(*i $Id $ i*) (*s DisEquality is defined as the negation of equality *) Require Params. Require EqParams. Require EqAxioms. Definition neq : N -> N -> Prop := [x,y] ~(x=y). Infix 6 "<>" neq. (* Proofs of axioms *) Lemma eq_not_neq : (x,y:N)x=y->~(x<>y). Unfold neq; Auto with num. Save. Hints Immediate eq_not_neq : num. Lemma neq_sym : (x,y:N)(x<>y)->(y<>x). Unfold neq; Auto with num. Save. Hints Resolve neq_sym : num. Lemma neq_not_neq_trans : (x,y,z:N)(x<>y)->~(y<>z)->(x<>z). Unfold neq; EAuto with num. Save. Hints Resolve neq_not_neq_trans : num.