(* Uselessly long but why not *) From Coq Require Export Utf8. Local Set Universe Polymorphism. Module tele. (** Telescopes *) Inductive tele : Type := | TeleO : tele | TeleS {X} (binder : X → tele) : tele. Arguments TeleS {_} _. (** The telescope version of Coq's function type *) Fixpoint tele_fun (TT : tele) (T : Type) : Type := match TT with | TeleO => T | TeleS b => ∀ x, tele_fun (b x) T end. Notation "TT -t> A" := (tele_fun TT A) (at level 99, A at level 200, right associativity). (** An eliminator for elements of [tele_fun]. We use a [fix] because, for some reason, that makes stuff print nicer in the proofs in iris:bi/lib/telescopes.v *) Definition tele_fold {X Y} {TT : tele} (step : ∀ {A : Type}, (A → Y) → Y) (base : X → Y) : (TT -t> X) → Y := (fix rec {TT} : (TT -t> X) → Y := match TT as TT return (TT -t> X) → Y with | TeleO => λ x : X, base x | TeleS b => λ f, step (λ x, rec (f x)) end) TT. Arguments tele_fold {_ _ !_} _ _ _ /. (** A sigma-like type for an "element" of a telescope, i.e. the data it takes to get a [T] from a [TT -t> T]. *) Inductive tele_arg : tele → Type := | TargO : tele_arg TeleO (* the [x] is the only relevant data here *) | TargS {X} {binder} (x : X) : tele_arg (binder x) → tele_arg (TeleS binder). Definition tele_app {TT : tele} {T} (f : TT -t> T) : tele_arg TT → T := λ a, (fix rec {TT} (a : tele_arg TT) : (TT -t> T) → T := match a in tele_arg TT return (TT -t> T) → T with | TargO => λ t : T, t | TargS x a => λ f, rec a (f x) end) TT a f. Arguments tele_app {!_ _} _ !_ /. Coercion tele_arg : tele >-> Sortclass. Local Coercion tele_app : tele_fun >-> Funclass. (** Operate below [tele_fun]s with argument telescope [TT]. *) Fixpoint tele_bind {U} {TT : tele} : (TT → U) → TT -t> U := match TT as TT return (TT → U) → TT -t> U with | TeleO => λ F, F TargO | @TeleS X b => λ (F : TeleS b → U) (x : X), (* b x -t> U *) tele_bind (λ a, F (TargS x a)) end. Arguments tele_bind {_ !_} _ /. (** Notation-compatible telescope mapping *) (* This adds (tele_app ∘ tele_bind), which is an identity function, around every binder so that, after simplifying, this matches the way we typically write notations involving telescopes. *) Notation "t $ r" := (t r) (at level 65, right associativity, only parsing). Notation "'λ..' x .. y , e" := (tele_app $ tele_bind (λ x, .. (tele_app $ tele_bind (λ y, e)) .. )) (at level 200, x binder, y binder, right associativity, format "'[ ' 'λ..' x .. y ']' , e"). (** Telescopic quantifiers *) Definition texist {TT : tele} (Ψ : TT → Prop) : Prop := tele_fold ex (λ x, x) (tele_bind Ψ). Arguments texist {!_} _ /. Notation "'∃..' x .. y , P" := (texist (λ x, .. (texist (λ y, P)) .. )) (at level 200, x binder, y binder, right associativity, format "∃.. x .. y , P"). End tele. Import tele. (* This is like Iris' accessors, but in Prop. Just to play with telescopes. *) Definition accessor {X : tele} (α β γ : X → Prop) : Prop := ∃.. x, α x ∧ (β x → γ x). (* Working with abstract telescopes. *) Section tests. Context {X : tele}. Implicit Types α β γ : X → Prop. Lemma acc_mono_disj α β γ1 γ2 : accessor α β γ1 → accessor α β (λ.. x, γ1 x ∨ γ2 x). Show. Abort. End tests.