#[universes(polymorphic)] Section foo. Polymorphic Universes A B. Fail Monomorphic Constraint A <= B. End foo. (* gives an anomaly Universe undefined *) Universes X Y. #[universes(polymorphic)] Section Foo. Polymorphic Universes Z W. Polymorphic Constraint W < Z. Fail Monomorphic Definition bla := Type@{W}. Polymorphic Definition bla := Type@{W}. #[universes(polymorphic)] Section Bar. Fail Monomorphic Constraint X <= Z. End Bar. End Foo. Require Coq.Classes.RelationClasses. Class PreOrder (A : Type) (r : A -> A -> Type) : Type := { refl : forall x, r x x }. #[universes(polymorphic)] Section qux. Polymorphic Universes A. #[universes(polymorphic)] Section bar. Fail Monomorphic Context {A : Type@{A}} {rA : A -> A -> Prop} {PO : PreOrder A rA}. End bar. End qux.