in n5_32a.
+ apply n5_32a. (*Not cited*)
apply EqBi.
- apply n4_21. (*Not cited.*)
+ apply n4_21. (*Not cited*)
apply EqBi.
apply n4_31.
apply EqBi.
apply n4_31.
apply EqBi.
- apply n4_13. (*Not cited.*)
+ apply n4_13. (*Not cited*)
replace (~~R∨(P↔Q)) with (~R→P↔Q).
reflexivity.
- apply Impl1_01. (*Not cited.*)
+ apply Impl1_01. (*Not cited*)
apply EqBi.
- apply Trans4_11. (*Not cited.*)
+ apply Trans4_11. (*Not cited*)
apply EqBi.
apply Trans4_11.
replace (~(R∨Q)) with (~R∧~Q).
reflexivity.
apply EqBi.
- apply n4_56. (*Not cited.*)
+ apply n4_56. (*Not cited*)
replace (~(R∨P)) with (~R∧~P).
reflexivity.
apply EqBi.
apply n4_56.
- Qed. (*The proof sketch was indecipherable, but an easy proof was available through n5_32.*)
+ Qed.
+ (*The proof sketch was indecipherable, but an
+ easy proof was available through n5_32.*)
Theorem n5_71 : ∀ P Q R : Prop,
(Q → ~R) → (((P ∨ Q) ∧ R) ↔ (P ∧ R)).
@@ -3990,8 +4278,12 @@ Theorem n5_71 : ∀ P Q R : Prop,
specialize n4_51 with Q R.
intros n4_51a.
replace (~Q∨~R) with (~(Q∧R)) in n4_62a.
- replace ((Q→~R)↔~(Q∧R)) with (((Q→~R)→~(Q∧R))∧(~(Q∧R)→(Q→~R))) in n4_62a.
- specialize Simp3_26 with ((Q→~R)→~(Q∧R)) (~(Q∧R)→(Q→~R)).
+ replace ((Q→~R)↔~(Q∧R)) with
+ (((Q→~R)→~(Q∧R))
+ ∧
+ (~(Q∧R)→(Q→~R))) in n4_62a.
+ specialize Simp3_26 with
+ ((Q→~R)→~(Q∧R)) (~(Q∧R)→(Q→~R)).
intros Simp3_26a.
MP Simp3_26a n4_62a.
specialize n4_74 with (Q∧R) (P∧R).
@@ -3999,23 +4291,25 @@ Theorem n5_71 : ∀ P Q R : Prop,
Syll Simp3_26a n4_74a Sa.
replace (R∧P) with (P∧R) in n4_4a.
replace (R∧Q) with (Q∧R) in n4_4a.
- replace ((P∧R)∨(Q∧R)) with ((Q∧R)∨(P∧R)) in n4_4a.
+ replace ((P∧R)∨(Q∧R)) with
+ ((Q∧R)∨(P∧R)) in n4_4a.
replace ((Q∧R)∨(P∧R)) with (R∧(P∨Q)) in Sa.
replace (R∧(P∨Q)) with ((P∨Q)∧R) in Sa.
- replace ((P∧R)↔((P∨Q)∧R)) with (((P∨Q)∧R)↔(P∧R)) in Sa.
+ replace ((P∧R)↔((P∨Q)∧R)) with
+ (((P∨Q)∧R)↔(P∧R)) in Sa.
apply Sa.
apply EqBi.
- apply n4_21. (*Not cited.*)
+ apply n4_21. (*Not cited*)
apply EqBi.
- apply n4_3. (*Not cited.*)
+ apply n4_3. (*Not cited*)
apply EqBi.
- apply n4_4a. (*Not cited.*)
+ apply n4_4a. (*Not cited*)
apply EqBi.
- apply n4_31. (*Not cited.*)
+ apply n4_31. (*Not cited*)
apply EqBi.
- apply n4_3. (*Not cited.*)
+ apply n4_3. (*Not cited*)
apply EqBi.
- apply n4_3. (*Not cited.*)
+ apply n4_3. (*Not cited*)
apply Equiv4_01.
apply EqBi.
apply n4_51a.
@@ -4032,18 +4326,23 @@ Theorem n5_74 : ∀ P Q R : Prop,
split.
apply n5_41a.
apply n5_41b.
- specialize n4_38 with ((P→Q)→(P→R)) ((P→R)→(P→Q)) (P→Q→R) (P→R→Q).
+ specialize n4_38 with
+ ((P→Q)→(P→R)) ((P→R)→(P→Q))
+ (P→Q→R) (P→R→Q).
intros n4_38a.
MP n4_38a H.
- replace (((P→Q)→(P→R))∧((P→R)→(P→Q))) with ((P→Q)↔(P→R)) in n4_38a.
+ replace (((P→Q)→(P→R))∧((P→R)→(P→Q))) with
+ ((P→Q)↔(P→R)) in n4_38a.
specialize n4_76 with P (Q→R) (R→Q).
intros n4_76a.
replace ((Q→R)∧(R→Q)) with (Q↔R) in n4_76a.
- replace ((P→Q→R)∧(P→R→Q)) with (P→(Q↔R)) in n4_38a.
- replace (((P→Q)↔(P→R))↔(P→Q↔R)) with ((P→(Q↔R))↔((P→Q)↔(P→R))) in n4_38a.
+ replace ((P→Q→R)∧(P→R→Q)) with
+ (P→(Q↔R)) in n4_38a.
+ replace (((P→Q)↔(P→R))↔(P→Q↔R)) with
+ ((P→(Q↔R))↔((P→Q)↔(P→R))) in n4_38a.
apply n4_38a.
apply EqBi.
- apply n4_21. (*Not cited.*)
+ apply n4_21. (*Not cited*)
replace (P→Q↔R) with ((P→Q→R)∧(P→R→Q)).
reflexivity.
apply EqBi.
@@ -4057,20 +4356,26 @@ Theorem n5_75 : ∀ P Q R : Prop,
Proof. intros P Q R.
specialize n5_6 with P Q R.
intros n5_6a.
- replace ((P∧~Q→R)↔(P→Q∨R)) with (((P∧~Q→R)→(P→Q∨R))∧((P→Q∨R)→(P∧~Q→R))) in n5_6a.
- specialize Simp3_27 with ((P∧~Q→R)→(P→Q∨R)) ((P→Q∨R)→(P∧~Q→R)).
+ replace ((P∧~Q→R)↔(P→Q∨R)) with
+ (((P∧~Q→R)→(P→Q∨R))
+ ∧
+ ((P→Q∨R)→(P∧~Q→R))) in n5_6a.
+ specialize Simp3_27 with
+ ((P∧~Q→R)→(P→Q∨R)) ((P→Q∨R)→(P∧~Q→R)).
intros Simp3_27a.
MP Simp3_27a n5_6a.
specialize Simp3_26 with (P→(Q∨R)) ((Q∨R)→P).
intros Simp3_26a.
- replace ((P→(Q∨R))∧((Q∨R)→P)) with (P↔(Q∨R)) in Simp3_26a.
+ replace ((P→(Q∨R))∧((Q∨R)→P)) with
+ (P↔(Q∨R)) in Simp3_26a.
Syll Simp3_26a Simp3_27a Sa.
specialize Simp3_27 with (R→~Q) (P↔(Q∨R)).
intros Simp3_27b.
Syll Simp3_27b Sa Sb.
specialize Simp3_27 with (P→(Q∨R)) ((Q∨R)→P).
intros Simp3_27c.
- replace ((P→(Q∨R))∧((Q∨R)→P)) with (P↔(Q∨R)) in Simp3_27c.
+ replace ((P→(Q∨R))∧((Q∨R)→P)) with
+ (P↔(Q∨R)) in Simp3_27c.
Syll Simp3_27b Simp3_27c Sc.
specialize n4_77 with P Q R.
intros n4_77a.
@@ -4084,21 +4389,27 @@ Theorem n5_75 : ∀ P Q R : Prop,
split.
apply Sd.
apply Simp3_26b.
- specialize Comp3_43 with ((R→~Q)∧(P↔(Q∨R))) (R→P) (R→~Q).
+ specialize Comp3_43 with
+ ((R→~Q)∧(P↔(Q∨R))) (R→P) (R→~Q).
intros Comp3_43a.
MP Comp3_43a H.
specialize Comp3_43 with R P (~Q).
intros Comp3_43b.
Syll Comp3_43a Comp3_43b Se.
- clear n5_6a. clear Simp3_27a. clear Simp3_27b. clear Simp3_27c. clear Simp3_27d. clear Simp3_26a. clear Simp3_26b. clear Comp3_43a. clear Comp3_43b. clear Sa. clear Sc. clear Sd. clear H. clear n4_77a.
+ clear n5_6a. clear Simp3_27a. clear Simp3_27b.
+ clear Simp3_27c. clear Simp3_27d. clear Simp3_26a.
+ clear Simp3_26b. clear Comp3_43a. clear Comp3_43b.
+ clear Sa. clear Sc. clear Sd. clear H. clear n4_77a.
Conj Sb Se.
split.
apply Sb.
apply Se.
- specialize Comp3_43 with ((R→~Q)∧(P↔Q∨R)) (P∧~Q→R) (R→P∧~Q).
+ specialize Comp3_43 with
+ ((R→~Q)∧(P↔Q∨R)) (P∧~Q→R) (R→P∧~Q).
intros Comp3_43c.
MP Comp3_43c H.
- replace ((P∧~Q→R)∧(R→P∧~Q)) with (P∧~Q↔R) in Comp3_43c.
+ replace ((P∧~Q→R)∧(R→P∧~Q)) with
+ (P∧~Q↔R) in Comp3_43c.
apply Comp3_43c.
apply Equiv4_01.
apply EqBi.