Require Import QArith. Require Import Qpower. Require Import Qabs. Require Import Qround. Require Import Lia. Require Import Lqa. (* This is only used in a few places and could be avoided *) Require Import PosExtra. (** * Lemmas on Q numerator denominator operations *) Lemma Q_factorDenom : forall (a:Z) (b d:positive), (a # (d * b)) == (1#d) * (a#b). Proof. intros. unfold Qeq. simpl. destruct a; reflexivity. Qed. Lemma Q_factorNum_l : forall (a b : Z) (c : positive), (a*b # c == (a # 1) * (b # c))%Q. Proof. intros a b c. unfold Qeq; cbn; lia. Qed. Lemma Q_factorNum : forall (a : Z) (b : positive), (a # b == (a # 1) * (1 # b))%Q. Proof. intros a b. unfold Qeq; cbn; lia. Qed. Lemma Q_reduce_fl : forall (a b : positive), (Z.pos a # a * b == (1 # b))%Q. Proof. intros a b. unfold Qeq; cbn; lia. Qed. (** * Lemmas on Q comparison *) Lemma Qle_neq: forall p q : Q, p < q <-> p <= q /\ ~ (p == q). Proof. intros p q; split; intros H. - rewrite Qlt_alt in H; rewrite Qle_alt, Qeq_alt. rewrite H; split; intros H1; inversion H1. - rewrite Qlt_alt; rewrite Qle_alt, Qeq_alt in H. destruct (p ?= q); tauto. Qed. Lemma Qplus_lt_compat : forall x y z t : Q, (x < y)%Q -> (z < t)%Q -> (x + z < y + t)%Q. Proof. intros x y z t H1 H2. apply Qplus_lt_le_compat. - assumption. - apply Qle_lteq; left; assumption. Qed. (* Qgt is just a notation, but one might now know this and search for this lemma *) Lemma Qgt_lt: forall p q : Q, p > q -> q < p. Proof. intros p q H; assumption. Qed. Lemma Qlt_gt: forall p q : Q, p < q -> q > p. Proof. intros p q H; assumption. Qed. Notation "x <= y < z" := (x<=y/\y 0 < b -> 0 < a * b. Proof. intros a b Ha Hb. destruct a,b. unfold Qlt, Qmult, QArith_base.Qnum, QArith_base.Qden in *. rewrite Pos2Z.inj_mul. rewrite Z.mul_0_l, Z.mul_1_r in *. apply Z.mul_pos_pos; assumption. Qed. Lemma Qmult_lt_1_compat: forall a b : Q, (1 < a)%Q -> (1 < b)%Q -> (1 < a * b)%Q. Proof. intros a b Ha Hb. pose proof Qmult_lt_0_compat (a-1) (b-1) ltac:(lra) ltac:(lra). lra. Qed. Lemma Qmult_le_1_compat: forall a b : Q, (1 <= a)%Q -> (1 <= b)%Q -> (1 <= a * b)%Q. Proof. intros a b Ha Hb. pose proof Qmult_le_0_compat (a-1) (b-1) ltac:(lra) ltac:(lra). lra. Qed. Lemma Qmult_lt_compat_nonneg: forall x y z t : Q, (0 <= x < y)%Q -> (0 <= z < t)%Q -> (x * z < y * t)%Q. Proof. intros [xn xd] [yn yd] [zn zd] [tn td] [H0lex Hxlty] [H0lez Hzltt]. (* ToDo: why do I need path qualification to Qnum? It is exported by QArith *) unfold Qmult, Qlt, Qle, QArith_base.Qnum, QArith_base.Qden in *. do 2 rewrite Pos2Z.inj_mul. setoid_replace (xn * zn * (Z.pos yd * Z.pos td))%Z with ((xn * Z.pos yd) * (zn * Z.pos td))%Z by ring. setoid_replace (yn * tn * (Z.pos xd * Z.pos zd))%Z with ((yn * Z.pos xd) * (tn * Z.pos zd))%Z by ring. apply Z.mul_lt_mono_nonneg. - rewrite <- (Z.mul_0_l 0); apply Z.mul_le_mono_nonneg; lia. - exact Hxlty. - rewrite <- (Z.mul_0_l 0); apply Z.mul_le_mono_nonneg; lia. - exact Hzltt. Qed. Lemma Qmult_lt_le_compat_nonneg: forall x y z t : Q, (0 < x <= y)%Q -> (0 < z < t)%Q -> (x * z < y * t)%Q. Proof. intros [xn xd] [yn yd] [zn zd] [tn td] [H0lex Hxlty] [H0lez Hzltt]. (* ToDo: why do I need path qualification to Qnum? It is exported by QArith *) unfold Qmult, Qlt, Qle, QArith_base.Qnum, QArith_base.Qden in *. do 2 rewrite Pos2Z.inj_mul. setoid_replace (xn * zn * (Z.pos yd * Z.pos td))%Z with ((xn * Z.pos yd) * (zn * Z.pos td))%Z by ring. setoid_replace (yn * tn * (Z.pos xd * Z.pos zd))%Z with ((yn * Z.pos xd) * (tn * Z.pos zd))%Z by ring. apply Zmult_lt_compat2; split. - rewrite <- (Z.mul_0_l 0). apply Z.mul_lt_mono_nonneg; lia. - exact Hxlty. - rewrite <- (Z.mul_0_l 0). apply Z.mul_lt_mono_nonneg; lia. - exact Hzltt. Qed. Lemma Qmult_le_compat_nonneg: forall x y z t : Q, (0 <= x <= y)%Q -> (0 <= z <= t)%Q -> (x * z <= y * t)%Q. Proof. intros [xn xd] [yn yd] [zn zd] [tn td] [H0lex Hxlty] [H0lez Hzltt]. (* ToDo: why do I need path qualification to Qnum? It is exported by QArith *) unfold Qmult, Qlt, Qle, QArith_base.Qnum, QArith_base.Qden in *. do 2 rewrite Pos2Z.inj_mul. setoid_replace (xn * zn * (Z.pos yd * Z.pos td))%Z with ((xn * Z.pos yd) * (zn * Z.pos td))%Z by ring. setoid_replace (yn * tn * (Z.pos xd * Z.pos zd))%Z with ((yn * Z.pos xd) * (tn * Z.pos zd))%Z by ring. apply Z.mul_le_mono_nonneg. - rewrite <- (Z.mul_0_l 0); apply Z.mul_le_mono_nonneg; lia. - exact Hxlty. - rewrite <- (Z.mul_0_l 0); apply Z.mul_le_mono_nonneg; lia. - exact Hzltt. Qed. (** * Lemmas on Qinv *) Lemma Qinv_swap_pos: forall (a b : positive), Z.pos a # b == / (Z.pos b # a). Proof. intros a b. reflexivity. Qed. Lemma Qinv_swap_neg: forall (a b : positive), Z.neg a # b == / (Z.neg b # a). Proof. intros a b. reflexivity. Qed. (** * Lemmas on Qabs *) Lemma Qabs_Qlt_condition: forall x y : Q, Qabs x < y <-> -y < x < y. Proof. split. split. rewrite <- (Qopp_opp x). apply Qopp_lt_compat. apply Qle_lt_trans with (Qabs (-x)). apply Qle_Qabs. now rewrite Qabs_opp. apply Qle_lt_trans with (Qabs x); auto using Qle_Qabs. intros (H,H'). apply Qabs_case; trivial. intros. rewrite <- (Qopp_opp y). now apply Qopp_lt_compat. Qed. Lemma Qabs_gt: forall r s : Q, (r < s)%Q -> (r < Qabs s)%Q. Proof. intros r s Hrlts. apply Qabs_case; intros; lra. Qed. (** * Lemmas on Qpower *) Lemma Qpower_0_r: forall q:Q, q^0 == 1. Proof. intros q. reflexivity. Qed. Lemma Qpower_1_r: forall q:Q, q^1 == q. Proof. intros q. reflexivity. Qed. Lemma Qpower_not_0: forall (a : Q) (z : Z), ~ a == 0 -> ~ Qpower a z == 0. Proof. intros a z H; destruct z. - discriminate. - apply Qpower_not_0_positive; assumption. - cbn. intros H1. pose proof Qmult_inv_r (Qpower_positive a p) as H2. specialize (H2 (Qpower_not_0_positive _ _ H)). rewrite H1, Qmult_0_r in H2. discriminate H2. Qed. (* Actually Qpower_pos should be named Qpower_nonneg *) Lemma Qpower_pos_lt: forall (a : Q) (z : Z), a > 0 -> Qpower a z > 0. Proof. intros q z Hpos. pose proof Qpower_pos q z (Qlt_le_weak 0 q Hpos) as H1. pose proof Qpower_not_0 q z as H2. pose proof Qlt_not_eq 0 q Hpos as H3. specialize (H2 (Qnot_eq_sym _ _ H3)); clear H3. apply Qnot_eq_sym in H2. apply Qle_neq; split; assumption. Qed. Lemma Qpower_minus: forall (a : Q) (n m : Z), ~ a == 0 -> a ^ (n - m) == a ^ n / a ^ m. Proof. intros a n m Hnz. rewrite <- Z.add_opp_r. rewrite Qpower_plus by assumption. rewrite Qpower_opp. field. apply Qpower_not_0; assumption. Qed. Lemma Qpower_minus_pos: forall (a b : positive) (n m : Z), (Z.pos a#b) ^ (n - m) == (Z.pos a#b) ^ n * (Z.pos b#a) ^ m. Proof. intros a b n m. rewrite Qpower_minus by discriminate. rewrite (Qinv_swap_pos b a), Qinv_power. reflexivity. Qed. Lemma Qpower_minus_neg: forall (a b : positive) (n m : Z), (Z.neg a#b) ^ (n - m) == (Z.neg a#b) ^ n * (Z.neg b#a) ^ m. Proof. intros a b n m. rewrite Qpower_minus by discriminate. rewrite (Qinv_swap_neg b a), Qinv_power. reflexivity. Qed. Lemma Qpower_lt_1_increasing: forall (q : Q) (n : positive), (1 (1 < q ^ (Z.pos n))%Q. Proof. intros q n Hq. induction n. - cbn in *. apply Qmult_lt_1_compat. assumption. apply Qmult_lt_1_compat; assumption. - cbn in *. apply Qmult_lt_1_compat; assumption. - cbn; assumption. Qed. Lemma Qpower_lt_1_increasing': forall (q : Q) (n : Z), (1 (0 (1 < q ^ n)%Q. Proof. intros q n Hq Hn. destruct n. - inversion Hn. - apply Qpower_lt_1_increasing; assumption. - lia. Qed. Lemma Qzero_eq: forall (d : positive), (0#d == 0)%Q. Proof. intros d. unfold Qeq, Qnum, Qden; reflexivity. Qed. Lemma Qpower_le_1_increasing: forall (q : Q) (n : positive), (1<=q)%Q -> (1 <= q ^ (Z.pos n))%Q. Proof. intros q n Hq. induction n. - cbn in *. apply Qmult_le_1_compat. assumption. apply Qmult_le_1_compat; assumption. - cbn in *. apply Qmult_le_1_compat; assumption. - cbn; assumption. Qed. Lemma Qpower_le_1_increasing': forall (q : Q) (n : Z), (1<=q)%Q -> (0<=n)%Z -> (1 <= q ^ n)%Q. Proof. intros q n Hq Hn. destruct n. - apply Qle_refl. - apply Qpower_le_1_increasing; assumption. - lia. Qed. (* ToDo: check if name compat_r is more appropriate *) Lemma Qpower_lt_compat: forall (q : Q) (n m : Z), (n < m)%Z -> (1 (q ^ n < q ^ m)%Q. Proof. intros q n m Hnm Hq. replace m with (n+(m-n))%Z by ring. rewrite Qpower_plus, <- Qmult_1_r, <- Qmult_assoc. 2: lra. rewrite Qmult_lt_l, Qmult_1_l. 2: apply Qpower_pos_lt; lra. remember (m-n)%Z as k. apply Qpower_lt_1_increasing'. - exact Hq. - lia. Qed. Lemma Qpower_le_compat: forall (q : Q) (n m : Z), (n <= m)%Z -> (1<=q)%Q -> (q ^ n <= q ^ m)%Q. Proof. intros q n m Hnm Hq. replace m with (n+(m-n))%Z by ring. rewrite Qpower_plus, <- Qmult_1_r, <- Qmult_assoc. 2: lra. rewrite Qmult_le_l, Qmult_1_l. 2: apply Qpower_pos_lt; lra. remember (m-n)%Z as k. apply Qpower_le_1_increasing'. - exact Hq. - lia. Qed. Lemma Qpower_lt_compat_inv: forall (q : Q) (n m : Z), (q ^ n < q ^ m)%Q -> (1 (n < m)%Z. Proof. intros q n m Hnm Hq. destruct (Z_lt_le_dec n m) as [Hd|Hd]. - assumption. - pose proof Qpower_le_compat q m n Hd ltac:(lra). lra. Qed. Lemma Qpower_le_compat_inv: forall (q : Q) (n m : Z), (q ^ n <= q ^ m)%Q -> (1 (n <= m)%Z. Proof. intros q n m Hnm Hq. destruct (Z_lt_le_dec m n) as [Hd|Hd]. - pose proof Qpower_lt_compat q m n Hd Hq. lra. - assumption. Qed. Lemma Qpower_decomp': forall (p : positive) (a : Z) (b : positive), (a # b) ^ (Z.pos p) == a ^ (Z.pos p) # (b ^ p)%positive. Proof. intros p a b. pose proof Qpower_decomp p a b. cbn; rewrite H; reflexivity. Qed. (** * Power of 2 open and closed upper and lower bounds for [q : Q] *) Lemma QarchimedeanExp2_Pos : forall q : Q, {p : positive | (q < Z.pos (2^p) # 1)%Q}. Proof. intros q. destruct (Qarchimedean q) as [pexp Hpexp]. exists (Pos.size pexp). pose proof Pos.size_gt pexp as H1. unfold Qlt in *. cbn in *; Zify.zify. apply (Z.mul_lt_mono_pos_r (QDen q)) in H1; [|assumption]. apply (Z.lt_trans _ _ _ Hpexp H1). Qed. Fixpoint Pos_log2floor_plus1 (p : positive) : positive := match p with | (p'~1)%positive => Pos.succ (Pos_log2floor_plus1 p') | (p'~0)%positive => Pos.succ (Pos_log2floor_plus1 p') | 1%positive => 1 end. Lemma Pos_log2floor_plus1_spec : forall (p : positive), (Pos.pow 2 (Pos_log2floor_plus1 p) <= 2 * p < 2 * Pos.pow 2 (Pos_log2floor_plus1 p))%positive. Proof. intros p. split. - induction p. + cbn. rewrite Pos.pow_succ_r. lia. + cbn. rewrite Pos.pow_succ_r. lia. + cbn. lia. - induction p. + cbn. rewrite Pos.pow_succ_r. lia. + cbn. rewrite Pos.pow_succ_r. lia. + cbn. lia. Qed. Fixpoint Pos_log2ceil_plus1 (p : positive) : positive := match p with | (p'~1)%positive => Pos.succ (Pos.succ (Pos_log2floor_plus1 p')) | (p'~0)%positive => Pos.succ (Pos_log2ceil_plus1 p') | 1%positive => 1 end. Lemma Pos_log2ceil_plus1_spec : forall (p : positive), (Pos.pow 2 (Pos_log2ceil_plus1 p) < 4 * p <= 2 * Pos.pow 2 (Pos_log2ceil_plus1 p))%positive. Proof. intros p. split. - induction p. + cbn. do 2 rewrite Pos.pow_succ_r. pose proof Pos_log2floor_plus1_spec p. lia. + cbn. rewrite Pos.pow_succ_r. lia. + cbn. lia. - induction p. + cbn. do 2 rewrite Pos.pow_succ_r. pose proof Pos_log2floor_plus1_spec p. lia. + cbn. rewrite Pos.pow_succ_r. lia. + cbn. lia. Qed. Fixpoint Pos_is_pow2 (p : positive) : bool := match p with | (p'~1)%positive => false | (p'~0)%positive => Pos_is_pow2 p' | 1%positive => true end. (** ** Power of two closed upper bound [q <= 2^z] *) Definition Qbound_le_ZExp2 (q : Q) : Z := match Qnum q with (* The -1000 is a compromise between a tight Archimedian and avoiding too large numbers *) | Z0 => -1000 | Zneg p => 0 | Zpos p => (Z.pos (Pos_log2ceil_plus1 p) - Z.pos (Pos_log2floor_plus1 (Qden q)))%Z end. Lemma Qbound_le_ZExp2_spec : forall (q : Q), (q <= 2^(Qbound_le_ZExp2 q))%Q. Proof. intros q. destruct q as [num den]; unfold Qbound_le_ZExp2, Qnum; destruct num. - intros contra; inversion contra. - rewrite Qpower_minus by lra. apply Qle_shift_div_l. apply Qpower_pos_lt; lra. do 2 rewrite Qpower_decomp', Pos_pow_1_r. unfold Qle, Qmult, Qnum, Qden. rewrite Pos.mul_1_r, Z.mul_1_r. pose proof Pos_log2ceil_plus1_spec p as Hnom. pose proof Pos_log2floor_plus1_spec den as Hden. apply (Zmult_le_reg_r _ _ 2). lia. replace (Z.pos p * 2 ^ Z.pos (Pos_log2floor_plus1 den) * 2)%Z with ((Z.pos p * 2) * 2 ^ Z.pos (Pos_log2floor_plus1 den))%Z by ring. replace (2 ^ Z.pos (Pos_log2ceil_plus1 p) * Z.pos den * 2)%Z with (2 ^ Z.pos (Pos_log2ceil_plus1 p) * (Z.pos den * 2))%Z by ring. apply Z.mul_le_mono_nonneg; lia. - intros contra; inversion contra. Qed. Definition Qbound_leabs_ZExp2 (q : Q) : Z := Qbound_le_ZExp2 (Qabs q). Lemma Qbound_leabs_ZExp2_spec : forall (q : Q), (Qabs q <= 2^(Qbound_leabs_ZExp2 q))%Q. Proof. intros q. unfold Qbound_leabs_ZExp2; apply Qabs_case; intros. 1,2: apply Qbound_le_ZExp2_spec. Qed. (** ** Power of two open upper bound [q < 2^z] and [Qabs q < 2^z] *) (** Compute a z such that q<2^z. z shall be close to as small as possible, but we need a compromise between the tighness of the bound and the computation speed and proof complexity. Looking just at the log2 of the numerator and denominator, this is a tight bound except when the numerator is a power of 2 and the denomintor is not. E.g. this return 4/5 < 2^1 instead of 4/5< 2^0. If q==0, we return -1000, because as binary integer this has just 10 bits but 2^-1000 should be smaller than almost any number in practice. If numbers are much smaller, computations might be inefficient. *) Definition Qbound_lt_ZExp2 (q : Q) : Z := match Qnum q with (* The -1000 is a compromise between a tight Archimedian and avoiding too large numbers *) | Z0 => -1000 | Zneg p => 0 | Zpos p => Z.pos_sub (Pos.succ (Pos_log2floor_plus1 p)) (Pos_log2floor_plus1 (Qden q)) end. Remark Qbound_lt_ZExp2_test_1 : Qbound_lt_ZExp2 (4#4) = 1%Z. reflexivity. Qed. Remark Qbound_lt_ZExp2_test_2 : Qbound_lt_ZExp2 (5#4) = 1%Z. reflexivity. Qed. Remark Qbound_lt_ZExp2_test_3 : Qbound_lt_ZExp2 (4#5) = 1%Z. reflexivity. Qed. Remark Qbound_lt_ZExp2_test_4 : Qbound_lt_ZExp2 (7#5) = 1%Z. reflexivity. Qed. Lemma Qbound_lt_ZExp2_spec : forall (q : Q), (q < 2^(Qbound_lt_ZExp2 q))%Q. Proof. intros q. destruct q as [num den]; unfold Qbound_lt_ZExp2, Qnum; destruct num. - reflexivity. - (* Todo: A lemma like Pos2Z.add_neg_pos for minus would be nice *) change (Z.pos_sub (Pos.succ (Pos_log2floor_plus1 p)) (Pos_log2floor_plus1 (Qden (Z.pos p # den))))%Z with ((Z.pos (Pos.succ (Pos_log2floor_plus1 p)) - Z.pos (Pos_log2floor_plus1 (Qden (Z.pos p # den)))))%Z. rewrite Qpower_minus by lra. apply Qlt_shift_div_l. apply Qpower_pos_lt; lra. do 2 rewrite Qpower_decomp', Pos_pow_1_r. unfold Qlt, Qmult, Qnum, Qden. rewrite Pos.mul_1_r, Z.mul_1_r. pose proof Pos_log2floor_plus1_spec p as Hnom. pose proof Pos_log2floor_plus1_spec den as Hden. apply (Zmult_lt_reg_r _ _ 2). lia. rewrite Pos2Z.inj_succ, <- Z.add_1_r. rewrite Z.pow_add_r by lia. replace (Z.pos p * 2 ^ Z.pos (Pos_log2floor_plus1 den) * 2)%Z with (2 ^ Z.pos (Pos_log2floor_plus1 den) * (Z.pos p * 2))%Z by ring. replace (2 ^ Z.pos (Pos_log2floor_plus1 p) * 2 ^ 1 * Z.pos den * 2)%Z with ((Z.pos den * 2) * (2 * 2 ^ Z.pos (Pos_log2floor_plus1 p)))%Z by ring. (* ToDo: this is weaker than neccessary: Z.mul_lt_mono_nonneg. *) apply Zmult_lt_compat2; lia. - cbn. (* ToDo: lra could know that negative fractions are negative *) assert (Z.neg p # den < 0) as Hnegfrac by (unfold Qlt, Qnum, Qden; lia). lra. Qed. Definition Qbound_ltabs_ZExp2 (q : Q) : Z := Qbound_lt_ZExp2 (Qabs q). Lemma Qbound_ltabs_ZExp2_spec : forall (q : Q), (Qabs q < 2^(Qbound_ltabs_ZExp2 q))%Q. Proof. intros q. unfold Qbound_ltabs_ZExp2; apply Qabs_case; intros. 1,2: apply Qbound_lt_ZExp2_spec. Qed. (** ** Power of 2 open lower bounds for [2^z < q] and [2^z < Qabs q] *) (** Note: the -2 is required cause of the Qlt limit. In case q is a power of two, the lower and upper bound must be a factor of 4 apart *) Definition Qlowbound_ltabs_ZExp2 (q : Q) : Z := -2 + Qbound_ltabs_ZExp2 q. Lemma Qlowbound_ltabs_ZExp2_inv: forall q : Q, q > 0 -> Qlowbound_ltabs_ZExp2 q = (- Qbound_ltabs_ZExp2 (/q))%Z. Proof. intros q Hqgt0. destruct q as [n d]. unfold Qlowbound_ltabs_ZExp2, Qbound_ltabs_ZExp2, Qbound_lt_ZExp2, Qnum. destruct n. - inversion Hqgt0. - unfold Qabs, Z.abs, Qinv, Qnum, Qden. rewrite -> Z.pos_sub_opp. do 2 rewrite <- Pos2Z.add_pos_neg. lia. - inversion Hqgt0. Qed. Lemma Qlowbound_ltabs_ZExp2_opp: forall q : Q, (Qlowbound_ltabs_ZExp2 q = Qlowbound_ltabs_ZExp2 (-q))%Z. Proof. intros q. destruct q as [[|n|n] d]; reflexivity. Qed. Lemma Qlowbound_lt_ZExp2_spec : forall (q : Q) (Hqgt0 : q > 0), (2^(Qlowbound_ltabs_ZExp2 q) < q)%Q. Proof. intros q Hqgt0. pose proof Qbound_ltabs_ZExp2_spec (/q) as Hspecub. rewrite Qlowbound_ltabs_ZExp2_inv by exact Hqgt0. rewrite Qpower_opp. setoid_rewrite <- (Qinv_involutive q) at 2. apply -> Qinv_lt_contravar. - rewrite Qabs_pos in Hspecub. + exact Hspecub. + apply Qlt_le_weak, Qinv_lt_0_compat, Hqgt0. - apply Qpower_pos_lt; lra. - apply Qinv_lt_0_compat, Hqgt0. Qed. Lemma Qlowbound_ltabs_ZExp2_spec : forall (q : Q) (Hqgt0 : ~ q == 0), (2^(Qlowbound_ltabs_ZExp2 q) < Qabs q)%Q. Proof. intros q Hqgt0. destruct (Q_dec 0 q) as [[H|H]|H]. - rewrite Qabs_pos by lra. apply Qlowbound_lt_ZExp2_spec, H. - rewrite Qabs_neg by lra. rewrite Qlowbound_ltabs_ZExp2_opp. apply Qlowbound_lt_ZExp2_spec. lra. - lra. Qed. (** ** Existential formulations of power of 2 lower and upper bounds *) Definition QarchimedeanExp2_Z (q : Q) : {z : Z | (q < 2^z)%Q} := exist _ (Qbound_lt_ZExp2 q) (Qbound_lt_ZExp2_spec q). Definition QarchimedeanAbsExp2_Z (q : Q) : {z : Z | (Qabs q < 2^z)%Q} := exist _ (Qbound_ltabs_ZExp2 q) (Qbound_ltabs_ZExp2_spec q). Definition QarchimedeanLowExp2_Z (q : Q) (Hqgt0 : q > 0) : {z : Z | (2^z < q)%Q} := exist _ (Qlowbound_ltabs_ZExp2 q) (Qlowbound_lt_ZExp2_spec q Hqgt0). Definition QarchimedeanLowAbsExp2_Z (q : Q) (Hqgt0 : ~ q == 0) : {z : Z | (2^z < Qabs q)%Q} := exist _ (Qlowbound_ltabs_ZExp2 q) (Qlowbound_ltabs_ZExp2_spec q Hqgt0).