Generalizable All Variables. Check `(a = 0). Check `(a = 0)%type. Definition relation A := A -> A -> Prop. Definition equivalence `(R : relation A) := True. Check (`(@equivalence A R)). Definition a_eq_b : `( a = 0 /\ a = b /\ b > c \/ d = e /\ d = 1). Admitted. Print a_eq_b. Require Import Morphisms. Class Equiv A := equiv : A -> A -> Prop. Class Setoid A `{Equiv A} := setoid_equiv:> Equivalence (equiv). Lemma vcons_proper A `[Equiv A] `[!Setoid A] (x : True) : True. Admitted.