Coq < Coq < 1 goal ============================ forall i : nat, exists j k : nat, i = j /\ j = k /\ i = k x < x < 1 focused goal (shelved: 1) i : nat ============================ exists k : nat, i = ?j /\ ?j = k /\ i = k (fun i : nat => ex_intro (fun j : nat => exists k : nat, i = j /\ j = k /\ i = k) ?j ?Goal) x < 1 focused goal (shelved: 2) i : nat ============================ i = ?j /\ ?j = ?k /\ i = ?k (fun i : nat => ex_intro (fun j : nat => exists k : nat, i = j /\ j = k /\ i = k)  ?j (ex_intro (fun k : nat => i = ?j /\ ?j = k /\ i = k) ?k ?Goal)) x < 2 focused goals (shelved: 2) i : nat ============================ i = ?j goal 2 is: ?j = ?k /\ i = ?k (fun i : nat => ex_intro (fun j : nat => exists k : nat, i = j /\ j = k /\ i = k)  ?j (ex_intro (fun k : nat => i = ?j /\ ?j = k /\ i = k)  ?k (conj ?Goal ?Goal0))) x <