Require Import ssreflect List. Generalizable Variables A B. Class Inhab (A:Type) : Type := { arbitrary : A }. Lemma test_intro_typeclass_1 : forall A `{Inhab A} (x:A), x = arbitrary -> x = arbitrary. Proof. move =>> H. (* introduces [H:x=arbitrary] because first non dependent hypothesis *) Abort. Lemma test_intro_typeclass_2 : forall A `{Inhab A} (l1 l2:list A), l2 = nil -> l1 ++ l2 = l1. Proof. move =>> H. (* introduces [Inhab A] automatically because it is a typeclass instance *) Abort. Lemma test_intro_typeclass_3 : forall `{Inhab A, Inhab B} (x:A) (y:B), True -> x = x. Proof. (* Above types [A] and [B] are implicitly quantified *) move =>> y H. (* introduces the two typeclass instances automatically *) Abort. Class Foo `{Inhab A} : Type := { foo : A }. Lemma test_intro_typeclass_4 : forall `{Foo A}, True -> True. Proof. (* Above, [A] and [{Inhab A}] are implicitly quantified *) move =>> H. (* introduces [A] and [Inhab A] because they are dependently used, and introduce [Foo A] automatically because it is an instance. *) Abort.