Print Typing Flags. Unset Guard Checking. Fixpoint f' (n : nat) : nat := f' n. Fixpoint f (n : nat) : nat. Proof. exact (f n). Defined. Fixpoint bla (A:Type) (n:nat) := match n with 0 =>0 | S n => n end. Print Typing Flags. Set Guard Checking. Print Assumptions f. Unset Universe Checking. Definition T := Type. Fixpoint g (n : nat) : T := T. Print Typing Flags. Set Universe Checking. Fail Definition g2 (n : nat) : T := T. Fail Definition e := fix e (n : nat) : nat := e n. Unset Positivity Checking. Inductive Cor := | Over : Cor | Next : ((Cor -> list nat) -> list nat) -> Cor. Set Positivity Checking. Print Assumptions Cor. Inductive Box := | box : forall n, f n = n -> g 2 -> Box. Print Assumptions Box.