(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* .doc { font-family: monospace; white-space: pre; } # **) (** Constants for under/over, to rewrite under binders using "context lemmas" Note: this file does not require [ssreflect]; it is both required by [ssrsetoid] and *exported* by [ssrunder]. This preserves the following feature: we can use [Setoid] without requiring [ssreflect] and use [ssreflect] without requiring [Setoid]. *) Require Import ssrclasses. Module Type UNDER_REL. Parameter Under_rel : forall (A : Type) (eqA : A -> A -> Prop), A -> A -> Prop. Parameter Under_rel_from_rel : forall (A : Type) (eqA : A -> A -> Prop) (x y : A), @Under_rel A eqA x y -> eqA x y. Parameter Under_relE : forall (A : Type) (eqA : A -> A -> Prop), @Under_rel A eqA = eqA. (** [Over_rel, over_rel, over_rel_done]: for "by rewrite over_rel" *) Parameter Over_rel : forall (A : Type) (eqA : A -> A -> Prop), A -> A -> Prop. Parameter over_rel : forall (A : Type) (eqA : A -> A -> Prop) (x y : A), @Under_rel A eqA x y = @Over_rel A eqA x y. Parameter over_rel_done : forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A), @Over_rel A eqA x x. (** [under_rel_done]: for Ltac-style over *) Parameter under_rel_done : forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A), @Under_rel A eqA x x. Notation "''Under[' x ]" := (@Under_rel _ _ x _) (at level 8, format "''Under[' x ]", only printing). End UNDER_REL. Module Export Under_rel : UNDER_REL. Definition Under_rel (A : Type) (eqA : A -> A -> Prop) := eqA. Lemma Under_rel_from_rel : forall (A : Type) (eqA : A -> A -> Prop) (x y : A), @Under_rel A eqA x y -> eqA x y. Proof. now trivial. Qed. Lemma Under_relE (A : Type) (eqA : A -> A -> Prop) : @Under_rel A eqA = eqA. Proof. now trivial. Qed. Definition Over_rel := Under_rel. Lemma over_rel : forall (A : Type) (eqA : A -> A -> Prop) (x y : A), @Under_rel A eqA x y = @Over_rel A eqA x y. Proof. now trivial. Qed. Lemma over_rel_done : forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A), @Over_rel A eqA x x. Proof. now unfold Over_rel. Qed. Lemma under_rel_done : forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A), @Under_rel A eqA x x. Proof. now trivial. Qed. End Under_rel.