(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* Decls.logical_kind option -> env -> Evd.evar_map -> constr -> bool type display_function = GlobRef.t -> Decls.logical_kind option -> env -> constr -> unit (* This option restricts the output of [SearchPattern ...], etc. to the names of the symbols matching the query, separated by a newline. This type of output is useful for editors (like emacs), to generate a list of completion candidates without having to parse through the types of all symbols. *) type glob_search_item = | GlobSearchSubPattern of glob_search_where * bool * constr_pattern | GlobSearchString of string | GlobSearchKind of Decls.logical_kind | GlobSearchFilter of (GlobRef.t -> bool) type glob_search_request = | GlobSearchLiteral of glob_search_item | GlobSearchDisjConj of (bool * glob_search_request) list list module SearchBlacklist = Goptions.MakeStringTable (struct let key = ["Search";"Blacklist"] let title = "Current search blacklist : " let member_message s b = str "Search blacklist does " ++ (if b then mt () else str "not ") ++ str "include " ++ str s end) (* The functions iter_constructors and iter_declarations implement the behavior needed for the Coq searching commands. These functions take as first argument the procedure that will be called to treat each entry. This procedure receives the name of the object, the assumptions that will make it possible to print its type, and the constr term that represent its type. *) let iter_constructors indsp u fn env nconstr = for i = 1 to nconstr do let typ = Inductiveops.type_of_constructor env ((indsp, i), u) in fn (GlobRef.ConstructRef (indsp, i)) None env typ done (* FIXME: this is a Libobject hack that should be replaced with a proper registration mechanism. *) module DynHandle = Libobject.Dyn.Map(struct type 'a t = 'a -> unit end) let handle h (Libobject.Dyn.Dyn (tag, o)) = match DynHandle.find tag h with | f -> f o | exception Not_found -> () (* General search over declarations *) let generic_search env (fn : GlobRef.t -> Decls.logical_kind option -> env -> constr -> unit) = List.iter (fun d -> fn (GlobRef.VarRef (NamedDecl.get_id d)) None env (NamedDecl.get_type d)) (Environ.named_context env); let iter_obj (sp, kn) lobj = match lobj with | AtomicObject o -> let handler = DynHandle.add Declare.Internal.Constant.tag begin fun obj -> let cst = Global.constant_of_delta_kn kn in let gr = GlobRef.ConstRef cst in let (typ, _) = Typeops.type_of_global_in_context (Global.env ()) gr in let kind = Declare.Internal.Constant.kind obj in fn gr (Some kind) env typ end @@ DynHandle.add DeclareInd.Internal.objInductive begin fun _ -> let mind = Global.mind_of_delta_kn kn in let mib = Global.lookup_mind mind in let iter_packet i mip = let ind = (mind, i) in let u = Univ.make_abstract_instance (Declareops.inductive_polymorphic_context mib) in let i = (ind, u) in let typ = Inductiveops.type_of_inductive env i in let () = fn (GlobRef.IndRef ind) None env typ in let len = Array.length mip.mind_user_lc in iter_constructors ind u fn env len in Array.iteri iter_packet mib.mind_packets end @@ DynHandle.empty in handle handler o | _ -> () in try Declaremods.iter_all_segments iter_obj with Not_found -> () (** This module defines a preference on constrs in the form of a [compare] function (preferred constr must be big for this functions, so preferences such as small constr must use a reversed order). This priority will be used to order search results and propose first results which are more likely to be relevant to the query, this is why the type [t] contains the other elements required of a search. *) module ConstrPriority = struct (* The priority is memoised here. Because of the very localised use of this module, it is not worth it making a convenient interface. *) type t = GlobRef.t * Decls.logical_kind option * Environ.env * Constr.t * priority and priority = int module ConstrSet = CSet.Make(Constr) (** A measure of the size of a term *) let rec size t = Constr.fold (fun s t -> 1 + s + size t) 0 t (** Set of the "symbols" (definitions, inductives, constructors) which appear in a term. *) let rec symbols acc t = let open Constr in match kind t with | Const _ | Ind _ | Construct _ -> ConstrSet.add t acc | _ -> Constr.fold symbols acc t (** The number of distinct "symbols" (see {!symbols}) which appear in a term. *) let num_symbols t = ConstrSet.(cardinal (symbols empty t)) let priority gref t : priority = -(3*(num_symbols t) + size t) let compare (_,_,_,_,p1) (_,_,_,_,p2) = pervasives_compare p1 p2 end module PriorityQueue = Heap.Functional(ConstrPriority) let rec iter_priority_queue q fn = (* use an option to make the function tail recursive. Will be obsoleted with Ocaml 4.02 with the [match … with | exception …] syntax. *) let next = begin try Some (PriorityQueue.maximum q) with Heap.EmptyHeap -> None end in match next with | Some (gref,kind,env,t,_) -> fn gref kind env t; iter_priority_queue (PriorityQueue.remove q) fn | None -> () let prioritize_search seq fn = let acc = ref PriorityQueue.empty in let iter gref kind env t = let p = ConstrPriority.priority gref t in acc := PriorityQueue.add (gref,kind,env,t,p) !acc in let () = seq iter in iter_priority_queue !acc fn (** Filters *) (** This function tries to see whether the conclusion matches a pattern. FIXME: this is quite dummy, we may find a more efficient algorithm. *) let rec pattern_filter pat ref env sigma typ = let typ = Termops.strip_outer_cast sigma typ in if Constr_matching.is_matching env sigma pat typ then true else match EConstr.kind sigma typ with | Prod (_, _, typ) | LetIn (_, _, _, typ) -> pattern_filter pat ref env sigma typ | _ -> false let full_name_of_reference ref = let (dir,id) = repr_path (Nametab.path_of_global ref) in DirPath.to_string dir ^ "." ^ Id.to_string id (** Whether a reference is blacklisted *) let blacklist_filter ref kind env sigma typ = let name = full_name_of_reference ref in let is_not_bl str = not (String.string_contains ~where:name ~what:str) in CString.Set.for_all is_not_bl (SearchBlacklist.v ()) let module_filter (mods, outside) ref kind env sigma typ = let sp = Nametab.path_of_global ref in let sl = dirpath sp in let is_outside md = not (is_dirpath_prefix_of md sl) in let is_inside md = is_dirpath_prefix_of md sl in if outside then List.for_all is_outside mods else List.is_empty mods || List.exists is_inside mods let name_of_reference ref = Id.to_string (Nametab.basename_of_global ref) let search_filter query gr kind env sigma typ = match query with | GlobSearchSubPattern (where,head,pat) -> let open Context.Rel.Declaration in let rec collect env hyps typ = match Constr.kind typ with | LetIn (na,b,t,c) -> collect (push_rel (LocalDef (na,b,t)) env) ((env,b) :: (env,t) :: hyps) c | Prod (na,t,c) -> collect (push_rel (LocalAssum (na,t)) env) ((env,t) :: hyps) c | _ -> (hyps,(env,typ)) in let typl= match where with | InHyp -> fst (collect env [] typ) | InConcl -> [snd (collect env [] typ)] | Anywhere -> if head then let hyps, ccl = collect env [] typ in ccl :: hyps else [env,typ] in List.exists (fun (env,typ) -> let f = if head then Constr_matching.is_matching_head else Constr_matching.is_matching_appsubterm ~closed:false in f env sigma pat (EConstr.of_constr typ)) typl | GlobSearchString s -> String.string_contains ~where:(name_of_reference gr) ~what:s | GlobSearchKind k -> (match kind with None -> false | Some k' -> k = k') | GlobSearchFilter f -> f gr (** SearchPattern *) let search_pattern env sigma pat mods pr_search = let filter ref kind env typ = module_filter mods ref kind env sigma typ && pattern_filter pat ref env sigma (EConstr.of_constr typ) && blacklist_filter ref kind env sigma typ in let iter ref kind env typ = if filter ref kind env typ then pr_search ref kind env typ in generic_search env iter (** SearchRewrite *) let eq () = Coqlib.(lib_ref "core.eq.type") let rewrite_pat1 pat = PApp (PRef (eq ()), [| PMeta None; pat; PMeta None |]) let rewrite_pat2 pat = PApp (PRef (eq ()), [| PMeta None; PMeta None; pat |]) let search_rewrite env sigma pat mods pr_search = let pat1 = rewrite_pat1 pat in let pat2 = rewrite_pat2 pat in let filter ref kind env typ = module_filter mods ref kind env sigma typ && (pattern_filter pat1 ref env sigma (EConstr.of_constr typ) || pattern_filter pat2 ref env sigma (EConstr.of_constr typ)) && blacklist_filter ref kind env sigma typ in let iter ref kind env typ = if filter ref kind env typ then pr_search ref kind env typ in generic_search env iter (** Search *) let search env sigma items mods pr_search = let filter ref kind env typ = let eqb b1 b2 = if b1 then b2 else not b2 in module_filter mods ref kind env sigma typ && let rec aux = function | GlobSearchLiteral i -> search_filter i ref kind env sigma typ | GlobSearchDisjConj l -> List.exists (List.for_all aux') l and aux' (b,s) = eqb b (aux s) in List.for_all aux' items && blacklist_filter ref kind env sigma typ in let iter ref kind env typ = if filter ref kind env typ then pr_search ref kind env typ in generic_search env iter type search_constraint = | Name_Pattern of Str.regexp | Type_Pattern of Pattern.constr_pattern | SubType_Pattern of Pattern.constr_pattern | In_Module of Names.DirPath.t | Include_Blacklist type 'a coq_object = { coq_object_prefix : string list; coq_object_qualid : string list; coq_object_object : 'a; } let interface_search env sigma = let rec extract_flags name tpe subtpe mods blacklist = function | [] -> (name, tpe, subtpe, mods, blacklist) | (Name_Pattern regexp, b) :: l -> extract_flags ((regexp, b) :: name) tpe subtpe mods blacklist l | (Type_Pattern pat, b) :: l -> extract_flags name ((pat, b) :: tpe) subtpe mods blacklist l | (SubType_Pattern pat, b) :: l -> extract_flags name tpe ((pat, b) :: subtpe) mods blacklist l | (In_Module id, b) :: l -> extract_flags name tpe subtpe ((id, b) :: mods) blacklist l | (Include_Blacklist, b) :: l -> extract_flags name tpe subtpe mods b l in fun flags -> let (name, tpe, subtpe, mods, blacklist) = extract_flags [] [] [] [] false flags in let filter_function ref env constr = let id = Names.Id.to_string (Nametab.basename_of_global ref) in let path = Libnames.dirpath (Nametab.path_of_global ref) in let toggle x b = if x then b else not b in let match_name (regexp, flag) = toggle (Str.string_match regexp id 0) flag in let match_type (pat, flag) = toggle (Constr_matching.is_matching env sigma pat (EConstr.of_constr constr)) flag in let match_subtype (pat, flag) = toggle (Constr_matching.is_matching_appsubterm ~closed:false env sigma pat (EConstr.of_constr constr)) flag in let match_module (mdl, flag) = toggle (Libnames.is_dirpath_prefix_of mdl path) flag in List.for_all match_name name && List.for_all match_type tpe && List.for_all match_subtype subtpe && List.for_all match_module mods && (blacklist || blacklist_filter ref kind env sigma constr) in let ans = ref [] in let print_function ref env constr = let fullpath = DirPath.repr (Nametab.dirpath_of_global ref) in let qualid = Nametab.shortest_qualid_of_global Id.Set.empty ref in let (shortpath, basename) = Libnames.repr_qualid qualid in let shortpath = DirPath.repr shortpath in (* [shortpath] is a suffix of [fullpath] and we're looking for the missing prefix *) let rec prefix full short accu = match full, short with | _, [] -> let full = List.rev_map Id.to_string full in (full, accu) | _ :: full, m :: short -> prefix full short (Id.to_string m :: accu) | _ -> assert false in let (prefix, qualid) = prefix fullpath shortpath [Id.to_string basename] in let answer = { coq_object_prefix = prefix; coq_object_qualid = qualid; coq_object_object = constr; } in ans := answer :: !ans; in let iter ref kind env typ = if filter_function ref env typ then print_function ref env typ in let () = generic_search env iter in !ans