(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* R. Axiom Rrepr : R -> CReal. Axiom Rquot1 : forall x y:R, CRealEq (Rrepr x) (Rrepr y) -> x = y. Axiom Rquot2 : forall x:CReal, CRealEq (Rrepr (Rabst x)) x. Parameter R0 : R. Parameter R1 : R. Parameter Rplus : R -> R -> R. Parameter Rmult : R -> R -> R. Parameter Ropp : R -> R. Parameter Rlt : R -> R -> Prop. Parameter R0_def : R0 = Rabst (inject_Q 0). Parameter R1_def : R1 = Rabst (inject_Q 1). Parameter Rplus_def : forall x y : R, Rplus x y = Rabst (CReal_plus (Rrepr x) (Rrepr y)). Parameter Rmult_def : forall x y : R, Rmult x y = Rabst (CReal_mult (Rrepr x) (Rrepr y)). Parameter Ropp_def : forall x : R, Ropp x = Rabst (CReal_opp (Rrepr x)). Parameter Rlt_def : forall x y : R, Rlt x y = CRealLtProp (Rrepr x) (Rrepr y). End RbaseSymbolsSig. Module RbaseSymbolsImpl : RbaseSymbolsSig. Definition R := DReal. Definition Rabst := DRealAbstr. Definition Rrepr := DRealRepr. Definition Rquot1 := DRealQuot1. Definition Rquot2 := DRealQuot2. Definition R0 : R := Rabst (inject_Q 0). Definition R1 : R := Rabst (inject_Q 1). Definition Rplus : R -> R -> R := fun x y : R => Rabst (CReal_plus (Rrepr x) (Rrepr y)). Definition Rmult : R -> R -> R := fun x y : R => Rabst (CReal_mult (Rrepr x) (Rrepr y)). Definition Ropp : R -> R := fun x : R => Rabst (CReal_opp (Rrepr x)). Definition Rlt : R -> R -> Prop := fun x y : R => CRealLtProp (Rrepr x) (Rrepr y). Definition R0_def := eq_refl R0. Definition R1_def := eq_refl R1. Definition Rplus_def := fun x y => eq_refl (Rplus x y). Definition Rmult_def := fun x y => eq_refl (Rmult x y). Definition Ropp_def := fun x => eq_refl (Ropp x). Definition Rlt_def := fun x y => eq_refl (Rlt x y). End RbaseSymbolsImpl. Export RbaseSymbolsImpl. (* Keep the same names as before *) Notation R := RbaseSymbolsImpl.R (only parsing). Notation R0 := RbaseSymbolsImpl.R0 (only parsing). Notation R1 := RbaseSymbolsImpl.R1 (only parsing). Notation Rplus := RbaseSymbolsImpl.Rplus (only parsing). Notation Rmult := RbaseSymbolsImpl.Rmult (only parsing). Notation Ropp := RbaseSymbolsImpl.Ropp (only parsing). Notation Rlt := RbaseSymbolsImpl.Rlt (only parsing). (* Automatically open scope R_scope for arguments of type R *) Bind Scope R_scope with R. Infix "+" := Rplus : R_scope. Infix "*" := Rmult : R_scope. Notation "- x" := (Ropp x) : R_scope. Infix "<" := Rlt : R_scope. (***********************************************************) (**********) Definition Rgt (r1 r2:R) : Prop := r2 < r1. (**********) Definition Rle (r1 r2:R) : Prop := r1 < r2 \/ r1 = r2. (**********) Definition Rge (r1 r2:R) : Prop := Rgt r1 r2 \/ r1 = r2. (**********) Definition Rminus (r1 r2:R) : R := r1 + - r2. (**********) Infix "-" := Rminus : R_scope. Infix "<=" := Rle : R_scope. Infix ">=" := Rge : R_scope. Infix ">" := Rgt : R_scope. Notation "x <= y <= z" := (x <= y /\ y <= z) : R_scope. Notation "x <= y < z" := (x <= y /\ y < z) : R_scope. Notation "x < y < z" := (x < y /\ y < z) : R_scope. Notation "x < y <= z" := (x < y /\ y <= z) : R_scope. (**********************************************************) (** * Injection from [Z] to [R] *) (**********************************************************) (* compact representation for 2*p *) Fixpoint IPR_2 (p:positive) : R := match p with | xH => R1 + R1 | xO p => (R1 + R1) * IPR_2 p | xI p => (R1 + R1) * (R1 + IPR_2 p) end. Definition IPR (p:positive) : R := match p with | xH => R1 | xO p => IPR_2 p | xI p => R1 + IPR_2 p end. Arguments IPR p%positive : simpl never. (**********) Definition IZR (z:Z) : R := match z with | Z0 => R0 | Zpos n => IPR n | Zneg n => - IPR n end. Arguments IZR z%Z : simpl never. Lemma total_order_T : forall r1 r2:R, {Rlt r1 r2} + {r1 = r2} + {Rlt r2 r1}. Proof. intros. destruct (CRealLt_lpo_dec (Rrepr r1) (Rrepr r2) sig_forall_dec). - left. left. rewrite RbaseSymbolsImpl.Rlt_def. apply CRealLtForget. exact c. - destruct (CRealLt_lpo_dec (Rrepr r2) (Rrepr r1) sig_forall_dec). + right. rewrite RbaseSymbolsImpl.Rlt_def. apply CRealLtForget. exact c. + left. right. apply Rquot1. split; assumption. Qed. Lemma Req_appart_dec : forall x y : R, { x = y } + { x < y \/ y < x }. Proof. intros. destruct (total_order_T x y). destruct s. - right. left. exact r. - left. exact e. - right. right. exact r. Qed. Lemma Rrepr_appart_0 : forall x:R, (x < R0 \/ R0 < x) -> CReal_appart (Rrepr x) (inject_Q 0). Proof. intros. apply CRealLtDisjunctEpsilon. destruct H. left. rewrite RbaseSymbolsImpl.Rlt_def, RbaseSymbolsImpl.R0_def, Rquot2 in H. exact H. right. rewrite RbaseSymbolsImpl.Rlt_def, RbaseSymbolsImpl.R0_def, Rquot2 in H. exact H. Qed. Module Type RinvSig. Parameter Rinv : R -> R. Parameter Rinv_def : forall x : R, Rinv x = match Req_appart_dec x R0 with | left _ => R0 (* / 0 is undefined, we take 0 arbitrarily *) | right r => Rabst ((CReal_inv (Rrepr x) (Rrepr_appart_0 x r))) end. End RinvSig. Module RinvImpl : RinvSig. Definition Rinv : R -> R := fun x => match Req_appart_dec x R0 with | left _ => R0 (* / 0 is undefined, we take 0 arbitrarily *) | right r => Rabst ((CReal_inv (Rrepr x) (Rrepr_appart_0 x r))) end. Definition Rinv_def := fun x => eq_refl (Rinv x). End RinvImpl. Notation Rinv := RinvImpl.Rinv (only parsing). Notation "/ x" := (Rinv x) : R_scope. (**********) Definition Rdiv (r1 r2:R) : R := r1 * / r2. Infix "/" := Rdiv : R_scope. (* First integer strictly above x *) Definition up (x : R) : Z. Proof. destruct (CRealArchimedean (Rrepr x)) as [n nmaj], (total_order_T (IZR n - x) R1). destruct s. - exact n. - (* x = n-1 *) exact n. - exact (Z.pred n). Defined. (** Injection of rational numbers into real numbers. *) Definition Q2R (x : Q) : R := (IZR (Qnum x) * / IZR (QDen x))%R. (**********************************************************) (** * Number notation for constants *) (**********************************************************) Inductive IR := | IRZ : IZ -> IR | IRQ : Q -> IR | IRmult : IR -> IR -> IR | IRdiv : IR -> IR -> IR. Definition of_decimal (d : Decimal.decimal) : IR := let '(i, f, e) := match d with | Decimal.Decimal i f => (i, f, Decimal.Pos Decimal.Nil) | Decimal.DecimalExp i f e => (i, f, e) end in let zq := match f with | Decimal.Nil => IRZ (IZ_of_Z (Z.of_int i)) | _ => let num := Z.of_int (Decimal.app_int i f) in let den := Nat.iter (Decimal.nb_digits f) (Pos.mul 10) 1%positive in IRQ (Qmake num den) end in let e := Z.of_int e in match e with | Z0 => zq | Zpos e => IRmult zq (IRZ (IZpow_pos 10 e)) | Zneg e => IRdiv zq (IRZ (IZpow_pos 10 e)) end. Definition of_hexadecimal (d : Hexadecimal.hexadecimal) : IR := let '(i, f, e) := match d with | Hexadecimal.Hexadecimal i f => (i, f, Decimal.Pos Decimal.Nil) | Hexadecimal.HexadecimalExp i f e => (i, f, e) end in let zq := match f with | Hexadecimal.Nil => IRZ (IZ_of_Z (Z.of_hex_int i)) | _ => let num := Z.of_hex_int (Hexadecimal.app_int i f) in let den := Nat.iter (Hexadecimal.nb_digits f) (Pos.mul 16) 1%positive in IRQ (Qmake num den) end in let e := Z.of_int e in match e with | Z0 => zq | Zpos e => IRmult zq (IRZ (IZpow_pos 2 e)) | Zneg e => IRdiv zq (IRZ (IZpow_pos 2 e)) end. Definition of_number (n : Number.number) : IR := match n with | Number.Decimal d => of_decimal d | Number.Hexadecimal h => of_hexadecimal h end. Definition IQmake_to_decimal num den := match den with | 1%positive => None (* this should be encoded as IRZ *) | _ => IQmake_to_decimal num den end. Definition to_decimal (n : IR) : option Decimal.decimal := match n with | IRZ z => match IZ_to_Z z with | Some z => Some (Decimal.Decimal (Z.to_int z) Decimal.Nil) | None => None end | IRQ (Qmake num den) => IQmake_to_decimal num den | IRmult (IRZ z) (IRZ (IZpow_pos 10 e)) => match IZ_to_Z z with | Some z => Some (Decimal.DecimalExp (Z.to_int z) Decimal.Nil (Pos.to_int e)) | None => None end | IRmult (IRQ (Qmake num den)) (IRZ (IZpow_pos 10 e)) => match IQmake_to_decimal num den with | Some (Decimal.Decimal i f) => Some (Decimal.DecimalExp i f (Pos.to_int e)) | _ => None end | IRdiv (IRZ z) (IRZ (IZpow_pos 10 e)) => match IZ_to_Z z with | Some z => Some (Decimal.DecimalExp (Z.to_int z) Decimal.Nil (Decimal.Neg (Pos.to_uint e))) | None => None end | IRdiv (IRQ (Qmake num den)) (IRZ (IZpow_pos 10 e)) => match IQmake_to_decimal num den with | Some (Decimal.Decimal i f) => Some (Decimal.DecimalExp i f (Decimal.Neg (Pos.to_uint e))) | _ => None end | _ => None end. Definition IQmake_to_hexadecimal num den := match den with | 1%positive => None (* this should be encoded as IRZ *) | _ => IQmake_to_hexadecimal num den end. Definition to_hexadecimal (n : IR) : option Hexadecimal.hexadecimal := match n with | IRZ z => match IZ_to_Z z with | Some z => Some (Hexadecimal.Hexadecimal (Z.to_hex_int z) Hexadecimal.Nil) | None => None end | IRQ (Qmake num den) => IQmake_to_hexadecimal num den | IRmult (IRZ z) (IRZ (IZpow_pos 2 e)) => match IZ_to_Z z with | Some z => Some (Hexadecimal.HexadecimalExp (Z.to_hex_int z) Hexadecimal.Nil (Pos.to_int e)) | None => None end | IRmult (IRQ (Qmake num den)) (IRZ (IZpow_pos 2 e)) => match IQmake_to_hexadecimal num den with | Some (Hexadecimal.Hexadecimal i f) => Some (Hexadecimal.HexadecimalExp i f (Pos.to_int e)) | _ => None end | IRdiv (IRZ z) (IRZ (IZpow_pos 2 e)) => match IZ_to_Z z with | Some z => Some (Hexadecimal.HexadecimalExp (Z.to_hex_int z) Hexadecimal.Nil (Decimal.Neg (Pos.to_uint e))) | None => None end | IRdiv (IRQ (Qmake num den)) (IRZ (IZpow_pos 2 e)) => match IQmake_to_hexadecimal num den with | Some (Hexadecimal.Hexadecimal i f) => Some (Hexadecimal.HexadecimalExp i f (Decimal.Neg (Pos.to_uint e))) | _ => None end | _ => None end. Definition to_number q := match to_decimal q with | None => None | Some q => Some (Number.Decimal q) end. Definition to_hex_number q := match to_hexadecimal q with | None => None | Some q => Some (Number.Hexadecimal q) end. Number Notation R of_number to_hex_number (via IR mapping [IZR => IRZ, Q2R => IRQ, Rmult => IRmult, Rdiv => IRdiv, Z.pow_pos => IZpow_pos, Z0 => IZ0, Zpos => IZpos, Zneg => IZneg]) : hex_R_scope. Number Notation R of_number to_number (via IR mapping [IZR => IRZ, Q2R => IRQ, Rmult => IRmult, Rdiv => IRdiv, Z.pow_pos => IZpow_pos, Z0 => IZ0, Zpos => IZpos, Zneg => IZneg]) : R_scope.