(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* Pp.(strbrk "Automatically declaring " ++ Id.print id ++ strbrk " as template polymorphic. Use attributes or " ++ strbrk "disable Auto Template Polymorphism to avoid this warning.")) let should_auto_template = let open Goptions in let auto = ref true in let () = declare_bool_option { optdepr = false; optname = "Automatically make some inductive types template polymorphic"; optkey = ["Auto";"Template";"Polymorphism"]; optread = (fun () -> !auto); optwrite = (fun b -> auto := b); } in fun id would_auto -> let b = !auto && would_auto in if b then warn_auto_template id; b let rec complete_conclusion a cs = CAst.map_with_loc (fun ?loc -> function | CProdN (bl,c) -> CProdN (bl,complete_conclusion a cs c) | CLetIn (na,b,t,c) -> CLetIn (na,b,t,complete_conclusion a cs c) | CHole (k, _, _) -> let (has_no_args,name,params) = a in if not has_no_args then user_err ?loc (strbrk"Cannot infer the non constant arguments of the conclusion of " ++ Id.print cs ++ str "."); let args = List.map (fun id -> CAst.(make ?loc @@ CRef(qualid_of_ident ?loc id,None))) params in CAppExpl ((None,qualid_of_ident ?loc name,None),List.rev args) | c -> c ) let push_types env idl rl tl = List.fold_left3 (fun env id r t -> EConstr.push_rel (LocalAssum (make_annot (Name id) r,t)) env) env idl rl tl type structured_one_inductive_expr = { ind_name : Id.t; ind_arity : constr_expr; ind_lc : (Id.t * constr_expr) list } let check_all_names_different indl = let ind_names = List.map (fun ind -> ind.ind_name) indl in let cstr_names = List.map_append (fun ind -> List.map fst ind.ind_lc) indl in let l = List.duplicates Id.equal ind_names in let () = match l with | [] -> () | t :: _ -> raise (InductiveError (SameNamesTypes t)) in let l = List.duplicates Id.equal cstr_names in let () = match l with | [] -> () | c :: _ -> raise (InductiveError (SameNamesConstructors (List.hd l))) in let l = List.intersect Id.equal ind_names cstr_names in match l with | [] -> () | _ -> raise (InductiveError (SameNamesOverlap l)) let mk_mltype_data sigma env assums arity indname = let is_ml_type = is_sort env sigma arity in (is_ml_type,indname,assums) (** Make the arity conclusion flexible to avoid generating an upper bound universe now, only if the universe does not appear anywhere else. This is really a hack to stay compatible with the semantics of template polymorphic inductives which are recognized when a "Type" appears at the end of the conlusion in the source syntax. *) let rec check_type_conclusion ind = let open Glob_term in match DAst.get ind with | GSort (UAnonymous {rigid=true}) -> (Some true) | GSort (UNamed _) -> (Some false) | GProd ( _, _, _, e) | GLetIn (_, _, _, e) | GLambda (_, _, _, e) | GApp (e, _) | GCast (e, _) -> check_type_conclusion e | _ -> None let make_anonymous_conclusion_flexible sigma = function | None -> sigma | Some (false, _) -> sigma | Some (true, s) -> (match EConstr.ESorts.kind sigma s with | Type u -> (match Univ.universe_level u with | Some u -> Evd.make_flexible_variable sigma ~algebraic:true u | None -> sigma) | _ -> sigma) let intern_ind_arity env sigma ind = let c = intern_gen IsType env sigma ind.ind_arity in let impls = Implicit_quantifiers.implicits_of_glob_constr ~with_products:true c in let pseudo_poly = check_type_conclusion c in (constr_loc ind.ind_arity, c, impls, pseudo_poly) let pretype_ind_arity env sigma (loc, c, impls, pseudo_poly) = let sigma,t = understand_tcc env sigma ~expected_type:IsType c in match Reductionops.sort_of_arity env sigma t with | exception Invalid_argument _ -> user_err ?loc (str "Not an arity") | s -> let concl = match pseudo_poly with | Some b -> Some (b, s) | None -> None in sigma, (t, Retyping.relevance_of_sort s, concl, impls) let interp_cstrs env sigma impls mldata arity ind = let cnames,ctyps = List.split ind.ind_lc in (* Complete conclusions of constructor types if given in ML-style syntax *) let ctyps' = List.map2 (complete_conclusion mldata) cnames ctyps in (* Interpret the constructor types *) let sigma, (ctyps'', cimpls) = on_snd List.split @@ List.fold_left_map (fun sigma l -> interp_type_evars_impls ~program_mode:false env sigma ~impls l) sigma ctyps' in sigma, (cnames, ctyps'', cimpls) let sign_level env evd sign = fst (List.fold_right (fun d (lev,env) -> match d with | LocalDef _ -> lev, push_rel d env | LocalAssum _ -> let s = Retyping.get_sort_of env evd (EConstr.of_constr (RelDecl.get_type d)) in let u = univ_of_sort s in (Univ.sup u lev, push_rel d env)) sign (Univ.Universe.sprop,env)) let sup_list min = List.fold_left Univ.sup min let extract_level env evd min tys = let sorts = List.map (fun ty -> let ctx, concl = Reduction.dest_prod_assum env ty in sign_level env evd (LocalAssum (make_annot Anonymous Sorts.Relevant, concl) :: ctx)) tys in sup_list min sorts let is_flexible_sort evd u = match Univ.Universe.level u with | Some l -> Evd.is_flexible_level evd l | None -> false (**********************************************************************) (* Tools for template polymorphic inductive types *) (* Miscellaneous functions to remove or test local univ assumed to occur only in the le constraints *) (* Solve a system of universe constraint of the form u_s11, ..., u_s1p1, w1 <= u1 ... u_sn1, ..., u_snpn, wn <= un where - the ui (1 <= i <= n) are universe variables, - the sjk select subsets of the ui for each equations, - the wi are arbitrary complex universes that do not mention the ui. *) let is_direct_sort_constraint s v = match s with | Some u -> Univ.univ_level_mem u v | None -> false let solve_constraints_system levels level_bounds = let open Univ in let levels = Array.mapi (fun i o -> match o with | Some u -> (match Universe.level u with | Some u -> Some u | _ -> level_bounds.(i) <- Universe.sup level_bounds.(i) u; None) | None -> None) levels in let v = Array.copy level_bounds in let nind = Array.length v in let clos = Array.map (fun _ -> Int.Set.empty) levels in (* First compute the transitive closure of the levels dependencies *) for i=0 to nind-1 do for j=0 to nind-1 do if not (Int.equal i j) && is_direct_sort_constraint levels.(j) v.(i) then clos.(i) <- Int.Set.add j clos.(i); done; done; let rec closure () = let continue = ref false in Array.iteri (fun i deps -> let deps' = Int.Set.fold (fun j acc -> Int.Set.union acc clos.(j)) deps deps in if Int.Set.equal deps deps' then () else (clos.(i) <- deps'; continue := true)) clos; if !continue then closure () else () in closure (); for i=0 to nind-1 do for j=0 to nind-1 do if not (Int.equal i j) && Int.Set.mem j clos.(i) then (v.(i) <- Universe.sup v.(i) level_bounds.(j)); done; done; v let inductive_levels env evd arities inds = let destarities = List.map (fun x -> x, Reduction.dest_arity env x) arities in let levels = List.map (fun (x,(ctx,a)) -> if Sorts.is_prop a || Sorts.is_sprop a then None else Some (univ_of_sort a)) destarities in let cstrs_levels, min_levels, sizes = CList.split3 (List.map2 (fun (_,tys,_) (arity,(ctx,du)) -> let len = List.length tys in let minlev = Sorts.univ_of_sort du in let minlev = if len > 1 && not (is_impredicative_sort env du) then Univ.sup minlev Univ.type0_univ else minlev in let minlev = (* Indices contribute. *) if indices_matter env && List.length ctx > 0 then ( let ilev = sign_level env evd ctx in Univ.sup ilev minlev) else minlev in let clev = extract_level env evd minlev tys in (clev, minlev, len)) inds destarities) in (* Take the transitive closure of the system of constructors *) (* level constraints and remove the recursive dependencies *) let levels' = solve_constraints_system (Array.of_list levels) (Array.of_list cstrs_levels) in let evd, arities = CList.fold_left3 (fun (evd, arities) cu (arity,(ctx,du)) len -> if is_impredicative_sort env du then (* Any product is allowed here. *) evd, (false, arity) :: arities else (* If in a predicative sort, or asked to infer the type, we take the max of: - indices (if in indices-matter mode) - constructors - Type(1) if there is more than 1 constructor *) (* Constructors contribute. *) let evd = if Sorts.is_set du then if not (Evd.check_leq evd cu Univ.type0_univ) then raise (InductiveError LargeNonPropInductiveNotInType) else evd else evd in let evd = if len >= 2 && Univ.is_type0m_univ cu then (* "Polymorphic" type constraint and more than one constructor, should not land in Prop. Add constraint only if it would land in Prop directly (no informative arguments as well). *) Evd.set_leq_sort env evd Sorts.set du else evd in let duu = Sorts.univ_of_sort du in let template_prop, evd = if not (Univ.is_small_univ duu) && Univ.Universe.equal cu duu then if is_flexible_sort evd duu && not (Evd.check_leq evd Univ.type0_univ duu) then true, Evd.set_eq_sort env evd Sorts.prop du else false, evd else false, Evd.set_eq_sort env evd (sort_of_univ cu) du in (evd, (template_prop, arity) :: arities)) (evd,[]) (Array.to_list levels') destarities sizes in evd, List.rev arities let check_named {CAst.loc;v=na} = match na with | Name _ -> () | Anonymous -> let msg = str "Parameters must be named." in user_err ?loc msg let template_polymorphism_candidate env ~ctor_levels uctx params concl = match uctx with | Entries.Monomorphic_entry uctx -> let concltemplate = Option.cata (fun s -> not (Sorts.is_small s)) false concl in if not concltemplate then false else let template_check = Environ.check_template env in let conclu = Option.cata Sorts.univ_of_sort Univ.type0m_univ concl in let params, conclunivs = IndTyping.template_polymorphic_univs ~template_check ~ctor_levels uctx params conclu in not (template_check && Univ.LSet.is_empty conclunivs) | Entries.Polymorphic_entry _ -> false let check_param = function | CLocalDef (na, _, _) -> check_named na | CLocalAssum (nas, Default _, _) -> List.iter check_named nas | CLocalAssum (nas, Generalized _, _) -> () | CLocalPattern {CAst.loc} -> Loc.raise ?loc (Stream.Error "pattern with quote not allowed here") let restrict_inductive_universes sigma ctx_params arities constructors = let merge_universes_of_constr c = Univ.LSet.union (EConstr.universes_of_constr sigma (EConstr.of_constr c)) in let uvars = Univ.LSet.empty in let uvars = Context.Rel.(fold_outside (Declaration.fold_constr merge_universes_of_constr) ctx_params ~init:uvars) in let uvars = List.fold_right merge_universes_of_constr arities uvars in let uvars = List.fold_right (fun (_,ctypes,_) -> List.fold_right merge_universes_of_constr ctypes) constructors uvars in Evd.restrict_universe_context sigma uvars let interp_mutual_inductive_constr ~env0 ~sigma ~template ~udecl ~env_ar ~env_params ~ctx_params ~indnames ~arities ~arityconcl ~constructors ~env_ar_params ~cumulative ~poly ~private_ind ~finite = (* Compute renewed arities *) let sigma = Evd.minimize_universes sigma in let nf = Evarutil.nf_evars_universes sigma in let constructors = List.map (on_pi2 (List.map nf)) constructors in let arities = List.map EConstr.(to_constr sigma) arities in let sigma = List.fold_left make_anonymous_conclusion_flexible sigma arityconcl in let sigma, arities = inductive_levels env_ar_params sigma arities constructors in let sigma = Evd.minimize_universes sigma in let nf = Evarutil.nf_evars_universes sigma in let arities = List.map (on_snd nf) arities in let constructors = List.map (on_pi2 (List.map nf)) constructors in let ctx_params = List.map Termops.(map_rel_decl (EConstr.to_constr sigma)) ctx_params in let arityconcl = List.map (Option.map (fun (_anon, s) -> EConstr.ESorts.kind sigma s)) arityconcl in let sigma = restrict_inductive_universes sigma ctx_params (List.map snd arities) constructors in let uctx = Evd.check_univ_decl ~poly sigma udecl in List.iter (fun c -> check_evars env_params (Evd.from_env env_params) sigma (EConstr.of_constr (snd c))) arities; Context.Rel.iter (fun c -> check_evars env0 (Evd.from_env env0) sigma (EConstr.of_constr c)) ctx_params; List.iter (fun (_,ctyps,_) -> List.iter (fun c -> check_evars env_ar_params (Evd.from_env env_ar_params) sigma (EConstr.of_constr c)) ctyps) constructors; (* Build the inductive entries *) let entries = List.map4 (fun indname (templatearity, arity) concl (cnames,ctypes,cimpls) -> let template_candidate () = templatearity || let ctor_levels = let add_levels c levels = Univ.LSet.union levels (Vars.universes_of_constr c) in let param_levels = List.fold_left (fun levels d -> match d with | LocalAssum _ -> levels | LocalDef (_,b,t) -> add_levels b (add_levels t levels)) Univ.LSet.empty ctx_params in List.fold_left (fun levels c -> add_levels c levels) param_levels ctypes in template_polymorphism_candidate env0 ~ctor_levels uctx ctx_params concl in let template = match template with | Some template -> if poly && template then user_err Pp.(strbrk "Template-polymorphism and universe polymorphism are not compatible."); template | None -> should_auto_template indname (template_candidate ()) in { mind_entry_typename = indname; mind_entry_arity = arity; mind_entry_template = template; mind_entry_consnames = cnames; mind_entry_lc = ctypes }) indnames arities arityconcl constructors in let variance = if poly && cumulative then Some (InferCumulativity.dummy_variance uctx) else None in (* Build the mutual inductive entry *) let mind_ent = { mind_entry_params = ctx_params; mind_entry_record = None; mind_entry_finite = finite; mind_entry_inds = entries; mind_entry_private = if private_ind then Some false else None; mind_entry_universes = uctx; mind_entry_variance = variance; } in (if poly && cumulative then InferCumulativity.infer_inductive env_ar mind_ent else mind_ent), Evd.universe_binders sigma let interp_params env udecl uparamsl paramsl = let sigma, udecl = interp_univ_decl_opt env udecl in let sigma, (uimpls, ((env_uparams, ctx_uparams), useruimpls)) = interp_context_evars ~program_mode:false env sigma uparamsl in let sigma, (impls, ((env_params, ctx_params), userimpls)) = interp_context_evars ~program_mode:false ~impl_env:uimpls env_uparams sigma paramsl in (* Names of parameters as arguments of the inductive type (defs removed) *) let assums = List.filter is_local_assum ctx_params in sigma, env_params, (ctx_params, env_uparams, ctx_uparams, List.map (RelDecl.get_name %> Name.get_id) assums, userimpls, useruimpls, impls, udecl) let interp_mutual_inductive_gen env0 ~template udecl (uparamsl,paramsl,indl) notations ~cumulative ~poly ~private_ind finite = check_all_names_different indl; List.iter check_param paramsl; if not (List.is_empty uparamsl) && not (List.is_empty notations) then user_err (str "Inductives with uniform parameters may not have attached notations."); let indnames = List.map (fun ind -> ind.ind_name) indl in let sigma, env_params, infos = interp_params env0 udecl uparamsl paramsl in (* Interpret the arities *) let arities = List.map (intern_ind_arity env_params sigma) indl in let sigma, env_params, (ctx_params, env_uparams, ctx_uparams, params, userimpls, useruimpls, impls, udecl), arities, is_template = let is_template = List.exists (fun (_,_,_,pseudo_poly) -> not (Option.is_empty pseudo_poly)) arities in if not poly && is_template then (* In case of template polymorphism, we need to compute more constraints *) let env0 = Environ.set_universes_lbound env0 Univ.Level.prop in let sigma, env_params, infos = interp_params env0 udecl uparamsl paramsl in let arities = List.map (intern_ind_arity env_params sigma) indl in sigma, env_params, infos, arities, is_template else sigma, env_params, infos, arities, is_template in let sigma, arities = List.fold_left_map (pretype_ind_arity env_params) sigma arities in let arities, relevances, arityconcl, indimpls = List.split4 arities in let fullarities = List.map (fun c -> EConstr.it_mkProd_or_LetIn c ctx_params) arities in let env_ar = push_types env_uparams indnames relevances fullarities in let env_ar_params = EConstr.push_rel_context ctx_params env_ar in (* Compute interpretation metadatas *) let indimpls = List.map (fun impls -> userimpls @ impls) indimpls in let impls = compute_internalization_env env_uparams sigma ~impls (Inductive (params,true)) indnames fullarities indimpls in let ntn_impls = compute_internalization_env env_uparams sigma (Inductive (params,true)) indnames fullarities indimpls in let mldatas = List.map2 (mk_mltype_data sigma env_params params) arities indnames in let sigma, constructors = Metasyntax.with_syntax_protection (fun () -> (* Temporary declaration of notations and scopes *) List.iter (Metasyntax.set_notation_for_interpretation env_params ntn_impls) notations; (* Interpret the constructor types *) List.fold_left3_map (fun sigma -> interp_cstrs env_ar_params sigma impls) sigma mldatas arities indl) () in (* generalize over the uniform parameters *) let nparams = Context.Rel.length ctx_params in let nuparams = Context.Rel.length ctx_uparams in let uargs = Context.Rel.to_extended_vect EConstr.mkRel 0 ctx_uparams in let uparam_subst = List.init (List.length indl) EConstr.(fun i -> mkApp (mkRel (i + 1 + nuparams), uargs)) @ List.init nuparams EConstr.(fun i -> mkRel (i + 1)) in let generalize_constructor c = EConstr.Unsafe.to_constr (EConstr.Vars.substnl uparam_subst nparams c) in let constructors = List.map (fun (cnames,ctypes,cimpls) -> (cnames,List.map generalize_constructor ctypes,cimpls)) constructors in let ctx_params = ctx_params @ ctx_uparams in let userimpls = useruimpls @ userimpls in let indimpls = List.map (fun iimpl -> useruimpls @ iimpl) indimpls in let fullarities = List.map (fun c -> EConstr.it_mkProd_or_LetIn c ctx_uparams) fullarities in let env_ar = push_types env0 indnames relevances fullarities in let env_ar_params = EConstr.push_rel_context ctx_params env_ar in (* Try further to solve evars, and instantiate them *) let sigma = solve_remaining_evars all_and_fail_flags env_params sigma in let impls = List.map2 (fun indimpls (_,_,cimpls) -> indimpls, List.map (fun impls -> userimpls @ impls) cimpls) indimpls constructors in let mie, pl = interp_mutual_inductive_constr ~env0 ~template ~sigma ~env_params ~env_ar ~ctx_params ~udecl ~arities ~arityconcl ~constructors ~env_ar_params ~poly ~finite ~cumulative ~private_ind ~indnames in (mie, pl, impls) (* Very syntactical equality *) let eq_local_binders bl1 bl2 = List.equal local_binder_eq bl1 bl2 let extract_coercions indl = let mkqid (_,({CAst.v=id},_)) = qualid_of_ident id in let extract lc = List.filter (fun (iscoe,_) -> iscoe) lc in List.map mkqid (List.flatten(List.map (fun (_,_,_,lc) -> extract lc) indl)) let extract_params indl = let paramsl = List.map (fun (_,params,_,_) -> params) indl in match paramsl with | [] -> anomaly (Pp.str "empty list of inductive types.") | params::paramsl -> if not (List.for_all (eq_local_binders params) paramsl) then user_err Pp.(str "Parameters should be syntactically the same for each inductive type."); params let extract_inductive indl = List.map (fun ({CAst.v=indname},_,ar,lc) -> { ind_name = indname; ind_arity = Option.cata (fun x -> x) (CAst.make @@ CSort (Glob_term.UAnonymous {rigid=true})) ar; ind_lc = List.map (fun (_,({CAst.v=id},t)) -> (id,t)) lc }) indl let extract_mutual_inductive_declaration_components indl = let indl,ntnl = List.split indl in let params = extract_params indl in let coes = extract_coercions indl in let indl = extract_inductive indl in (params,indl), coes, List.flatten ntnl type uniform_inductive_flag = | UniformParameters | NonUniformParameters let do_mutual_inductive ~template udecl indl ~cumulative ~poly ~private_ind ~uniform finite = let (params,indl),coes,ntns = extract_mutual_inductive_declaration_components indl in (* Interpret the types *) let indl = match uniform with UniformParameters -> (params, [], indl) | NonUniformParameters -> ([], params, indl) in let mie,pl,impls = interp_mutual_inductive_gen (Global.env()) ~template udecl indl ntns ~cumulative ~poly ~private_ind finite in (* Declare the mutual inductive block with its associated schemes *) ignore (DeclareInd.declare_mutual_inductive_with_eliminations mie pl impls); (* Declare the possible notations of inductive types *) List.iter (Metasyntax.add_notation_interpretation (Global.env ())) ntns; (* Declare the coercions *) List.iter (fun qid -> Class.try_add_new_coercion (Nametab.locate qid) ~local:false ~poly) coes (** Prepare a "match" template for a given inductive type. For each branch of the match, we list the constructor name followed by enough pattern variables. [Not_found] is raised if the given string isn't the qualid of a known inductive type. *) (* HH notes in PR #679: The Show Match could also be made more robust, for instance in the presence of let in the branch of a constructor. A decompose_prod_assum would probably suffice for that, but then, it is a Context.Rel.Declaration.t which needs to be matched and not just a pair (name,type). Otherwise, this is OK. After all, the API on inductive types is not so canonical in general, and in this simple case, working at the low-level of mind_nf_lc seems reasonable (compared to working at the higher-level of Inductiveops). *) let make_cases ind = let open Declarations in let mib, mip = Global.lookup_inductive ind in Util.Array.fold_right_i (fun i (ctx, _) l -> let al = Util.List.skipn (List.length mib.mind_params_ctxt) (List.rev ctx) in let rec rename avoid = function | [] -> [] | RelDecl.LocalDef _ :: l -> "_" :: rename avoid l | RelDecl.LocalAssum (n, _)::l -> let n' = Namegen.next_name_away_with_default (Id.to_string Namegen.default_dependent_ident) n.Context.binder_name avoid in Id.to_string n' :: rename (Id.Set.add n' avoid) l in let al' = rename Id.Set.empty al in let consref = GlobRef.ConstructRef (ith_constructor_of_inductive ind (i + 1)) in (Libnames.string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty consref) :: al') :: l) mip.mind_nf_lc [] let declare_mutual_inductive_with_eliminations = DeclareInd.declare_mutual_inductive_with_eliminations