Require Import ssreflect ssrbool. Axiom eqn : nat -> nat -> bool. Infix "==" := eqn (at level 40). Axiom eqP : forall x y : nat, reflect (x = y) (x == y). Lemma test1 : forall x y : nat, x = y -> forall z : nat, y == z -> x = z. Proof. by move=> x y + z /eqP <-; apply. Qed. Lemma test2 : forall (x y : nat) (e : x = y), e = e -> x = y. Proof. move=> + y + _ => x def_x; exact: (def_x : x = y). Qed. Lemma test3 : forall x y : nat, x = y -> forall z : nat, y == z -> x = z. Proof. move=> ++++ /eqP <- => x y e z; exact: e. Qed.