(* -*- coq-prog-args: ("-top" "UnivBinders"); -*- *) Set Universe Polymorphism. Set Printing Universes. (* Unset Strict Universe Declaration. *) (* universe binders on inductive types and record projections *) Inductive Empty@{uu} : Type@{uu} := . Print Empty. Set Primitive Projections. Record PWrap@{uu} (A:Type@{uu}) := pwrap { punwrap : A }. Print PWrap. Print punwrap. Unset Primitive Projections. Record RWrap@{uu} (A:Type@{uu}) := rwrap { runwrap : A }. Print RWrap. Print runwrap. (* universe binders also go on the constants for operational typeclasses. *) Class Wrap@{uu} (A:Type@{uu}) := wrap : A. Print Wrap. Print wrap. (* Instance in lemma mode used to ignore the binders. *) Instance bar@{uu} : Wrap@{uu} Set. Proof. exact nat. Qed. Print bar. Unset Strict Universe Declaration. (* The universes in the binder come first, then the extra universes in order of appearance. *) Definition foo@{uu +} := Type -> Type@{v} -> Type@{uu}. Print foo. Check Type@{i} -> Type@{j}. Eval cbv in Type@{i} -> Type@{j}. Set Strict Universe Declaration. (* Binders even work with monomorphic definitions! *) Monomorphic Definition mono@{uu} := Type@{uu}. Print mono. Check mono. Check Type@{mono.uu}. Module mono. Fail Monomorphic Universe uu. Monomorphic Universe MONOU. Monomorphic Definition monomono := Type@{MONOU}. Check monomono. Monomorphic Inductive monoind@{i} : Type@{i} := . Monomorphic Record monorecord@{i} : Type@{i} := mkmonorecord {}. End mono. Check mono.monomono. (* qualified MONOU *) Import mono. Check monomono. (* unqualified MONOU *) Check mono. (* still qualified mono.u *) Monomorphic Constraint Set < UnivBinders.mono.uu. Module mono2. Monomorphic Universe uu. End mono2. Fail Monomorphic Definition mono2@{uu} := Type@{uu}. Module SecLet. Unset Universe Polymorphism. Section foo. (* Fail Let foo@{} := Type@{uu}. (* doesn't parse: Let foo@{...} doesn't exist *) *) Unset Strict Universe Declaration. Let tt : Type@{uu} := Type@{v}. (* names disappear in the ether *) Let ff : Type@{uu}. Proof. exact Type@{v}. Qed. (* names disappear into space *) Definition bobmorane := tt -> ff. End foo. Print bobmorane. End SecLet. (* fun x x => foo is nonsense with local binders *) Fail Definition fo@{uu uu} := Type@{uu}. (* Using local binders for printing. *) Print foo@{E M N}. (* Underscores discard the name if there's one. *) Print foo@{_ _ _}. (* Also works for inductives and records. *) Print Empty@{E}. Print PWrap@{E}. (* Also works for About. *) About punwrap@{K}. (* Instance length check. *) Fail Print foo@{E}. Fail Print mono@{E}. (* Not everything can be printed with custom universe names. *) Fail Print Coq.Init.Logic@{E}. (* Nice error when constraints are impossible. *) Monomorphic Universes gU gV. Monomorphic Constraint gU < gV. Fail Lemma foo@{u v|u < gU, gV < v, v < u} : nat. Section SomeSec. Universe uu. Definition insec@{v} := Type@{uu} -> Type@{v}. Print insec. Inductive insecind@{k} := inseccstr : Type@{k} -> insecind. Print insecind. End SomeSec. Print insec. Print insecind. Section SomeSec2. Universe u. Definition insec2@{} := Prop. End SomeSec2. Print insec2. Module SomeMod. Definition inmod@{uu} := Type@{uu}. Print inmod. End SomeMod. Print SomeMod.inmod. Import SomeMod. Print inmod. Module Type SomeTyp. Definition inmod := Type. End SomeTyp. Module SomeFunct (In : SomeTyp). Definition infunct@{uu v} := In.inmod@{uu} -> Type@{v}. End SomeFunct. Module Applied := SomeFunct(SomeMod). Print Applied.infunct. (* Multi-axiom declaration In polymorphic mode the domain Type gets separate universes for the different axioms, but all axioms have to declare all universes. In monomorphic mode they get the same universes, ie the type is only interpd once. *) Axiom axfoo@{i+} axbar : Type -> Type@{i}. Monomorphic Axiom axfoo'@{i+} axbar' : Type -> Type@{i}. About axfoo. About axbar. About axfoo'. About axbar'. Fail Axiom failfoo failbar@{i} : Type. (* Notation interaction *) Module Notas. Unset Universe Polymorphism. Module Import M. Universe i. End M. Polymorphic Definition foo@{i} := Type@{M.i} -> Type@{i}. Print foo. (* must not print Type@{i} -> Type@{i} *) End Notas. Module NoAutoNames. Monomorphic Universe u0. (* The anonymous universe doesn't get a name (names are only invented at the end of a definition/inductive) so no need to qualify u0. *) Check (Type@{u0} -> Type). End NoAutoNames. (* Universe binders survive through compilation, sections and modules. *) Require TestSuite.bind_univs. Print bind_univs.mono. Print bind_univs.poly.