(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* [] | t::q -> t::(kick_last q) | [] -> failwith "kick_last" and aux = function | (0,l') -> l' | (n,h::t) -> aux (n-1,t) | _ -> failwith "quick_chop" in if n > (List.length l) then failwith "quick_chop args" else kick_last (aux (n,l) ) let deconstruct_type t = let l,r = decompose_prod t in (List.rev_map snd l)@[r] exception EqNotFound of inductive * inductive exception EqUnknown of string exception UndefinedCst of string exception InductiveWithProduct exception InductiveWithSort exception ParameterWithoutEquality of GlobRef.t exception NonSingletonProp of inductive exception DecidabilityMutualNotSupported exception NoDecidabilityCoInductive exception ConstructorWithNonParametricInductiveType of inductive exception DecidabilityIndicesNotSupported (* Some pre declaration of constant we are going to use *) let andb_prop = fun _ -> UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.bool.andb_prop") let andb_true_intro = fun _ -> UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.bool.andb_true_intro") (* We avoid to use lazy as the binding of constants can change *) let bb () = UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.bool.type") let tt () = UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.bool.true") let ff () = UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.bool.false") let eq () = UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.eq.type") let sumbool () = UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.sumbool.type") let andb = fun _ -> UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.bool.andb") let induct_on c = induction false None c None None let destruct_on c = destruct false None c None None let destruct_on_using c id = destruct false None c (Some (CAst.make @@ IntroOrPattern [[CAst.make @@ IntroNaming IntroAnonymous]; [CAst.make @@ IntroNaming (IntroIdentifier id)]])) None let destruct_on_as c l = destruct false None c (Some (CAst.make l)) None let inj_flags = Some { Equality.keep_proof_equalities = true; (* necessary *) injection_in_context = true; (* does not matter here *) Equality.injection_pattern_l2r_order = true; (* does not matter here *) } let my_discr_tac = Equality.discr_tac false None let my_inj_tac x = Equality.inj inj_flags None false None (EConstr.mkVar x,NoBindings) (* reconstruct the inductive with the correct de Bruijn indexes *) let mkFullInd (ind,u) n = let mib = Global.lookup_mind (fst ind) in let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in (* params context divided *) let lnonparrec,lnamesparrec = context_chop (nparams-nparrec) mib.mind_params_ctxt in if nparrec > 0 then mkApp (mkIndU (ind,u), Array.of_list(Context.Rel.to_extended_list mkRel (nparrec+n) lnamesparrec)) else mkIndU (ind,u) let check_bool_is_defined () = if not (Coqlib.has_ref "core.bool.type") then raise (UndefinedCst "bool") let check_no_indices mib = if Array.exists (fun mip -> mip.mind_nrealargs <> 0) mib.mind_packets then raise DecidabilityIndicesNotSupported let beq_scheme_kind_aux = ref (fun _ -> failwith "Undefined") let build_beq_scheme_deps kn = (* fetching global env *) let env = Global.env() in (* fetching the mutual inductive body *) let mib = Global.lookup_mind kn in (* number of inductives in the mutual *) let nb_ind = Array.length mib.mind_packets in (* number of params in the type *) let nparrec = mib.mind_nparams_rec in check_no_indices mib; let make_one_eq accu i = (* This function is only trying to recursively compute the inductive types appearing as arguments of the constructors. This is done to support equality decision over hereditarily first-order types. It could be perfomed in a much cleaner way, e.g. using the kernel normal form of constructor types and kernel whd_all for the argument types. *) let rec aux accu c = let (c,a) = Reductionops.whd_betaiota_stack env Evd.empty EConstr.(of_constr c) in let (c,a) = EConstr.Unsafe.(to_constr c, List.map to_constr a) in match Constr.kind c with | Cast (x,_,_) -> aux accu (Term.applist (x,a)) | App _ -> assert false | Ind ((kn', _), _) -> if Environ.QMutInd.equal env kn kn' then accu else let eff = SchemeMutualDep (kn', !beq_scheme_kind_aux ()) in List.fold_left aux (eff :: accu) a | Const (kn, u) -> (match Environ.constant_opt_value_in env (kn, u) with | Some c -> aux accu (Term.applist (c,a)) | None -> accu) | Rel _ | Var _ | Sort _ | Prod _ | Lambda _ | LetIn _ | Proj _ | Construct _ | Case _ | CoFix _ | Fix _ | Meta _ | Evar _ | Int _ | Float _ | Array _ -> accu in let u = Univ.Instance.empty in let constrs n = get_constructors env (make_ind_family (((kn, i), u), Context.Rel.to_extended_list mkRel (n+nb_ind-1) mib.mind_params_ctxt)) in let constrsi = constrs (3+nparrec) in let fold i accu arg = let fold accu c = aux accu (RelDecl.get_type c) in List.fold_left fold accu arg.cs_args in Array.fold_left_i fold accu constrsi in Array.fold_left_i (fun i accu _ -> make_one_eq accu i) [] mib.mind_packets let build_beq_scheme mode kn = check_bool_is_defined (); (* fetching global env *) let env = Global.env() in (* fetching the mutual inductive body *) let mib = Global.lookup_mind kn in (* number of inductives in the mutual *) let nb_ind = Array.length mib.mind_packets in (* number of params in the type *) let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in check_no_indices mib; (* params context divided *) let lnonparrec,lnamesparrec = context_chop (nparams-nparrec) mib.mind_params_ctxt in (* predef coq's boolean type *) (* rec name *) let rec_name i =(Id.to_string (Array.get mib.mind_packets i).mind_typename)^ "_eqrec" in (* construct the "fun A B ... N, eqA eqB eqC ... N => fixpoint" part *) let create_input c = let myArrow u v = mkArrow u Sorts.Relevant (lift 1 v) and eqName = function | Name s -> Id.of_string ("eq_"^(Id.to_string s)) | Anonymous -> Id.of_string "eq_A" in let ext_rel_list = Context.Rel.to_extended_list mkRel 0 lnamesparrec in let lift_cnt = ref 0 in let eqs_typ = List.map (fun aa -> let a = lift !lift_cnt aa in incr lift_cnt; myArrow a (myArrow a (bb ())) ) ext_rel_list in let eq_input = List.fold_left2 ( fun a b decl -> (* mkLambda(n,b,a) ) *) (* here I leave the Naming thingy so that the type of the function is more readable for the user *) mkNamedLambda (map_annot eqName (RelDecl.get_annot decl)) b a ) c (List.rev eqs_typ) lnamesparrec in List.fold_left (fun a decl ->(* mkLambda(n,t,a)) eq_input rel_list *) (* Same here , hoping the auto renaming will do something good ;) *) let x = map_annot (function Name s -> s | Anonymous -> Id.of_string "A") (RelDecl.get_annot decl) in mkNamedLambda x (RelDecl.get_type decl) a) eq_input lnamesparrec in let make_one_eq cur = let u = Univ.Instance.empty in let ind = (kn,cur),u (* FIXME *) in (* current inductive we are working on *) let cur_packet = mib.mind_packets.(snd (fst ind)) in (* Inductive toto : [rettyp] := *) let rettyp = Inductive.type_of_inductive ((mib,cur_packet),u) in (* split rettyp in a list without the non rec params and the last -> e.g. Inductive vec (A:Set) : nat -> Set := ... will do [nat] *) let rettyp_l = quick_chop nparrec (deconstruct_type rettyp) in (* give a type A, this function tries to find the equality on A declared previously *) (* nlist = the number of args (A , B , ... ) eqA = the de Bruijn index of the first eq param ndx = how much to translate due to the 2nd Case *) let compute_A_equality rel_list nlist eqA ndx t = let lifti = ndx in let rec aux c = let (c,a) = Reductionops.whd_betaiota_stack env Evd.empty EConstr.(of_constr c) in let (c,a) = EConstr.Unsafe.(to_constr c, List.map to_constr a) in match Constr.kind c with | Rel x -> mkRel (x-nlist+ndx) | Var x -> (* Support for working in a context with "eq_x : x -> x -> bool" *) let eid = Id.of_string ("eq_"^(Id.to_string x)) in let () = try ignore (Environ.lookup_named eid env) with Not_found -> raise (ParameterWithoutEquality (GlobRef.VarRef x)) in mkVar eid | Cast (x,_,_) -> aux (Term.applist (x,a)) | App _ -> assert false | Ind ((kn',i as ind'),u) (*FIXME: universes *) -> if Environ.QMutInd.equal env kn kn' then mkRel(eqA-nlist-i+nb_ind-1) else begin try let eq = match lookup_scheme (!beq_scheme_kind_aux()) ind' with | Some c -> mkConst c | None -> assert false in let eqa = Array.of_list @@ List.map aux a in let args = Array.append (Array.of_list (List.map (fun x -> lift lifti x) a)) eqa in if Int.equal (Array.length args) 0 then eq else mkApp (eq, args) with Not_found -> raise(EqNotFound (ind', fst ind)) end | Sort _ -> raise InductiveWithSort | Prod _ -> raise InductiveWithProduct | Lambda _-> raise (EqUnknown "abstraction") | LetIn _ -> raise (EqUnknown "let-in") | Const (kn, u) -> (match Environ.constant_opt_value_in env (kn, u) with | Some c -> aux (Term.applist (c,a)) | None -> (* Support for working in a context with "eq_x : x -> x -> bool" *) (* Needs Hints, see test suite *) let eq_lbl = Label.make ("eq_" ^ Label.to_string (Constant.label kn)) in let kneq = Constant.change_label kn eq_lbl in if Environ.mem_constant kneq env then let _ = Environ.constant_opt_value_in env (kneq, u) in Term.applist (mkConst kneq,a) else raise (ParameterWithoutEquality (GlobRef.ConstRef kn))) | Proj _ -> raise (EqUnknown "projection") | Construct _ -> raise (EqUnknown "constructor") | Case _ -> raise (EqUnknown "match") | CoFix _ -> raise (EqUnknown "cofix") | Fix _ -> raise (EqUnknown "fix") | Meta _ -> raise (EqUnknown "meta-variable") | Evar _ -> raise (EqUnknown "existential variable") | Int _ -> raise (EqUnknown "int") | Float _ -> raise (EqUnknown "float") | Array _ -> raise (EqUnknown "array") in aux t in (* construct the predicate for the Case part*) let do_predicate rel_list n = List.fold_left (fun a b -> mkLambda(make_annot Anonymous Sorts.Relevant,b,a)) (mkLambda (make_annot Anonymous Sorts.Relevant, mkFullInd ind (n+3+(List.length rettyp_l)+nb_ind-1), (bb ()))) (List.rev rettyp_l) in (* make_one_eq *) (* do the [| C1 ... => match Y with ... end ... Cn => match Y with ... end |] part *) let rci = Sorts.Relevant in (* TODO relevance *) let ci = make_case_info env (fst ind) rci MatchStyle in let constrs n = let params = Context.Rel.to_extended_list mkRel (n+nb_ind-1) mib.mind_params_ctxt in get_constructors env (make_ind_family (ind, params)) in let constrsi = constrs (3+nparrec) in let n = Array.length constrsi in let ar = Array.init n (fun i -> let nb_cstr_args = List.length constrsi.(i).cs_args in let constrsj = constrs (3+nparrec+nb_cstr_args) in let ar2 = Array.init n (fun j -> if Int.equal i j then let cc = match nb_cstr_args with | 0 -> tt () | _ -> let eqs = Array.init nb_cstr_args (fun ndx -> let cc = RelDecl.get_type (List.nth constrsi.(i).cs_args ndx) in let eqA = compute_A_equality rel_list nparrec (nparrec+3+2*nb_cstr_args) (nb_cstr_args+ndx+1) cc in mkApp (eqA, [|mkRel (ndx+1+nb_cstr_args);mkRel (ndx+1)|])) in Array.fold_left (fun a b -> mkApp (andb(),[|b;a|])) eqs.(0) (Array.sub eqs 1 (nb_cstr_args - 1)) in List.fold_left (fun a decl -> mkLambda (RelDecl.get_annot decl, RelDecl.get_type decl, a)) cc constrsj.(j).cs_args else List.fold_left (fun a decl -> mkLambda (RelDecl.get_annot decl, RelDecl.get_type decl, a)) (ff ()) (constrsj.(j).cs_args)) in let pred = EConstr.of_constr (do_predicate rel_list nb_cstr_args) in let case = simple_make_case_or_project env (Evd.from_env env) ci pred NoInvert (EConstr.mkVar (Id.of_string "Y")) (EConstr.of_constr_array ar2) in List.fold_left (fun a decl -> mkLambda (RelDecl.get_annot decl, RelDecl.get_type decl, a)) (EConstr.Unsafe.to_constr case) (constrsi.(i).cs_args)) in let pred = EConstr.of_constr (do_predicate rel_list 0) in let case = simple_make_case_or_project env (Evd.from_env env) ci pred NoInvert (EConstr.mkVar (Id.of_string "X")) (EConstr.of_constr_array ar) in mkNamedLambda (make_annot (Id.of_string "X") Sorts.Relevant) (mkFullInd ind (nb_ind-1+1)) ( mkNamedLambda (make_annot (Id.of_string "Y") Sorts.Relevant) (mkFullInd ind (nb_ind-1+2)) ( (EConstr.Unsafe.to_constr case))) in (* build_beq_scheme *) let names = Array.make nb_ind (make_annot Anonymous Sorts.Relevant) and types = Array.make nb_ind mkSet and cores = Array.make nb_ind mkSet in let u = Univ.Instance.empty in for i=0 to (nb_ind-1) do names.(i) <- make_annot (Name (Id.of_string (rec_name i))) Sorts.Relevant; types.(i) <- mkArrow (mkFullInd ((kn,i),u) 0) Sorts.Relevant (mkArrow (mkFullInd ((kn,i),u) 1) Sorts.Relevant (bb ())); let c = make_one_eq i in cores.(i) <- c; done; let res = Array.init nb_ind (fun i -> let kelim = Inductive.elim_sort (mib,mib.mind_packets.(i)) in if not (Sorts.family_leq InSet kelim) then raise (NonSingletonProp (kn,i)); let fix = match mib.mind_finite with | CoFinite -> raise NoDecidabilityCoInductive; | Finite -> mkFix (((Array.make nb_ind 0),i),(names,types,cores)) | BiFinite -> (* If the inductive type is not recursive, the fixpoint is not used, so let's replace it with garbage *) let subst = List.init nb_ind (fun _ -> mkProp) in Vars.substl subst cores.(i) in create_input fix) in res, UState.from_env (Global.env ()) let beq_scheme_kind = declare_mutual_scheme_object "_beq" ~deps:build_beq_scheme_deps build_beq_scheme let _ = beq_scheme_kind_aux := fun () -> beq_scheme_kind (* This function tryies to get the [inductive] between a constr the constr should be Ind i or App(Ind i,[|args|]) *) let destruct_ind env sigma c = let open EConstr in let (c,v) = Reductionops.whd_all_stack env sigma c in destInd sigma c, Array.of_list v (* In the following, avoid is the list of names to avoid. If the args of the Inductive type are A1 ... An then avoid should be [| lb_An ... lb _A1 (resp. bl_An ... bl_A1) eq_An .... eq_A1 An ... A1 |] so from Ai we can find the correct eq_Ai bl_ai or lb_ai *) (* used in the leib -> bool side*) let do_replace_lb mode lb_scheme_key aavoid narg p q = let open EConstr in let avoid = Array.of_list aavoid in let do_arg env sigma hd v offset = match kind sigma v with | Var s -> let x = narg*offset in let n = Array.length avoid in let rec find i = if Id.equal avoid.(n-i) s then avoid.(n-i-x) else (if i (* Works in specific situations where the args have to be already declared as a Parameter (see example "J" in test file SchemeEquality.v) *) let lbl = Label.to_string (Constant.label cst) in let newlbl = if Int.equal offset 1 then ("eq_" ^ lbl) else (lbl ^ "_lb") in let newcst = Constant.change_label cst (Label.make newlbl) in if Environ.mem_constant newcst env then mkConst newcst else raise (ConstructorWithNonParametricInductiveType (fst hd)) | _ -> raise (ConstructorWithNonParametricInductiveType (fst hd)) in Proofview.Goal.enter begin fun gl -> let type_of_pq = Tacmach.New.pf_get_type_of gl p in let sigma = Tacmach.New.project gl in let env = Tacmach.New.pf_env gl in let u,v = destruct_ind env sigma type_of_pq in find_scheme ~mode lb_scheme_key (fst u) (*FIXME*) >>= fun c -> let lb_type_of_p = mkConst c in Proofview.tclEVARMAP >>= fun sigma -> let lb_args = Array.append (Array.append v (Array.Smart.map (fun x -> do_arg env sigma u x 1) v)) (Array.Smart.map (fun x -> do_arg env sigma u x 2) v) in let app = if Array.is_empty lb_args then lb_type_of_p else mkApp (lb_type_of_p,lb_args) in Tacticals.New.tclTHENLIST [ Equality.replace p q ; apply app ; Auto.default_auto] end (* used in the bool -> leb side *) let do_replace_bl bl_scheme_key (ind,u as indu) aavoid narg lft rgt = let open EConstr in let avoid = Array.of_list aavoid in let do_arg env sigma hd v offset = match kind sigma v with | Var s -> let x = narg*offset in let n = Array.length avoid in let rec find i = if Id.equal avoid.(n-i) s then avoid.(n-i-x) else (if i (* Works in specific situations where the args have to be already declared as a Parameter (see example "J" in test file SchemeEquality.v) *) let lbl = Label.to_string (Constant.label cst) in let newlbl = if Int.equal offset 1 then ("eq_" ^ lbl) else (lbl ^ "_bl") in let newcst = Constant.change_label cst (Label.make newlbl) in if Environ.mem_constant newcst env then mkConst newcst else raise (ConstructorWithNonParametricInductiveType (fst hd)) | _ -> raise (ConstructorWithNonParametricInductiveType (fst hd)) in let rec aux l1 l2 = match (l1,l2) with | (t1::q1,t2::q2) -> Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in let env = Tacmach.New.pf_env gl in if EConstr.eq_constr sigma t1 t2 then aux q1 q2 else ( let tt1 = Tacmach.New.pf_get_type_of gl t1 in let u,v = try destruct_ind env sigma tt1 (* trick so that the good sequence is returned*) with e when CErrors.noncritical e -> indu,[||] in if Ind.CanOrd.equal (fst u) ind then Tacticals.New.tclTHENLIST [Equality.replace t1 t2; Auto.default_auto ; aux q1 q2 ] else ( find_scheme bl_scheme_key (fst u) (*FIXME*) >>= fun c -> let bl_t1 = mkConst c in let bl_args = Array.append (Array.append v (Array.Smart.map (fun x -> do_arg env sigma u x 1) v)) (Array.Smart.map (fun x -> do_arg env sigma u x 2) v ) in let app = if Array.is_empty bl_args then bl_t1 else mkApp (bl_t1,bl_args) in Tacticals.New.tclTHENLIST [ Equality.replace_by t1 t2 (Tacticals.New.tclTHEN (apply app) (Auto.default_auto)) ; aux q1 q2 ] ) ) end | ([],[]) -> Proofview.tclUNIT () | _ -> Tacticals.New.tclZEROMSG (str "Both side of the equality must have the same arity.") in Proofview.tclEVARMAP >>= fun sigma -> begin try Proofview.tclUNIT (destApp sigma lft) with DestKO -> Tacticals.New.tclZEROMSG (str "replace failed.") end >>= fun (ind1,ca1) -> begin try Proofview.tclUNIT (destApp sigma rgt) with DestKO -> Tacticals.New.tclZEROMSG (str "replace failed.") end >>= fun (ind2,ca2) -> begin try Proofview.tclUNIT (fst (destInd sigma ind1)) with DestKO -> begin try Proofview.tclUNIT (fst (fst (destConstruct sigma ind1))) with DestKO -> Tacticals.New.tclZEROMSG (str "The expected type is an inductive one.") end end >>= fun (sp1,i1) -> begin try Proofview.tclUNIT (fst (destInd sigma ind2)) with DestKO -> begin try Proofview.tclUNIT (fst (fst (destConstruct sigma ind2))) with DestKO -> Tacticals.New.tclZEROMSG (str "The expected type is an inductive one.") end end >>= fun (sp2,i2) -> Proofview.tclENV >>= fun env -> if not (Environ.QMutInd.equal env sp1 sp2) || not (Int.equal i1 i2) then Tacticals.New.tclZEROMSG (str "Eq should be on the same type") else aux (Array.to_list ca1) (Array.to_list ca2) (* create, from a list of ids [i1,i2,...,in] the list [(in,eq_in,in_bl,in_al),,...,(i1,eq_i1,i1_bl_i1_al )] *) let list_id l = List.fold_left ( fun a decl -> let s' = match RelDecl.get_name decl with Name s -> Id.to_string s | Anonymous -> "A" in (Id.of_string s',Id.of_string ("eq_"^s'), Id.of_string (s'^"_bl"), Id.of_string (s'^"_lb")) ::a ) [] l let avoid_of_list_id list_id = List.fold_left (fun avoid (s,seq,sbl,slb) -> List.fold_left (fun avoid id -> Id.Set.add id avoid) avoid [s;seq;sbl;slb]) Id.Set.empty list_id (* build the right eq_I A B.. N eq_A .. eq_N *) let eqI ind list_id = let eA = Array.of_list((List.map (fun (s,_,_,_) -> mkVar s) list_id)@ (List.map (fun (_,seq,_,_)-> mkVar seq) list_id )) and e = match lookup_scheme beq_scheme_kind ind with | Some c -> mkConst c | None -> user_err ~hdr:"AutoIndDecl.eqI" (str "The boolean equality on " ++ Printer.pr_inductive (Global.env ()) ind ++ str " is needed."); in mkApp(e,eA) (**********************************************************************) (* Boolean->Leibniz *) open Namegen let compute_bl_goal ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let eqI = eqI ind list_id in let avoid = avoid_of_list_id list_id in let x = next_ident_away (Id.of_string "x") avoid in let y = next_ident_away (Id.of_string "y") (Id.Set.add x avoid) in let create_input c = let bl_typ = List.map (fun (s,seq,_,_) -> mkNamedProd (make_annot x Sorts.Relevant) (mkVar s) ( mkNamedProd (make_annot y Sorts.Relevant) (mkVar s) ( mkArrow ( mkApp(eq (),[|bb (); mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt () |])) Sorts.Relevant ( mkApp(eq (),[|mkVar s;mkVar x;mkVar y|])) )) ) list_id in let bl_input = List.fold_left2 ( fun a (s,_,sbl,_) b -> mkNamedProd (make_annot sbl Sorts.Relevant) b a ) c (List.rev list_id) (List.rev bl_typ) in let eqs_typ = List.map (fun (s,_,_,_) -> mkProd(make_annot Anonymous Sorts.Relevant,mkVar s,mkProd(make_annot Anonymous Sorts.Relevant,mkVar s,(bb ()))) ) list_id in let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b -> mkNamedProd (make_annot seq Sorts.Relevant) b a ) bl_input (List.rev list_id) (List.rev eqs_typ) in List.fold_left (fun a decl -> let x = map_annot (function Name s -> s | Anonymous -> next_ident_away (Id.of_string "A") avoid) (RelDecl.get_annot decl) in mkNamedProd x (RelDecl.get_type decl) a) eq_input lnamesparrec in let u = Univ.Instance.empty in create_input ( mkNamedProd (make_annot x Sorts.Relevant) (mkFullInd (ind,u) nparrec) ( mkNamedProd (make_annot y Sorts.Relevant) (mkFullInd (ind,u) (nparrec+1)) ( mkArrow (mkApp(eq (),[|bb ();mkApp(eqI,[|mkVar x;mkVar y|]);tt ()|])) Sorts.Relevant (mkApp(eq (),[|mkFullInd (ind,u) (nparrec+3);mkVar x;mkVar y|])) ))) let compute_bl_tact mode bl_scheme_key ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let first_intros = ( List.map (fun (s,_,_,_) -> s ) list_id ) @ ( List.map (fun (_,seq,_,_ ) -> seq) list_id ) @ ( List.map (fun (_,_,sbl,_ ) -> sbl) list_id ) in intros_using_then first_intros begin fun fresh_first_intros -> Tacticals.New.tclTHENLIST [ intro_using_then (Id.of_string "x") (fun freshn -> induct_on (EConstr.mkVar freshn)); intro_using_then (Id.of_string "y") (fun freshm -> destruct_on (EConstr.mkVar freshm)); intro_using_then (Id.of_string "Z") begin fun freshz -> Tacticals.New.tclTHENLIST [ intros; Tacticals.New.tclTRY ( Tacticals.New.tclORELSE reflexivity my_discr_tac ); simpl_in_hyp (freshz,Locus.InHyp); (* repeat ( apply andb_prop in z;let z1:= fresh "Z" in destruct z as [z1 z]). *) Tacticals.New.tclREPEAT ( Tacticals.New.tclTHENLIST [ Simple.apply_in freshz (EConstr.of_constr (andb_prop())); destruct_on_as (EConstr.mkVar freshz) (IntroOrPattern [[CAst.make @@ IntroNaming (IntroFresh (Id.of_string "Z")); CAst.make @@ IntroNaming (IntroIdentifier freshz)]]) ]); (* Ci a1 ... an = Ci b1 ... bn replace bi with ai; auto || replace bi with ai by apply typeofbi_prod ; auto *) Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in match EConstr.kind sigma concl with | App (c,ca) -> ( match EConstr.kind sigma c with | Ind (indeq, u) -> if GlobRef.equal (GlobRef.IndRef indeq) Coqlib.(lib_ref "core.eq.type") then Tacticals.New.tclTHEN (do_replace_bl bl_scheme_key ind (List.rev fresh_first_intros) nparrec (ca.(2)) (ca.(1))) Auto.default_auto else Tacticals.New.tclZEROMSG (str "Failure while solving Boolean->Leibniz.") | _ -> Tacticals.New.tclZEROMSG (str" Failure while solving Boolean->Leibniz.") ) | _ -> Tacticals.New.tclZEROMSG (str "Failure while solving Boolean->Leibniz.") end ] end ] end let bl_scheme_kind_aux = ref (fun _ -> failwith "Undefined") let side_effect_of_mode = function | UserAutomaticRequest -> false | InternalTacticRequest -> true | UserIndividualRequest -> false let make_bl_scheme mode mind = let mib = Global.lookup_mind mind in if not (Int.equal (Array.length mib.mind_packets) 1) then user_err (str "Automatic building of boolean->Leibniz lemmas not supported"); let ind = (mind,0) in let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in let lnonparrec,lnamesparrec = (* TODO subst *) context_chop (nparams-nparrec) mib.mind_params_ctxt in let bl_goal = compute_bl_goal ind lnamesparrec nparrec in let uctx = UState.from_env (Global.env ()) in let side_eff = side_effect_of_mode mode in let bl_goal = EConstr.of_constr bl_goal in let (ans, _, _, _, ctx) = Declare.build_by_tactic ~poly:false ~side_eff (Global.env()) ~uctx ~typ:bl_goal (compute_bl_tact mode (!bl_scheme_kind_aux()) (ind, EConstr.EInstance.empty) lnamesparrec nparrec) in ([|ans|], ctx) let bl_scheme_kind = declare_mutual_scheme_object "_dec_bl" ~deps:(fun ind -> [SchemeMutualDep (ind, beq_scheme_kind)]) make_bl_scheme let _ = bl_scheme_kind_aux := fun () -> bl_scheme_kind (**********************************************************************) (* Leibniz->Boolean *) let compute_lb_goal ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let eq = eq () and tt = tt () and bb = bb () in let avoid = avoid_of_list_id list_id in let eqI = eqI ind list_id in let x = next_ident_away (Id.of_string "x") avoid in let y = next_ident_away (Id.of_string "y") (Id.Set.add x avoid) in let create_input c = let lb_typ = List.map (fun (s,seq,_,_) -> mkNamedProd (make_annot x Sorts.Relevant) (mkVar s) ( mkNamedProd (make_annot y Sorts.Relevant) (mkVar s) ( mkArrow ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|])) Sorts.Relevant ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|])) )) ) list_id in let lb_input = List.fold_left2 ( fun a (s,_,_,slb) b -> mkNamedProd (make_annot slb Sorts.Relevant) b a ) c (List.rev list_id) (List.rev lb_typ) in let eqs_typ = List.map (fun (s,_,_,_) -> mkProd(make_annot Anonymous Sorts.Relevant,mkVar s, mkProd(make_annot Anonymous Sorts.Relevant,mkVar s,bb)) ) list_id in let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b -> mkNamedProd (make_annot seq Sorts.Relevant) b a ) lb_input (List.rev list_id) (List.rev eqs_typ) in List.fold_left (fun a decl -> let x = map_annot (function Name s -> s | Anonymous -> Id.of_string "A") (RelDecl.get_annot decl) in mkNamedProd x (RelDecl.get_type decl) a) eq_input lnamesparrec in let u = Univ.Instance.empty in create_input ( mkNamedProd (make_annot x Sorts.Relevant) (mkFullInd (ind,u) nparrec) ( mkNamedProd (make_annot y Sorts.Relevant) (mkFullInd (ind,u) (nparrec+1)) ( mkArrow (mkApp(eq,[|mkFullInd (ind,u) (nparrec+2);mkVar x;mkVar y|])) Sorts.Relevant (mkApp(eq,[|bb;mkApp(eqI,[|mkVar x;mkVar y|]);tt|])) ))) let compute_lb_tact mode lb_scheme_key ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let first_intros = ( List.map (fun (s,_,_,_) -> s ) list_id ) @ ( List.map (fun (_,seq,_,_) -> seq) list_id ) @ ( List.map (fun (_,_,_,slb) -> slb) list_id ) in intros_using_then first_intros begin fun fresh_first_intros -> Tacticals.New.tclTHENLIST [ intro_using_then (Id.of_string "x") (fun freshn -> induct_on (EConstr.mkVar freshn)); intro_using_then (Id.of_string "y") (fun freshm -> destruct_on (EConstr.mkVar freshm)); intro_using_then (Id.of_string "Z") begin fun freshz -> Tacticals.New.tclTHENLIST [ intros; Tacticals.New.tclTRY ( Tacticals.New.tclORELSE reflexivity my_discr_tac ); my_inj_tac freshz; intros; simpl_in_concl; Auto.default_auto; Tacticals.New.tclREPEAT ( Tacticals.New.tclTHENLIST [apply (EConstr.of_constr (andb_true_intro())); simplest_split ;Auto.default_auto ] ); Proofview.Goal.enter begin fun gls -> let concl = Proofview.Goal.concl gls in let sigma = Tacmach.New.project gls in (* assume the goal to be eq (eq_type ...) = true *) match EConstr.kind sigma concl with | App(c,ca) -> (match (EConstr.kind sigma ca.(1)) with | App(c',ca') -> let n = Array.length ca' in do_replace_lb mode lb_scheme_key (List.rev fresh_first_intros) nparrec ca'.(n-2) ca'.(n-1) | _ -> Tacticals.New.tclZEROMSG (str "Failure while solving Leibniz->Boolean.") ) | _ -> Tacticals.New.tclZEROMSG (str "Failure while solving Leibniz->Boolean.") end ] end ] end let lb_scheme_kind_aux = ref (fun () -> failwith "Undefined") let make_lb_scheme mode mind = let mib = Global.lookup_mind mind in if not (Int.equal (Array.length mib.mind_packets) 1) then user_err (str "Automatic building of Leibniz->boolean lemmas not supported"); let ind = (mind,0) in let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in let lnonparrec,lnamesparrec = context_chop (nparams-nparrec) mib.mind_params_ctxt in let lb_goal = compute_lb_goal ind lnamesparrec nparrec in let uctx = UState.from_env (Global.env ()) in let side_eff = side_effect_of_mode mode in let lb_goal = EConstr.of_constr lb_goal in let (ans, _, _, _, ctx) = Declare.build_by_tactic ~poly:false ~side_eff (Global.env()) ~uctx ~typ:lb_goal (compute_lb_tact mode (!lb_scheme_kind_aux()) ind lnamesparrec nparrec) in ([|ans|], ctx) let lb_scheme_kind = declare_mutual_scheme_object "_dec_lb" ~deps:(fun ind -> [SchemeMutualDep (ind, beq_scheme_kind)]) make_lb_scheme let _ = lb_scheme_kind_aux := fun () -> lb_scheme_kind (**********************************************************************) (* Decidable equality *) let check_not_is_defined () = if not (Coqlib.has_ref "core.not.type") then raise (UndefinedCst "not") (* {n=m}+{n<>m} part *) let compute_dec_goal ind lnamesparrec nparrec = check_not_is_defined (); let eq = eq () and tt = tt () and bb = bb () in let list_id = list_id lnamesparrec in let avoid = avoid_of_list_id list_id in let x = next_ident_away (Id.of_string "x") avoid in let y = next_ident_away (Id.of_string "y") (Id.Set.add x avoid) in let create_input c = let lb_typ = List.map (fun (s,seq,_,_) -> mkNamedProd (make_annot x Sorts.Relevant) (mkVar s) ( mkNamedProd (make_annot y Sorts.Relevant) (mkVar s) ( mkArrow ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|])) Sorts.Relevant ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|])) )) ) list_id in let bl_typ = List.map (fun (s,seq,_,_) -> mkNamedProd (make_annot x Sorts.Relevant) (mkVar s) ( mkNamedProd (make_annot y Sorts.Relevant) (mkVar s) ( mkArrow ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|])) Sorts.Relevant ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|])) )) ) list_id in let lb_input = List.fold_left2 ( fun a (s,_,_,slb) b -> mkNamedProd (make_annot slb Sorts.Relevant) b a ) c (List.rev list_id) (List.rev lb_typ) in let bl_input = List.fold_left2 ( fun a (s,_,sbl,_) b -> mkNamedProd (make_annot sbl Sorts.Relevant) b a ) lb_input (List.rev list_id) (List.rev bl_typ) in let eqs_typ = List.map (fun (s,_,_,_) -> mkProd(make_annot Anonymous Sorts.Relevant,mkVar s, mkProd(make_annot Anonymous Sorts.Relevant,mkVar s,bb)) ) list_id in let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b -> mkNamedProd (make_annot seq Sorts.Relevant) b a ) bl_input (List.rev list_id) (List.rev eqs_typ) in List.fold_left (fun a decl -> let x = map_annot (function Name s -> s | Anonymous -> Id.of_string "A") (RelDecl.get_annot decl) in mkNamedProd x (RelDecl.get_type decl) a) eq_input lnamesparrec in let eqnm = mkApp(eq,[|mkFullInd ind (2*nparrec+2);mkVar x;mkVar y|]) in create_input ( mkNamedProd (make_annot x Sorts.Relevant) (mkFullInd ind (2*nparrec)) ( mkNamedProd (make_annot y Sorts.Relevant) (mkFullInd ind (2*nparrec+1)) ( mkApp(sumbool(),[|eqnm;mkApp (UnivGen.constr_of_monomorphic_global @@ Coqlib.lib_ref "core.not.type",[|eqnm|])|]) ) ) ) let compute_dec_tact ind lnamesparrec nparrec = let eq = eq () and tt = tt () and ff = ff () and bb = bb () in let list_id = list_id lnamesparrec in find_scheme beq_scheme_kind ind >>= fun _ -> let _non_fresh_eqI = eqI ind list_id in let eqtrue x = mkApp(eq,[|bb;x;tt|]) in let eqfalse x = mkApp(eq,[|bb;x;ff|]) in let first_intros = ( List.map (fun (s,_,_,_) -> s ) list_id ) @ ( List.map (fun (_,seq,_,_) -> seq) list_id ) @ ( List.map (fun (_,_,sbl,_) -> sbl) list_id ) @ ( List.map (fun (_,_,_,slb) -> slb) list_id ) in let fresh_id s gl = fresh_id_in_env (Id.Set.empty) s (Proofview.Goal.env gl) in intros_using_then first_intros begin fun fresh_first_intros -> let eqI = let a = Array.of_list fresh_first_intros in let n = List.length list_id in assert (Int.equal (Array.length a) (4 * n)); let fresh_list_id = List.init n (fun i -> (Array.get a i, Array.get a (i+n), Array.get a (i+2*n), Array.get a (i+3*n))) in eqI ind fresh_list_id in intro_using_then (Id.of_string "x") begin fun freshn -> intro_using_then (Id.of_string "y") begin fun freshm -> Proofview.Goal.enter begin fun gl -> let freshH = fresh_id (Id.of_string "H") gl in let eqbnm = mkApp(eqI,[|mkVar freshn;mkVar freshm|]) in let arfresh = Array.of_list fresh_first_intros in let xargs = Array.sub arfresh 0 (2*nparrec) in find_scheme bl_scheme_kind ind >>= fun c -> let blI = mkConst c in find_scheme lb_scheme_kind ind >>= fun c -> let lbI = mkConst c in Tacticals.New.tclTHENLIST [ (*we do this so we don't have to prove the same goal twice *) assert_by (Name freshH) (EConstr.of_constr ( mkApp(sumbool(),[|eqtrue eqbnm; eqfalse eqbnm|]) )) (Tacticals.New.tclTHEN (destruct_on (EConstr.of_constr eqbnm)) Auto.default_auto); Proofview.Goal.enter begin fun gl -> let freshH2 = fresh_id (Id.of_string "H") gl in Tacticals.New.tclTHENS (destruct_on_using (EConstr.mkVar freshH) freshH2) [ (* left *) Tacticals.New.tclTHENLIST [ simplest_left; apply (EConstr.of_constr (mkApp(blI,Array.map mkVar xargs))); Auto.default_auto ] ; (*right *) Proofview.Goal.enter begin fun gl -> let freshH3 = fresh_id (Id.of_string "H") gl in Tacticals.New.tclTHENLIST [ simplest_right ; unfold_constr (Coqlib.lib_ref "core.not.type"); intro; Equality.subst_all (); assert_by (Name freshH3) (EConstr.of_constr (mkApp(eq,[|bb;mkApp(eqI,[|mkVar freshm;mkVar freshm|]);tt|]))) (Tacticals.New.tclTHENLIST [ apply (EConstr.of_constr (mkApp(lbI,Array.map mkVar xargs))); Auto.default_auto ]); Equality.general_rewrite_bindings_in true Locus.AllOccurrences true false freshH3 ((EConstr.mkVar freshH2), NoBindings ) true; my_discr_tac ] end ] end ] end end end end let make_eq_decidability mode mind = let mib = Global.lookup_mind mind in if not (Int.equal (Array.length mib.mind_packets) 1) then raise DecidabilityMutualNotSupported; let ind = (mind,0) in let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in let u = Univ.Instance.empty in let uctx = UState.from_env (Global.env ()) in let lnonparrec,lnamesparrec = context_chop (nparams-nparrec) mib.mind_params_ctxt in let side_eff = side_effect_of_mode mode in let (ans, _, _, _, ctx) = Declare.build_by_tactic ~poly:false ~side_eff (Global.env()) ~uctx ~typ:(EConstr.of_constr (compute_dec_goal (ind,u) lnamesparrec nparrec)) (compute_dec_tact ind lnamesparrec nparrec) in ([|ans|], ctx) let eq_dec_scheme_kind = declare_mutual_scheme_object "_eq_dec" make_eq_decidability (* The eq_dec_scheme proofs depend on the equality and discr tactics but the inj tactics, that comes with discr, depends on the eq_dec_scheme... *) let _ = Equality.set_eq_dec_scheme_kind eq_dec_scheme_kind