(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* Prop), (forall n, {P n} + {~P n}) -> {n | ~P n} + {forall n, P n}. Definition sig_not_dec_T : Type := forall P : Prop, { ~~P } + { ~P }. Definition is_upper_bound {R : ConstructiveReals} (E:CRcarrier R -> Prop) (m:CRcarrier R) := forall x:CRcarrier R, E x -> x <= m. Definition is_lub {R : ConstructiveReals} (E:CRcarrier R -> Prop) (m:CRcarrier R) := is_upper_bound E m /\ (forall b:CRcarrier R, is_upper_bound E b -> m <= b). Lemma CRlt_lpo_dec : forall {R : ConstructiveReals} (x y : CRcarrier R), (forall (P : nat -> Prop), (forall n, {P n} + {~P n}) -> {n | ~P n} + {forall n, P n}) -> sum (x < y) (y <= x). Proof. intros R x y lpo. assert (forall (z:CRcarrier R) (n : nat), z < z + CR_of_Q R (1 # Pos.of_nat (S n))). { intros. apply (CRle_lt_trans _ (z+0)). rewrite CRplus_0_r. apply CRle_refl. apply CRplus_lt_compat_l. apply CR_of_Q_pos. reflexivity. } pose (fun n:nat => let (q,_) := CR_Q_dense R x (x + CR_of_Q R (1 # Pos.of_nat (S n))) (H x n) in q) as xn. pose (fun n:nat => let (q,_) := CR_Q_dense R y (y + CR_of_Q R (1 # Pos.of_nat (S n))) (H y n) in q) as yn. destruct (lpo (fun n => Qle (yn n) (xn n + (1 # Pos.of_nat (S n))))). - intro n. destruct (Q_dec (yn n) (xn n + (1 # Pos.of_nat (S n)))). destruct s. left. apply Qlt_le_weak, q. right. apply (Qlt_not_le _ _ q). left. rewrite q. apply Qle_refl. - left. destruct s as [n nmaj]. apply Qnot_le_lt in nmaj. apply (CRlt_le_trans _ (CR_of_Q R (xn n))). unfold xn. destruct (CR_Q_dense R x (x + CR_of_Q R (1 # Pos.of_nat (S n))) (H x n)). exact (fst p). apply (CRle_trans _ (CR_of_Q R (yn n - (1 # Pos.of_nat (S n))))). apply CR_of_Q_le. rewrite <- (Qplus_le_l _ _ (1# Pos.of_nat (S n))). ring_simplify. apply Qlt_le_weak, nmaj. unfold yn. destruct (CR_Q_dense R y (y + CR_of_Q R (1 # Pos.of_nat (S n))) (H y n)). unfold Qminus. rewrite CR_of_Q_plus, CR_of_Q_opp. apply (CRplus_le_reg_r (CR_of_Q R (1 # Pos.of_nat (S n)))). rewrite CRplus_assoc, CRplus_opp_l, CRplus_0_r. apply CRlt_asym, (snd p). - right. apply (CR_cv_le (fun n => CR_of_Q R (yn n)) (fun n => CR_of_Q R (xn n) + CR_of_Q R (1 # Pos.of_nat (S n)))). + intro n. rewrite <- CR_of_Q_plus. apply CR_of_Q_le. exact (q n). + intro p. exists (Pos.to_nat p). intros. unfold yn. destruct (CR_Q_dense R y (y + CR_of_Q R (1 # Pos.of_nat (S i))) (H y i)). rewrite CRabs_right. apply (CRplus_le_reg_r y). unfold CRminus. rewrite CRplus_assoc, CRplus_opp_l, CRplus_0_r. rewrite CRplus_comm. apply (CRle_trans _ (y + CR_of_Q R (1 # Pos.of_nat (S i)))). apply CRlt_asym, (snd p0). apply CRplus_le_compat_l. apply CR_of_Q_le. unfold Qle, Qnum, Qden. rewrite Z.mul_1_l, Z.mul_1_l. apply Pos2Z.pos_le_pos. apply Pos2Nat.inj_le. rewrite Nat2Pos.id. apply le_S, H0. discriminate. rewrite <- (CRplus_opp_r y). apply CRplus_le_compat_r, CRlt_asym, p0. + apply (CR_cv_proper _ (x+0)). 2: rewrite CRplus_0_r; reflexivity. apply CR_cv_plus. intro p. exists (Pos.to_nat p). intros. unfold xn. destruct (CR_Q_dense R x (x + CR_of_Q R (1 # Pos.of_nat (S i))) (H x i)). rewrite CRabs_right. apply (CRplus_le_reg_r x). unfold CRminus. rewrite CRplus_assoc, CRplus_opp_l, CRplus_0_r. rewrite CRplus_comm. apply (CRle_trans _ (x + CR_of_Q R (1 # Pos.of_nat (S i)))). apply CRlt_asym, (snd p0). apply CRplus_le_compat_l. apply CR_of_Q_le. unfold Qle, Qnum, Qden. rewrite Z.mul_1_l, Z.mul_1_l. apply Pos2Z.pos_le_pos. apply Pos2Nat.inj_le. rewrite Nat2Pos.id. apply le_S, H0. discriminate. rewrite <- (CRplus_opp_r x). apply CRplus_le_compat_r, CRlt_asym, p0. intro p. exists (Pos.to_nat p). intros. unfold CRminus. rewrite CRopp_0, CRplus_0_r, CRabs_right. apply CR_of_Q_le. unfold Qle, Qnum, Qden. rewrite Z.mul_1_l, Z.mul_1_l. apply Pos2Z.pos_le_pos. apply Pos2Nat.inj_le. rewrite Nat2Pos.id. apply le_S, H0. discriminate. apply CR_of_Q_le. discriminate. Qed. Lemma is_upper_bound_dec : forall {R : ConstructiveReals} (E:CRcarrier R -> Prop) (x:CRcarrier R), sig_forall_dec_T -> sig_not_dec_T -> { is_upper_bound E x } + { ~is_upper_bound E x }. Proof. intros R E x lpo sig_not_dec. destruct (sig_not_dec (~exists y:CRcarrier R, E y /\ CRltProp R x y)). - left. intros y H. destruct (CRlt_lpo_dec x y lpo). 2: exact c. exfalso. apply n. intro abs. apply abs. clear abs. exists y. split. exact H. apply CRltForget. exact c. - right. intro abs. apply n. intros [y [H H0]]. specialize (abs y H). apply CRltEpsilon in H0. contradiction. Qed. Lemma is_upper_bound_epsilon : forall {R : ConstructiveReals} (E:CRcarrier R -> Prop), sig_forall_dec_T -> sig_not_dec_T -> (exists x:CRcarrier R, is_upper_bound E x) -> { n:nat | is_upper_bound E (CR_of_Q R (Z.of_nat n # 1)) }. Proof. intros R E lpo sig_not_dec Ebound. apply constructive_indefinite_ground_description_nat. - intro n. apply is_upper_bound_dec. exact lpo. exact sig_not_dec. - destruct Ebound as [x H]. destruct (CRup_nat x) as [n nmaj]. exists n. intros y ey. specialize (H y ey). apply (CRle_trans _ x _ H). apply CRlt_asym, nmaj. Qed. Lemma is_upper_bound_not_epsilon : forall {R : ConstructiveReals} (E:CRcarrier R -> Prop), sig_forall_dec_T -> sig_not_dec_T -> (exists x : CRcarrier R, E x) -> { m:nat | ~is_upper_bound E (-CR_of_Q R (Z.of_nat m # 1)) }. Proof. intros R E lpo sig_not_dec H. apply constructive_indefinite_ground_description_nat. - intro n. destruct (is_upper_bound_dec E (-CR_of_Q R (Z.of_nat n # 1)) lpo sig_not_dec). right. intro abs. contradiction. left. exact n0. - destruct H as [x H]. destruct (CRup_nat (-x)) as [n H0]. exists n. intro abs. specialize (abs x H). apply abs. rewrite <- (CRopp_involutive x). apply CRopp_gt_lt_contravar. exact H0. Qed. (* Decidable Dedekind cuts are Cauchy reals. *) Record DedekindDecCut : Type := { DDupcut : Q -> Prop; DDproper : forall q r : Q, (q == r -> DDupcut q -> DDupcut r)%Q; DDlow : Q; DDhigh : Q; DDdec : forall q:Q, { DDupcut q } + { ~DDupcut q }; DDinterval : forall q r : Q, Qle q r -> DDupcut q -> DDupcut r; DDhighProp : DDupcut DDhigh; DDlowProp : ~DDupcut DDlow; }. Lemma DDlow_below_up : forall (upcut : DedekindDecCut) (a b : Q), DDupcut upcut a -> ~DDupcut upcut b -> Qlt b a. Proof. intros. destruct (Qlt_le_dec b a). exact q. exfalso. apply H0. apply (DDinterval upcut a). exact q. exact H. Qed. Fixpoint DDcut_limit_fix (upcut : DedekindDecCut) (r : Q) (n : nat) : Qlt 0 r -> (DDupcut upcut (DDlow upcut + (Z.of_nat n#1) * r)) -> { q : Q | DDupcut upcut q /\ ~DDupcut upcut (q - r) }. Proof. destruct n. - intros. exfalso. simpl in H0. apply (DDproper upcut _ (DDlow upcut)) in H0. 2: ring. exact (DDlowProp upcut H0). - intros. destruct (DDdec upcut (DDlow upcut + (Z.of_nat n # 1) * r)). + exact (DDcut_limit_fix upcut r n H d). + exists (DDlow upcut + (Z.of_nat (S n) # 1) * r)%Q. split. exact H0. intro abs. apply (DDproper upcut _ (DDlow upcut + (Z.of_nat n # 1) * r)) in abs. contradiction. rewrite Nat2Z.inj_succ. unfold Z.succ. rewrite <- Qinv_plus_distr. ring. Qed. Lemma DDcut_limit : forall (upcut : DedekindDecCut) (r : Q), Qlt 0 r -> { q : Q | DDupcut upcut q /\ ~DDupcut upcut (q - r) }. Proof. intros. destruct (Qarchimedean ((DDhigh upcut - DDlow upcut)/r)) as [n nmaj]. apply (DDcut_limit_fix upcut r (Pos.to_nat n) H). apply (Qmult_lt_r _ _ r) in nmaj. 2: exact H. unfold Qdiv in nmaj. rewrite <- Qmult_assoc, (Qmult_comm (/r)), Qmult_inv_r, Qmult_1_r in nmaj. apply (DDinterval upcut (DDhigh upcut)). 2: exact (DDhighProp upcut). apply Qlt_le_weak. apply (Qplus_lt_r _ _ (-DDlow upcut)). rewrite Qplus_assoc, <- (Qplus_comm (DDlow upcut)), Qplus_opp_r, Qplus_0_l, Qplus_comm. rewrite positive_nat_Z. exact nmaj. intros abs. rewrite abs in H. exact (Qlt_irrefl 0 H). Qed. Lemma glb_dec_Q : forall {R : ConstructiveReals} (upcut : DedekindDecCut), { x : CRcarrier R | forall r:Q, (x < CR_of_Q R r -> DDupcut upcut r) /\ (CR_of_Q R r < x -> ~DDupcut upcut r) }. Proof. intros. assert (forall a b : Q, Qle a b -> Qle (-b) (-a)). { intros. apply (Qplus_le_l _ _ (a+b)). ring_simplify. exact H. } assert (CR_cauchy R (fun n:nat => CR_of_Q R (proj1_sig (DDcut_limit upcut (1#Pos.of_nat n) (eq_refl _))))). { intros p. exists (Pos.to_nat p). intros i j pi pj. destruct (DDcut_limit upcut (1 # Pos.of_nat i) eq_refl), (DDcut_limit upcut (1 # Pos.of_nat j) eq_refl); unfold proj1_sig. apply (CRabs_le). split. - intros. unfold CRminus. rewrite <- CR_of_Q_opp, <- CR_of_Q_opp, <- CR_of_Q_plus. apply CR_of_Q_le. apply (Qplus_le_l _ _ x0). ring_simplify. setoid_replace (-1 * (1 # p) + x0)%Q with (x0 - (1 # p))%Q. 2: ring. apply (Qle_trans _ (x0- (1#Pos.of_nat j))). apply Qplus_le_r. apply H. apply Z2Nat.inj_le. discriminate. discriminate. simpl. rewrite Nat2Pos.id. exact pj. intro abs. subst j. inversion pj. pose proof (Pos2Nat.is_pos p). rewrite H1 in H0. inversion H0. apply Qlt_le_weak, (DDlow_below_up upcut). apply a. apply a0. - unfold CRminus. rewrite <- CR_of_Q_opp, <- CR_of_Q_plus. apply CR_of_Q_le. apply (Qplus_le_l _ _ (x0-(1#p))). ring_simplify. setoid_replace (x -1 * (1 # p))%Q with (x - (1 # p))%Q. 2: ring. apply (Qle_trans _ (x- (1#Pos.of_nat i))). apply Qplus_le_r. apply H. apply Z2Nat.inj_le. discriminate. discriminate. simpl. rewrite Nat2Pos.id. exact pi. intro abs. subst i. inversion pi. pose proof (Pos2Nat.is_pos p). rewrite H1 in H0. inversion H0. apply Qlt_le_weak, (DDlow_below_up upcut). apply a0. apply a. } apply CR_complete in H0. destruct H0 as [l lcv]. exists l. split. - intros. (* find an upper point between the limit and r *) destruct (CR_cv_open_above _ (CR_of_Q R r) l lcv H0) as [p pmaj]. specialize (pmaj p (le_refl p)). unfold proj1_sig in pmaj. destruct (DDcut_limit upcut (1 # Pos.of_nat p) eq_refl) as [q qmaj]. apply (DDinterval upcut q). 2: apply qmaj. destruct (Q_dec q r). destruct s. apply Qlt_le_weak, q0. exfalso. apply (CR_of_Q_lt R) in q0. exact (CRlt_asym _ _ pmaj q0). rewrite q0. apply Qle_refl. - intros H0 abs. assert ((CR_of_Q R r+l) * CR_of_Q R (1#2) < l). { apply (CRmult_lt_reg_r (CR_of_Q R 2)). apply CR_of_Q_pos. reflexivity. rewrite CRmult_assoc, <- CR_of_Q_mult, (CR_of_Q_plus R 1 1). setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity. rewrite CRmult_plus_distr_l, CRmult_1_r, CRmult_1_r. apply CRplus_lt_compat_r. exact H0. } destruct (CR_cv_open_below _ _ l lcv H1) as [p pmaj]. assert (0 < (l-CR_of_Q R r) * CR_of_Q R (1#2)). { apply CRmult_lt_0_compat. rewrite <- (CRplus_opp_r (CR_of_Q R r)). apply CRplus_lt_compat_r. exact H0. apply CR_of_Q_pos. reflexivity. } destruct (CRup_nat (CRinv R _ (inr H2))) as [i imaj]. destruct i. exfalso. simpl in imaj. exact (CRlt_asym _ _ imaj (CRinv_0_lt_compat R _ (inr H2) H2)). specialize (pmaj (max (S i) (S p)) (le_trans p (S p) _ (le_S p p (le_refl p)) (Nat.le_max_r (S i) (S p)))). unfold proj1_sig in pmaj. destruct (DDcut_limit upcut (1 # Pos.of_nat (max (S i) (S p))) eq_refl) as [q qmaj]. destruct qmaj. apply H4. clear H4. apply (DDinterval upcut r). 2: exact abs. apply (Qplus_le_l _ _ (1 # Pos.of_nat (Init.Nat.max (S i) (S p)))). ring_simplify. apply (Qle_trans _ (r + (1 # Pos.of_nat (S i)))). rewrite Qplus_le_r. unfold Qle,Qnum,Qden. rewrite Z.mul_1_l, Z.mul_1_l. apply Pos2Z.pos_le_pos. apply Pos2Nat.inj_le. rewrite Nat2Pos.id, Nat2Pos.id. apply Nat.le_max_l. discriminate. discriminate. apply (CRmult_lt_compat_l ((l - CR_of_Q R r) * CR_of_Q R (1 # 2))) in imaj. rewrite CRinv_r in imaj. 2: exact H2. destruct (Q_dec (r+(1#Pos.of_nat (S i))) q). destruct s. apply Qlt_le_weak, q0. 2: rewrite q0; apply Qle_refl. exfalso. apply (CR_of_Q_lt R) in q0. apply (CRlt_asym _ _ pmaj). apply (CRlt_le_trans _ _ _ q0). apply (CRplus_le_reg_l (-CR_of_Q R r)). rewrite CR_of_Q_plus, <- CRplus_assoc, CRplus_opp_l, CRplus_0_l. apply (CRmult_lt_compat_r (CR_of_Q R (1 # Pos.of_nat (S i)))) in imaj. rewrite CRmult_1_l in imaj. apply (CRle_trans _ ( (l - CR_of_Q R r) * CR_of_Q R (1 # 2) * CR_of_Q R (Z.of_nat (S i) # 1) * CR_of_Q R (1 # Pos.of_nat (S i)))). apply CRlt_asym, imaj. rewrite CRmult_assoc, <- CR_of_Q_mult. setoid_replace ((Z.of_nat (S i) # 1) * (1 # Pos.of_nat (S i)))%Q with 1%Q. rewrite CRmult_1_r. unfold CRminus. rewrite CRmult_plus_distr_r, (CRplus_comm (-CR_of_Q R r)). rewrite (CRplus_comm (CR_of_Q R r)), CRmult_plus_distr_r. rewrite CRplus_assoc. apply CRplus_le_compat_l. rewrite <- CR_of_Q_mult, <- CR_of_Q_opp, <- CR_of_Q_mult, <- CR_of_Q_plus. apply CR_of_Q_le. ring_simplify. apply Qle_refl. unfold Qeq, Qmult, Qnum, Qden. rewrite Z.mul_1_r, Z.mul_1_r. rewrite Z.mul_1_l, Pos.mul_1_l. unfold Z.of_nat. apply f_equal. apply Pos.of_nat_succ. apply CR_of_Q_pos. reflexivity. Qed. Lemma is_upper_bound_glb : forall {R : ConstructiveReals} (E:CRcarrier R -> Prop), sig_not_dec_T -> sig_forall_dec_T -> (exists x : CRcarrier R, E x) -> (exists x : CRcarrier R, is_upper_bound E x) -> { x : CRcarrier R | forall r:Q, (x < CR_of_Q R r -> is_upper_bound E (CR_of_Q R r)) /\ (CR_of_Q R r < x -> ~is_upper_bound E (CR_of_Q R r)) }. Proof. intros R E sig_not_dec lpo Einhab Ebound. destruct (is_upper_bound_epsilon E lpo sig_not_dec Ebound) as [a luba]. destruct (is_upper_bound_not_epsilon E lpo sig_not_dec Einhab) as [b glbb]. pose (fun q => is_upper_bound E (CR_of_Q R q)) as upcut. assert (forall q:Q, { upcut q } + { ~upcut q } ). { intro q. apply is_upper_bound_dec. exact lpo. exact sig_not_dec. } assert (forall q r : Q, (q <= r)%Q -> upcut q -> upcut r). { intros. intros x Ex. specialize (H1 x Ex). intro abs. apply H1. apply (CRle_lt_trans _ (CR_of_Q R r)). 2: exact abs. apply CR_of_Q_le. exact H0. } assert (upcut (Z.of_nat a # 1)%Q). { intros x Ex. exact (luba x Ex). } assert (~upcut (- Z.of_nat b # 1)%Q). { intros abs. apply glbb. intros x Ex. specialize (abs x Ex). rewrite <- CR_of_Q_opp. exact abs. } assert (forall q r : Q, (q == r)%Q -> upcut q -> upcut r). { intros. intros x Ex. specialize (H4 x Ex). rewrite <- H3. exact H4. } destruct (@glb_dec_Q R (Build_DedekindDecCut upcut H3 (-Z.of_nat b # 1)%Q (Z.of_nat a # 1) H H0 H1 H2)). simpl in a0. exists x. intro r. split. - intros. apply a0. exact H4. - intros H6 abs. specialize (a0 r) as [_ a0]. apply a0. exact H6. exact abs. Qed. Lemma is_upper_bound_closed : forall {R : ConstructiveReals} (E:CRcarrier R -> Prop) (sig_forall_dec : sig_forall_dec_T) (sig_not_dec : sig_not_dec_T) (Einhab : exists x : CRcarrier R, E x) (Ebound : exists x : CRcarrier R, is_upper_bound E x), is_lub E (proj1_sig (is_upper_bound_glb E sig_not_dec sig_forall_dec Einhab Ebound)). Proof. intros. split. - intros x Ex. destruct (is_upper_bound_glb E sig_not_dec sig_forall_dec Einhab Ebound); simpl. intro abs. destruct (CR_Q_dense R x0 x abs) as [q [qmaj H]]. specialize (a q) as [a _]. specialize (a qmaj x Ex). contradiction. - intros. destruct (is_upper_bound_glb E sig_not_dec sig_forall_dec Einhab Ebound); simpl. intro abs. destruct (CR_Q_dense R b x abs) as [q [qmaj H0]]. specialize (a q) as [_ a]. apply a. exact H0. intros y Ey. specialize (H y Ey). intro abs2. apply H. exact (CRlt_trans _ (CR_of_Q R q) _ qmaj abs2). Qed. Lemma sig_lub : forall {R : ConstructiveReals} (E:CRcarrier R -> Prop), sig_forall_dec_T -> sig_not_dec_T -> (exists x : CRcarrier R, E x) -> (exists x : CRcarrier R, is_upper_bound E x) -> { u : CRcarrier R | is_lub E u }. Proof. intros R E sig_forall_dec sig_not_dec Einhab Ebound. pose proof (is_upper_bound_closed E sig_forall_dec sig_not_dec Einhab Ebound). destruct (is_upper_bound_glb E sig_not_dec sig_forall_dec Einhab Ebound); simpl in H. exists x. exact H. Qed. Definition CRis_upper_bound {R : ConstructiveReals} (E:CRcarrier R -> Prop) (m:CRcarrier R) := forall x:CRcarrier R, E x -> CRlt R m x -> False. Lemma CR_sig_lub : forall {R : ConstructiveReals} (E:CRcarrier R -> Prop), (forall x y : CRcarrier R, CReq R x y -> (E x <-> E y)) -> sig_forall_dec_T -> sig_not_dec_T -> (exists x : CRcarrier R, E x) -> (exists x : CRcarrier R, CRis_upper_bound E x) -> { u : CRcarrier R | CRis_upper_bound E u /\ forall y:CRcarrier R, CRis_upper_bound E y -> CRlt R y u -> False }. Proof. intros. exact (sig_lub E X X0 H0 H1). Qed.