Require Export NZAxioms. Require Import NMake. (* contains W0Type *) Require Import ZnZ. Require Import Basic_type. (* contais base *) Require Import ZAux. Module NZBigIntsAxiomsMod (Import BoundedIntsMod : W0Type) <: NZAxiomsSig. Open Local Scope Z_scope. Definition NZ := w. Definition NZ_to_Z : NZ -> Z := znz_to_Z w_op. Definition Z_to_NZ : Z -> NZ := znz_of_Z w_op. Notation Local wB := (base w_op.(znz_digits)). Notation Local "[| x |]" := (w_op.(znz_to_Z) x) (at level 0, x at level 99). Definition NZE (n m : NZ) := [| n |] = [| m |]. Definition NZ0 := w_op.(znz_0). Definition NZsucc := w_op.(znz_succ). Definition NZpred := w_op.(znz_pred). Definition NZplus := w_op.(znz_add). Definition NZminus := w_op.(znz_sub). Definition NZtimes := w_op.(znz_mul). Theorem NZE_equiv : equiv NZ NZE. Proof. unfold equiv, reflexive, symmetric, transitive, NZE; repeat split; intros; auto. now transitivity [| y |]. Qed. Add Relation NZ NZE reflexivity proved by (proj1 NZE_equiv) symmetry proved by (proj2 (proj2 NZE_equiv)) transitivity proved by (proj1 (proj2 NZE_equiv)) as NZE_rel. Add Morphism NZsucc with signature NZE ==> NZE as NZsucc_wd. Proof. unfold NZE; intros n m H. do 2 rewrite w_spec.(spec_succ). now rewrite H. Qed. Add Morphism NZpred with signature NZE ==> NZE as NZpred_wd. Proof. unfold NZE; intros n m H. do 2 rewrite w_spec.(spec_pred). now rewrite H. Qed. Add Morphism NZplus with signature NZE ==> NZE ==> NZE as NZplus_wd. Proof. unfold NZE; intros n1 n2 H1 m1 m2 H2. do 2 rewrite w_spec.(spec_add). now rewrite H1, H2. Qed. Add Morphism NZminus with signature NZE ==> NZE ==> NZE as NZminus_wd. Proof. unfold NZE; intros n1 n2 H1 m1 m2 H2. do 2 rewrite w_spec.(spec_sub). now rewrite H1, H2. Qed. Add Morphism NZtimes with signature NZE ==> NZE ==> NZE as NZtimes_wd. Proof. unfold NZE; intros n1 n2 H1 m1 m2 H2. do 2 rewrite w_spec.(spec_mul). now rewrite H1, H2. Qed. Delimit Scope IntScope with Int. Bind Scope IntScope with NZ. Open Local Scope IntScope. Notation "x == y" := (NZE x y) (at level 70) : IntScope. Notation "x ~= y" := (~ NZE x y) (at level 70) : IntScope. Notation "0" := NZ0 : IntScope. Notation "'S'" := NZsucc : IntScope. Notation "'P'" := NZpred : IntScope. (*Notation "1" := (S 0) : IntScope.*) Notation "x + y" := (NZplus x y) : IntScope. Notation "x - y" := (NZminus x y) : IntScope. Notation "x * y" := (NZtimes x y) : IntScope. Theorem gt_wB_1 : 1 < wB. Proof. unfold base. apply Zgt_pow_1; unfold Zlt; auto with zarith. Qed. Theorem gt_wB_0 : 0 < wB. Proof. pose proof gt_wB_1; auto with zarith. Qed. Lemma NZsucc_mod_wB : forall n : Z, (n + 1) mod wB = ((n mod wB) + 1) mod wB. Proof. intro n. pattern 1 at 2. replace 1 with (1 mod wB). rewrite <- Zmod_plus; [ | apply gt_wB_0]. reflexivity. now rewrite Zmod_def_small; [ | split; [auto with zarith | apply gt_wB_1]]. Qed. Lemma NZpred_mod_wB : forall n : Z, (n - 1) mod wB = ((n mod wB) - 1) mod wB. Proof. intro n. pattern 1 at 2. replace 1 with (1 mod wB). rewrite <- Zmod_minus; [ | apply gt_wB_0]. reflexivity. now rewrite Zmod_def_small; [ | split; [auto with zarith | apply gt_wB_1]]. Qed. Lemma NZ_to_Z_mod : forall n : NZ, [| n |] mod wB = [| n |]. Proof. intro n; rewrite Zmod_def_small. reflexivity. apply w_spec.(spec_to_Z). Qed. Theorem NZpred_succ : forall n : NZ, P (S n) == n. Proof. intro n; unfold NZsucc, NZpred, NZE. rewrite w_spec.(spec_pred), w_spec.(spec_succ). rewrite <- NZpred_mod_wB. replace ([| n |] + 1 - 1)%Z with [| n |] by auto with zarith. apply NZ_to_Z_mod. Qed. Lemma Z_to_NZ_0 : Z_to_NZ 0%Z == 0%Int. Proof. unfold NZE, NZ_to_Z, Z_to_NZ. rewrite znz_of_Z_correct. symmetry; apply w_spec.(spec_0). exact w_spec. split; [auto with zarith |apply gt_wB_0]. Qed. Section Induction. Variable A : NZ -> Prop. Hypothesis A_wd : predicate_wd NZE A. Hypothesis A0 : A 0. Hypothesis AS : forall n : NZ, A n <-> A (S n). (* Below, we use only -> direction *) Add Morphism A with signature NZE ==> iff as A_morph. Proof A_wd. Let B (n : Z) := A (Z_to_NZ n). Lemma B0 : B 0. Proof. unfold B. now rewrite Z_to_NZ_0. Qed. Lemma BS : forall n : Z, 0 <= n -> n < wB - 1 -> B n -> B (n + 1). Proof. intros n H1 H2 H3. unfold B in *. apply -> AS in H3. setoid_replace (Z_to_NZ (n + 1)) with (S (Z_to_NZ n)) using relation NZE. assumption. unfold NZE. rewrite w_spec.(spec_succ). unfold NZ_to_Z, Z_to_NZ. do 2 (rewrite znz_of_Z_correct; [ | exact w_spec | auto with zarith]). symmetry; apply Zmod_def_small; auto with zarith. Qed. Lemma B_holds : forall n : Z, 0 <= n < wB -> B n. Proof. intros n [H1 H2]. apply Zbounded_induction with wB. apply B0. apply BS. assumption. assumption. Qed. Theorem NZinduction : forall n : NZ, A n. Proof. intro n. setoid_replace n with (Z_to_NZ (NZ_to_Z n)) using relation NZE. apply B_holds. apply w_spec.(spec_to_Z). unfold NZE, NZ_to_Z, Z_to_NZ; rewrite znz_of_Z_correct. reflexivity. exact w_spec. apply w_spec.(spec_to_Z). Qed. End Induction. Theorem NZplus_0_l : forall n : NZ, 0 + n == n. Proof. intro n; unfold NZplus, NZ0, NZE. rewrite w_spec.(spec_add). rewrite w_spec.(spec_0). rewrite Zplus_0_l. rewrite Zmod_def_small; [reflexivity | apply w_spec.(spec_to_Z)]. Qed. Theorem NZplus_succ_l : forall n m : NZ, (S n) + m == S (n + m). Proof. intros n m; unfold NZplus, NZsucc, NZE. rewrite w_spec.(spec_add). do 2 rewrite w_spec.(spec_succ). rewrite w_spec.(spec_add). rewrite NZsucc_mod_wB. repeat rewrite Zplus_mod_idemp_l; try apply gt_wB_0. rewrite <- (Zplus_assoc ([| n |] mod wB) 1 [| m |]). rewrite Zplus_mod_idemp_l; [ |apply gt_wB_0]. rewrite (Zplus_comm 1 [| m |]); now rewrite Zplus_assoc. Qed. Theorem NZminus_0_r : forall n : NZ, n - 0 == n. Proof. intro n; unfold NZminus, NZ0, NZE. rewrite w_spec.(spec_sub). rewrite w_spec.(spec_0). rewrite Zminus_0_r. apply NZ_to_Z_mod. Qed. Theorem NZminus_succ_r : forall n m : NZ, n - (S m) == P (n - m). Proof. intros n m; unfold NZminus, NZsucc, NZpred, NZE. rewrite w_spec.(spec_pred). do 2 rewrite w_spec.(spec_sub). rewrite w_spec.(spec_succ). rewrite Zminus_mod_idemp_r; [ | apply gt_wB_0]. rewrite Zminus_mod_idemp_l; [ | apply gt_wB_0]. now replace ([|n|] - ([|m|] + 1))%Z with ([|n|] - [|m|] - 1)%Z by auto with zarith. Qed. Theorem NZtimes_0_r : forall n : NZ, n * 0 == 0. Proof. intro n; unfold NZtimes, NZ0, NZ, NZE. rewrite w_spec.(spec_mul). rewrite w_spec.(spec_0). now rewrite Zmult_0_r. Qed. Theorem NZtimes_succ_r : forall n m : NZ, n * (S m) == n * m + n. Proof. intros n m; unfold NZtimes, NZsucc, NZplus, NZE. rewrite w_spec.(spec_mul). rewrite w_spec.(spec_add). rewrite w_spec.(spec_mul). rewrite w_spec.(spec_succ). rewrite Zplus_mod_idemp_l; [ | apply gt_wB_0]. rewrite Zmult_mod_idemp_r; [ | apply gt_wB_0]. rewrite Zmult_plus_distr_r. now rewrite Zmult_1_r. Qed. End NZBigIntsAxiomsMod.