(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* assert false) f let return x = Proofview.tclUNIT x let v_unit = Value.of_unit () let thaw r f = Tac2ffi.app_fun1 f unit r () let uthaw r f = Tac2ffi.app_fun1 (to_fun1 unit r f) unit r () let thunk r = fun1 unit r let to_name c = match Value.to_option Value.to_ident c with | None -> Anonymous | Some id -> Name id let name = make_to_repr to_name let to_occurrences = function | ValInt 0 -> AllOccurrences | ValBlk (0, [| vl |]) -> AllOccurrencesBut (Value.to_list Value.to_int vl) | ValInt 1 -> NoOccurrences | ValBlk (1, [| vl |]) -> OnlyOccurrences (Value.to_list Value.to_int vl) | _ -> assert false let occurrences = make_to_repr to_occurrences let to_hyp_location_flag v = match Value.to_int v with | 0 -> InHyp | 1 -> InHypTypeOnly | 2 -> InHypValueOnly | _ -> assert false let to_clause v = match Value.to_tuple v with | [| hyps; concl |] -> let cast v = match Value.to_tuple v with | [| hyp; occ; flag |] -> (Value.to_ident hyp, to_occurrences occ, to_hyp_location_flag flag) | _ -> assert false in let hyps = Value.to_option (fun h -> Value.to_list cast h) hyps in { onhyps = hyps; concl_occs = to_occurrences concl; } | _ -> assert false let clause = make_to_repr to_clause let to_red_flag v = match Value.to_tuple v with | [| beta; iota; fix; cofix; zeta; delta; const |] -> { rBeta = Value.to_bool beta; rMatch = Value.to_bool iota; rFix = Value.to_bool fix; rCofix = Value.to_bool cofix; rZeta = Value.to_bool zeta; rDelta = Value.to_bool delta; rConst = Value.to_list Value.to_reference const; } | _ -> assert false let red_flags = make_to_repr to_red_flag let pattern_with_occs = pair pattern occurrences let constr_with_occs = pair constr occurrences let reference_with_occs = pair reference occurrences let rec to_intro_pattern v = match Value.to_block v with | (0, [| b |]) -> IntroForthcoming (Value.to_bool b) | (1, [| pat |]) -> IntroNaming (to_intro_pattern_naming pat) | (2, [| act |]) -> IntroAction (to_intro_pattern_action act) | _ -> assert false and to_intro_pattern_naming = function | ValBlk (0, [| id |]) -> IntroIdentifier (Value.to_ident id) | ValBlk (1, [| id |]) -> IntroFresh (Value.to_ident id) | ValInt 0 -> IntroAnonymous | _ -> assert false and to_intro_pattern_action = function | ValInt 0 -> IntroWildcard | ValBlk (0, [| op |]) -> IntroOrAndPattern (to_or_and_intro_pattern op) | ValBlk (1, [| inj |]) -> let map ipat = to_intro_pattern ipat in IntroInjection (Value.to_list map inj) | ValBlk (2, [| c; ipat |]) -> let c = Value.to_fun1 Value.unit Value.constr c in IntroApplyOn (c, to_intro_pattern ipat) | ValBlk (3, [| b |]) -> IntroRewrite (Value.to_bool b) | _ -> assert false and to_or_and_intro_pattern v = match Value.to_block v with | (0, [| ill |]) -> IntroOrPattern (Value.to_list to_intro_patterns ill) | (1, [| il |]) -> IntroAndPattern (to_intro_patterns il) | _ -> assert false and to_intro_patterns il = Value.to_list to_intro_pattern il let intro_pattern = make_to_repr to_intro_pattern let intro_patterns = make_to_repr to_intro_patterns let to_destruction_arg v = match Value.to_block v with | (0, [| c |]) -> let c = uthaw constr_with_bindings c in ElimOnConstr c | (1, [| id |]) -> ElimOnIdent (Value.to_ident id) | (2, [| n |]) -> ElimOnAnonHyp (Value.to_int n) | _ -> assert false let destruction_arg = make_to_repr to_destruction_arg let to_induction_clause v = match Value.to_tuple v with | [| arg; eqn; as_; in_ |] -> let arg = to_destruction_arg arg in let eqn = Value.to_option to_intro_pattern_naming eqn in let as_ = Value.to_option to_or_and_intro_pattern as_ in let in_ = Value.to_option to_clause in_ in (arg, eqn, as_, in_) | _ -> assert false let induction_clause = make_to_repr to_induction_clause let to_assertion v = match Value.to_block v with | (0, [| ipat; t; tac |]) -> let to_tac t = Value.to_fun1 Value.unit Value.unit t in let ipat = Value.to_option to_intro_pattern ipat in let t = Value.to_constr t in let tac = Value.to_option to_tac tac in AssertType (ipat, t, tac) | (1, [| id; c |]) -> AssertValue (Value.to_ident id, Value.to_constr c) | _ -> assert false let assertion = make_to_repr to_assertion let to_multi = function | ValBlk (0, [| n |]) -> Precisely (Value.to_int n) | ValBlk (1, [| n |]) -> UpTo (Value.to_int n) | ValInt 0 -> RepeatStar | ValInt 1 -> RepeatPlus | _ -> assert false let to_rewriting v = match Value.to_tuple v with | [| orient; repeat; c |] -> let orient = Value.to_option Value.to_bool orient in let repeat = to_multi repeat in let c = uthaw constr_with_bindings c in (orient, repeat, c) | _ -> assert false let rewriting = make_to_repr to_rewriting let to_debug v = match Value.to_int v with | 0 -> Hints.Off | 1 -> Hints.Info | 2 -> Hints.Debug | _ -> assert false let debug = make_to_repr to_debug let to_strategy v = match Value.to_int v with | 0 -> Class_tactics.Bfs | 1 -> Class_tactics.Dfs | _ -> assert false let strategy = make_to_repr to_strategy let to_inversion_kind v = match Value.to_int v with | 0 -> Inv.SimpleInversion | 1 -> Inv.FullInversion | 2 -> Inv.FullInversionClear | _ -> assert false let inversion_kind = make_to_repr to_inversion_kind let to_move_location = function | ValInt 0 -> Logic.MoveFirst | ValInt 1 -> Logic.MoveLast | ValBlk (0, [|id|]) -> Logic.MoveAfter (Value.to_ident id) | ValBlk (1, [|id|]) -> Logic.MoveBefore (Value.to_ident id) | _ -> assert false let move_location = make_to_repr to_move_location let to_generalize_arg v = match Value.to_tuple v with | [| c; occs; na |] -> (Value.to_constr c, to_occurrences occs, to_name na) | _ -> assert false let generalize_arg = make_to_repr to_generalize_arg (** Standard tactics sharing their implementation with Ltac1 *) let pname s = { mltac_plugin = "ltac2"; mltac_tactic = s } let lift tac = tac <*> return v_unit let define_prim0 name tac = let tac _ = lift tac in Tac2env.define_primitive (pname name) (mk_closure arity_one tac) let define_prim1 name r0 f = let tac x = lift (f (Value.repr_to r0 x)) in Tac2env.define_primitive (pname name) (mk_closure arity_one tac) let define_prim2 name r0 r1 f = let tac x y = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y)) in Tac2env.define_primitive (pname name) (mk_closure (arity_suc arity_one) tac) let define_prim3 name r0 r1 r2 f = let tac x y z = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y) (Value.repr_to r2 z)) in Tac2env.define_primitive (pname name) (mk_closure (arity_suc (arity_suc arity_one)) tac) let define_prim4 name r0 r1 r2 r3 f = let tac x y z u = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y) (Value.repr_to r2 z) (Value.repr_to r3 u)) in Tac2env.define_primitive (pname name) (mk_closure (arity_suc (arity_suc (arity_suc arity_one))) tac) let define_prim5 name r0 r1 r2 r3 r4 f = let tac x y z u v = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y) (Value.repr_to r2 z) (Value.repr_to r3 u) (Value.repr_to r4 v)) in Tac2env.define_primitive (pname name) (mk_closure (arity_suc (arity_suc (arity_suc (arity_suc arity_one)))) tac) (** Tactics from Tacexpr *) let () = define_prim2 "tac_intros" bool intro_patterns begin fun ev ipat -> Tac2tactics.intros_patterns ev ipat end let () = define_prim4 "tac_apply" bool bool (list (thunk constr_with_bindings)) (option (pair ident (option intro_pattern))) begin fun adv ev cb ipat -> Tac2tactics.apply adv ev cb ipat end let () = define_prim3 "tac_elim" bool constr_with_bindings (option constr_with_bindings) begin fun ev c copt -> Tac2tactics.elim ev c copt end let () = define_prim2 "tac_case" bool constr_with_bindings begin fun ev c -> Tac2tactics.general_case_analysis ev c end let () = define_prim1 "tac_generalize" (list generalize_arg) begin fun cl -> Tac2tactics.generalize cl end let () = define_prim1 "tac_assert" assertion begin fun ast -> Tac2tactics.assert_ ast end let () = define_prim3 "tac_enough" constr (option (option (thunk unit))) (option intro_pattern) begin fun c tac ipat -> let tac = Option.map (fun o -> Option.map (fun f -> thaw unit f) o) tac in Tac2tactics.forward false tac ipat c end let () = define_prim2 "tac_pose" name constr begin fun na c -> Tactics.letin_tac None na c None Locusops.nowhere end let () = define_prim3 "tac_set" bool (thunk (pair name constr)) clause begin fun ev p cl -> Proofview.tclEVARMAP >>= fun sigma -> thaw (pair name constr) p >>= fun (na, c) -> Tac2tactics.letin_pat_tac ev None na (sigma, c) cl end let () = define_prim5 "tac_remember" bool name (thunk constr) (option intro_pattern) clause begin fun ev na c eqpat cl -> let eqpat = Option.default (IntroNaming IntroAnonymous) eqpat in match eqpat with | IntroNaming eqpat -> Proofview.tclEVARMAP >>= fun sigma -> thaw constr c >>= fun c -> Tac2tactics.letin_pat_tac ev (Some (true, eqpat)) na (sigma, c) cl | _ -> Tacticals.New.tclZEROMSG (Pp.str "Invalid pattern for remember") end let () = define_prim3 "tac_destruct" bool (list induction_clause) (option constr_with_bindings) begin fun ev ic using -> Tac2tactics.induction_destruct false ev ic using end let () = define_prim3 "tac_induction" bool (list induction_clause) (option constr_with_bindings) begin fun ev ic using -> Tac2tactics.induction_destruct true ev ic using end let () = define_prim1 "tac_red" clause begin fun cl -> Tac2tactics.reduce (Red false) cl end let () = define_prim1 "tac_hnf" clause begin fun cl -> Tac2tactics.reduce Hnf cl end let () = define_prim3 "tac_simpl" red_flags (option pattern_with_occs) clause begin fun flags where cl -> Tac2tactics.simpl flags where cl end let () = define_prim2 "tac_cbv" red_flags clause begin fun flags cl -> Tac2tactics.cbv flags cl end let () = define_prim2 "tac_cbn" red_flags clause begin fun flags cl -> Tac2tactics.cbn flags cl end let () = define_prim2 "tac_lazy" red_flags clause begin fun flags cl -> Tac2tactics.lazy_ flags cl end let () = define_prim2 "tac_unfold" (list reference_with_occs) clause begin fun refs cl -> Tac2tactics.unfold refs cl end let () = define_prim2 "tac_fold" (list constr) clause begin fun args cl -> Tac2tactics.reduce (Fold args) cl end let () = define_prim2 "tac_pattern" (list constr_with_occs) clause begin fun where cl -> Tac2tactics.pattern where cl end let () = define_prim2 "tac_vm" (option pattern_with_occs) clause begin fun where cl -> Tac2tactics.vm where cl end let () = define_prim2 "tac_native" (option pattern_with_occs) clause begin fun where cl -> Tac2tactics.native where cl end (** Reduction functions *) let lift tac = tac >>= fun c -> Proofview.tclUNIT (Value.of_constr c) let define_red1 name r0 f = let tac x = lift (f (Value.repr_to r0 x)) in Tac2env.define_primitive (pname name) (mk_closure arity_one tac) let define_red2 name r0 r1 f = let tac x y = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y)) in Tac2env.define_primitive (pname name) (mk_closure (arity_suc arity_one) tac) let define_red3 name r0 r1 r2 f = let tac x y z = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y) (Value.repr_to r2 z)) in Tac2env.define_primitive (pname name) (mk_closure (arity_suc (arity_suc arity_one)) tac) let () = define_red1 "eval_red" constr begin fun c -> Tac2tactics.eval_red c end let () = define_red1 "eval_hnf" constr begin fun c -> Tac2tactics.eval_hnf c end let () = define_red3 "eval_simpl" red_flags (option pattern_with_occs) constr begin fun flags where c -> Tac2tactics.eval_simpl flags where c end let () = define_red2 "eval_cbv" red_flags constr begin fun flags c -> Tac2tactics.eval_cbv flags c end let () = define_red2 "eval_cbn" red_flags constr begin fun flags c -> Tac2tactics.eval_cbn flags c end let () = define_red2 "eval_lazy" red_flags constr begin fun flags c -> Tac2tactics.eval_lazy flags c end let () = define_red2 "eval_unfold" (list reference_with_occs) constr begin fun refs c -> Tac2tactics.eval_unfold refs c end let () = define_red2 "eval_fold" (list constr) constr begin fun args c -> Tac2tactics.eval_fold args c end let () = define_red2 "eval_pattern" (list constr_with_occs) constr begin fun where c -> Tac2tactics.eval_pattern where c end let () = define_red2 "eval_vm" (option pattern_with_occs) constr begin fun where c -> Tac2tactics.eval_vm where c end let () = define_red2 "eval_native" (option pattern_with_occs) constr begin fun where c -> Tac2tactics.eval_native where c end let () = define_prim3 "tac_change" (option pattern) (fun1 (array constr) constr) clause begin fun pat c cl -> Tac2tactics.change pat c cl end let () = define_prim4 "tac_rewrite" bool (list rewriting) clause (option (thunk unit)) begin fun ev rw cl by -> Tac2tactics.rewrite ev rw cl by end let () = define_prim4 "tac_inversion" inversion_kind destruction_arg (option intro_pattern) (option (list ident)) begin fun knd arg pat ids -> Tac2tactics.inversion knd arg pat ids end (** Tactics from coretactics *) let () = define_prim0 "tac_reflexivity" Tactics.intros_reflexivity let () = define_prim2 "tac_move" ident move_location begin fun id mv -> Tactics.move_hyp id mv end let () = define_prim2 "tac_intro" (option ident) (option move_location) begin fun id mv -> let mv = Option.default Logic.MoveLast mv in Tactics.intro_move id mv end (* TACTIC EXTEND exact [ "exact" casted_constr(c) ] -> [ Tactics.exact_no_check c ] END *) let () = define_prim0 "tac_assumption" Tactics.assumption let () = define_prim1 "tac_transitivity" constr begin fun c -> Tactics.intros_transitivity (Some c) end let () = define_prim0 "tac_etransitivity" (Tactics.intros_transitivity None) let () = define_prim1 "tac_cut" constr begin fun c -> Tactics.cut c end let () = define_prim2 "tac_left" bool bindings begin fun ev bnd -> Tac2tactics.left_with_bindings ev bnd end let () = define_prim2 "tac_right" bool bindings begin fun ev bnd -> Tac2tactics.right_with_bindings ev bnd end let () = define_prim1 "tac_introsuntil" qhyp begin fun h -> Tactics.intros_until h end let () = define_prim1 "tac_exactnocheck" constr begin fun c -> Tactics.exact_no_check c end let () = define_prim1 "tac_vmcastnocheck" constr begin fun c -> Tactics.vm_cast_no_check c end let () = define_prim1 "tac_nativecastnocheck" constr begin fun c -> Tactics.native_cast_no_check c end let () = define_prim1 "tac_constructor" bool begin fun ev -> Tactics.any_constructor ev None end let () = define_prim3 "tac_constructorn" bool int bindings begin fun ev n bnd -> Tac2tactics.constructor_tac ev None n bnd end let () = define_prim2 "tac_specialize" constr_with_bindings (option intro_pattern) begin fun c ipat -> Tac2tactics.specialize c ipat end let () = define_prim1 "tac_symmetry" clause begin fun cl -> Tac2tactics.symmetry cl end let () = define_prim2 "tac_split" bool bindings begin fun ev bnd -> Tac2tactics.split_with_bindings ev bnd end let () = define_prim1 "tac_rename" (list (pair ident ident)) begin fun ids -> Tactics.rename_hyp ids end let () = define_prim1 "tac_revert" (list ident) begin fun ids -> Tactics.revert ids end let () = define_prim0 "tac_admit" Proofview.give_up let () = define_prim2 "tac_fix" ident int begin fun ident n -> Tactics.fix ident n end let () = define_prim1 "tac_cofix" ident begin fun ident -> Tactics.cofix ident end let () = define_prim1 "tac_clear" (list ident) begin fun ids -> Tactics.clear ids end let () = define_prim1 "tac_keep" (list ident) begin fun ids -> Tactics.keep ids end let () = define_prim1 "tac_clearbody" (list ident) begin fun ids -> Tactics.clear_body ids end (** Tactics from extratactics *) let () = define_prim2 "tac_discriminate" bool (option destruction_arg) begin fun ev arg -> Tac2tactics.discriminate ev arg end let () = define_prim3 "tac_injection" bool (option intro_patterns) (option destruction_arg) begin fun ev ipat arg -> Tac2tactics.injection ev ipat arg end let () = define_prim1 "tac_absurd" constr begin fun c -> Contradiction.absurd c end let () = define_prim1 "tac_contradiction" (option constr_with_bindings) begin fun c -> Tac2tactics.contradiction c end let () = define_prim4 "tac_autorewrite" bool (option (thunk unit)) (list ident) clause begin fun all by ids cl -> Tac2tactics.autorewrite ~all by ids cl end let () = define_prim1 "tac_subst" (list ident) begin fun ids -> Equality.subst ids end let () = define_prim0 "tac_substall" (return () >>= fun () -> Equality.subst_all ()) (** Auto *) let () = define_prim3 "tac_trivial" debug (list (thunk constr)) (option (list ident)) begin fun dbg lems dbs -> Tac2tactics.trivial dbg lems dbs end let () = define_prim5 "tac_eauto" debug (option int) (option int) (list (thunk constr)) (option (list ident)) begin fun dbg n p lems dbs -> Tac2tactics.eauto dbg n p lems dbs end let () = define_prim4 "tac_auto" debug (option int) (list (thunk constr)) (option (list ident)) begin fun dbg n lems dbs -> Tac2tactics.auto dbg n lems dbs end let () = define_prim4 "tac_newauto" debug (option int) (list (thunk constr)) (option (list ident)) begin fun dbg n lems dbs -> Tac2tactics.new_auto dbg n lems dbs end let () = define_prim3 "tac_typeclasses_eauto" (option strategy) (option int) (option (list ident)) begin fun str n dbs -> Tac2tactics.typeclasses_eauto str n dbs end let () = define_prim2 "tac_unify" constr constr begin fun x y -> Tac2tactics.unify x y end