Set Definitional UIP. Inductive seq {A} (a:A) : A -> SProp := srefl : seq a a. Arguments srefl {_ _}. (* Axiom implied by propext (so consistent) *) Axiom all_eq : forall (P Q:Prop), P -> Q -> seq P Q. Definition transport (P Q:Prop) (x:P) (y:Q) : Q := match all_eq P Q x y with srefl => x end. Definition top : Prop := forall P : Prop, P -> P. Definition c : top := fun P p => transport (top -> top) P (fun x : top => x (top -> top) (fun x => x) x) p. Fail Timeout 1 Eval lazy in c (top -> top) (fun x => x) c. (* loops *)