false: bool true: bool negb: bool -> bool xorb: bool -> bool -> bool andb: bool -> bool -> bool orb: bool -> bool -> bool implb: bool -> bool -> bool Nat.odd: nat -> bool Nat.even: nat -> bool Number.uint_beq: Number.uint -> Number.uint -> bool Nat.testbit: nat -> nat -> bool Nat.eqb: nat -> nat -> bool Hexadecimal.hexadecimal_beq: Hexadecimal.hexadecimal -> Hexadecimal.hexadecimal -> bool Nat.ltb: nat -> nat -> bool Nat.leb: nat -> nat -> bool Number.number_beq: Number.number -> Number.number -> bool Number.int_beq: Number.int -> Number.int -> bool Hexadecimal.int_beq: Hexadecimal.int -> Hexadecimal.int -> bool Hexadecimal.uint_beq: Hexadecimal.uint -> Hexadecimal.uint -> bool Decimal.decimal_beq: Decimal.decimal -> Decimal.decimal -> bool Decimal.int_beq: Decimal.int -> Decimal.int -> bool Decimal.uint_beq: Decimal.uint -> Decimal.uint -> bool Nat.two: nat Nat.zero: nat Nat.one: nat O: nat Nat.double: nat -> nat Nat.sqrt: nat -> nat Nat.div2: nat -> nat Nat.log2: nat -> nat Nat.pred: nat -> nat Nat.square: nat -> nat S: nat -> nat Nat.succ: nat -> nat Nat.ldiff: nat -> nat -> nat Nat.add: nat -> nat -> nat Nat.land: nat -> nat -> nat Nat.lxor: nat -> nat -> nat Nat.sub: nat -> nat -> nat Nat.mul: nat -> nat -> nat Nat.tail_mul: nat -> nat -> nat Nat.max: nat -> nat -> nat Nat.tail_add: nat -> nat -> nat Nat.pow: nat -> nat -> nat Nat.min: nat -> nat -> nat Nat.modulo: nat -> nat -> nat Nat.div: nat -> nat -> nat Nat.lor: nat -> nat -> nat Nat.gcd: nat -> nat -> nat Hexadecimal.nb_digits: Hexadecimal.uint -> nat Nat.of_hex_uint: Hexadecimal.uint -> nat Nat.of_num_uint: Number.uint -> nat Nat.of_uint: Decimal.uint -> nat Decimal.nb_digits: Decimal.uint -> nat Nat.tail_addmul: nat -> nat -> nat -> nat Nat.of_hex_uint_acc: Hexadecimal.uint -> nat -> nat Nat.of_uint_acc: Decimal.uint -> nat -> nat Nat.sqrt_iter: nat -> nat -> nat -> nat -> nat Nat.log2_iter: nat -> nat -> nat -> nat -> nat length: forall [A : Type], list A -> nat Nat.bitwise: (bool -> bool -> bool) -> nat -> nat -> nat -> nat Nat.div2: nat -> nat Nat.sqrt: nat -> nat Nat.log2: nat -> nat Nat.double: nat -> nat S: nat -> nat Nat.square: nat -> nat Nat.succ: nat -> nat Nat.pred: nat -> nat Nat.land: nat -> nat -> nat Nat.max: nat -> nat -> nat Nat.gcd: nat -> nat -> nat Nat.modulo: nat -> nat -> nat Nat.ldiff: nat -> nat -> nat Nat.tail_add: nat -> nat -> nat Nat.pow: nat -> nat -> nat Nat.lxor: nat -> nat -> nat Nat.div: nat -> nat -> nat Nat.lor: nat -> nat -> nat Nat.mul: nat -> nat -> nat Nat.min: nat -> nat -> nat Nat.add: nat -> nat -> nat Nat.sub: nat -> nat -> nat Nat.tail_mul: nat -> nat -> nat Nat.tail_addmul: nat -> nat -> nat -> nat Nat.of_uint_acc: Decimal.uint -> nat -> nat Nat.of_hex_uint_acc: Hexadecimal.uint -> nat -> nat Nat.sqrt_iter: nat -> nat -> nat -> nat -> nat Nat.log2_iter: nat -> nat -> nat -> nat -> nat Nat.bitwise: (bool -> bool -> bool) -> nat -> nat -> nat -> nat mult_n_Sm: forall n m : nat, n * m + n = n * S m iff_refl: forall A : Prop, A <-> A le_n: forall n : nat, n <= n identity_refl: forall [A : Type] (a : A), identity a a eq_refl: forall {A : Type} {x : A}, x = x Nat.divmod: nat -> nat -> nat -> nat -> nat * nat (use "About" for full details on the implicit arguments of eq_refl) conj: forall [A B : Prop], A -> B -> A /\ B pair: forall {A B : Type}, A -> B -> A * B Nat.divmod: nat -> nat -> nat -> nat -> nat * nat h: n <> newdef n h: n <> newdef n h: P n h': ~ P n h: P n h: P n