Inductive box (A : Type) := Box : A -> box A. Axiom PRED : unit -> Prop. Axiom FUN : forall (u : unit), box (PRED u). Axiom U : unit. Definition V := U. Goal match FUN U with Box _ _ => True end. Proof. repeat match goal with | [ |- context G[ U ] ] => let e := context G [ V ] in change e end. set (Z := V). clearbody Z. (* This fails if change misses the case parameters *) destruct (FUN Z). constructor. Qed.