(* Testing the behavior of implicit arguments *) (* Implicit on section variables *) Set Implicit Arguments. Unset Strict Implicit. (* Example submitted by David Nowak *) Section Spec. Variable A : Set. Variable op : forall A : Set, A -> A -> Set. Infix "#" := op (at level 70). Check (forall x : A, x # x). (* Example submitted by Christine *) Record stack : Type := {type : Set; elt : type; empty : type -> bool; proof : empty elt = true}. Check (forall (type : Set) (elt : type) (empty : type -> bool), empty elt = true -> stack). (* Nested sections and manual/automatic implicit arguments *) Variable op' : forall A : Set, A -> A -> Set. Variable op'' : forall A : Set, A -> A -> Set. Section B. Definition eq1 := fun (A:Type) (x y:A) => x=y. Definition eq2 := fun (A:Type) (x y:A) => x=y. Definition eq3 := fun (A:Type) (x y:A) => x=y. Arguments op' : clear implicits. Global Arguments op'' : clear implicits. Arguments eq2 : clear implicits. Global Arguments eq3 : clear implicits. Check (op 0 0). Check (op' nat 0 0). Check (op'' nat 0 0). Check (eq1 0 0). Check (eq2 nat 0 0). Check (eq3 nat 0 0). End B. Check (op 0 0). Check (op' 0 0). Check (op'' nat 0 0). Check (eq1 0 0). Check (eq2 0 0). Check (eq3 nat 0 0). End Spec. Check (eq1 0 0). Check (eq2 0 0). Check (eq3 nat 0 0). (* Example submitted by Frédéric (interesting in v8 syntax) *) Parameter f : nat -> nat * nat. Notation lhs := fst. Check (fun x => fst (f x)). Check (fun x => fst (f x)). Notation rhs := snd. Check (fun x => snd (f x)). Check (fun x => @ rhs _ _ (f x)). (* Implicit arguments in fixpoints and inductive declarations *) Fixpoint g n := match n with O => true | S n => g n end. Inductive P n : nat -> Prop := c : P n n. (* Avoid evars in the computation of implicit arguments (cf r9827) *) Require Import List. Fixpoint plus n m {struct n} := match n with | 0 => m | S p => S (plus p m) end. (* Check multiple implicit arguments signatures *) Arguments eq_refl {A x}, {A}. Check eq_refl : 0 = 0. (* Check that notations preserve implicit (since 8.3) *) Parameter p : forall A, A -> forall n, n = 0 -> True. Arguments p [A] _ [n]. Notation Q := (p 0). Check Q eq_refl. (* Check implicits with Context *) Section C. Context {A:Set}. Definition h (a:A) := a. End C. Check h 0. (* Check implicit arguments in arity of inductive types. The three following examples used to fail before r13671 *) Inductive I {A} (a:A) : forall {n:nat}, Prop := | C : I a (n:=0). Inductive I' [A] (a:A) : forall [n:nat], n =0 -> Prop := | C' : I' a eq_refl. Inductive I2 (x:=0) : Prop := | C2 {p:nat} : p = 0 -> I2 | C2' [p:nat] : p = 0 -> I2. Check C2' eq_refl. Inductive I3 {A} (x:=0) (a:A) : forall {n:nat}, Prop := | C3 : I3 a (n:=0). (* Check global implicit declaration over ref not in section *) Section D. Global Arguments eq [A] _ _. End D. (* Check local manual implicit arguments *) (* Gives a warning and make the second x anonymous *) (* Isn't the name "arg_1" a bit fragile though? *) Check fun f : forall {x:nat} {x:bool} (x:unit), unit => f (x:=1) (arg_2:=true) tt. (* Check the existence of a shadowing warning *) Set Warnings "+syntax". Fail Check fun f : forall {x:nat} {x:bool} (x:unit), unit => f (x:=1) (arg_2:=true) tt. Set Warnings "syntax". (* Test failure when implicit arguments are mentioned in subterms which are not types of variables *) Set Warnings "+syntax". Fail Check (id (forall {a}, a)). Set Warnings "syntax". (* Miscellaneous tests *) Check let f := fun {x:nat} y => y=true in f false. Check let f := fun [x:nat] y => y=true in f false. (* Isn't the name "arg_1" a bit fragile, here? *) Check fun f : forall {_:nat}, nat => f (arg_1:=0). (* This test was wrongly warning/failing at some time *) Set Warnings "+syntax". Check id (fun x => let f c {a} (b:a=a) := b in f true (eq_refl 0)). Set Warnings "syntax". Axiom eq0le0 : forall (n : nat) (x : n = 0), n <= 0. Variable eq0le0' : forall (n : nat) {x : n = 0}, n <= 0. Axiom eq0le0'' : forall (n : nat) {x : n = 0}, n <= 0. Definition eq0le0''' : forall (n : nat) {x : n = 0}, n <= 0. Admitted. Fail Axiom eq0le0'''' : forall [n : nat] {x : n = 0}, n <= 0. Module TestUnnamedImplicit. Axiom foo : forall A, A -> A. Arguments foo {A} {_}. Check foo (arg_2:=true) : bool. Check foo : bool. Arguments foo {A} {x}. Check foo (x:=true) : bool. End TestUnnamedImplicit.