(** The following proof is due to a bug in `vm_compute` and was found by Maxime Dénès and Pierre-Marie Pédrot. *) Inductive t := | C_0 : nat -> t | C_1 : nat -> t | C_2 : nat -> t | C_3 : nat -> t | C_4 : nat -> t | C_5 : nat -> t | C_6 : nat -> t | C_7 : nat -> t | C_8 : nat -> t | C_9 : nat -> t | C_10 : nat -> t | C_11 : nat -> t | C_12 : nat -> t | C_13 : nat -> t | C_14 : nat -> t | C_15 : nat -> t | C_16 : nat -> t | C_17 : nat -> t | C_18 : nat -> t | C_19 : nat -> t | C_20 : nat -> t | C_21 : nat -> t | C_22 : nat -> t | C_23 : nat -> t | C_24 : nat -> t | C_25 : nat -> t | C_26 : nat -> t | C_27 : nat -> t | C_28 : nat -> t | C_29 : nat -> t | C_30 : nat -> t | C_31 : nat -> t | C_32 : nat -> t | C_33 : nat -> t | C_34 : nat -> t | C_35 : nat -> t | C_36 : nat -> t | C_37 : nat -> t | C_38 : nat -> t | C_39 : nat -> t | C_40 : nat -> t | C_41 : nat -> t | C_42 : nat -> t | C_43 : nat -> t | C_44 : nat -> t | C_45 : nat -> t | C_46 : nat -> t | C_47 : nat -> t | C_48 : nat -> t | C_49 : nat -> t | C_50 : nat -> t | C_51 : nat -> t | C_52 : nat -> t | C_53 : nat -> t | C_54 : nat -> t | C_55 : nat -> t | C_56 : nat -> t | C_57 : nat -> t | C_58 : nat -> t | C_59 : nat -> t | C_60 : nat -> t | C_61 : nat -> t | C_62 : nat -> t | C_63 : nat -> t | C_64 : nat -> t | C_65 : nat -> t | C_66 : nat -> t | C_67 : nat -> t | C_68 : nat -> t | C_69 : nat -> t | C_70 : nat -> t | C_71 : nat -> t | C_72 : nat -> t | C_73 : nat -> t | C_74 : nat -> t | C_75 : nat -> t | C_76 : nat -> t | C_77 : nat -> t | C_78 : nat -> t | C_79 : nat -> t | C_80 : nat -> t | C_81 : nat -> t | C_82 : nat -> t | C_83 : nat -> t | C_84 : nat -> t | C_85 : nat -> t | C_86 : nat -> t | C_87 : nat -> t | C_88 : nat -> t | C_89 : nat -> t | C_90 : nat -> t | C_91 : nat -> t | C_92 : nat -> t | C_93 : nat -> t | C_94 : nat -> t | C_95 : nat -> t | C_96 : nat -> t | C_97 : nat -> t | C_98 : nat -> t | C_99 : nat -> t | C_100 : nat -> t | C_101 : nat -> t | C_102 : nat -> t | C_103 : nat -> t | C_104 : nat -> t | C_105 : nat -> t | C_106 : nat -> t | C_107 : nat -> t | C_108 : nat -> t | C_109 : nat -> t | C_110 : nat -> t | C_111 : nat -> t | C_112 : nat -> t | C_113 : nat -> t | C_114 : nat -> t | C_115 : nat -> t | C_116 : nat -> t | C_117 : nat -> t | C_118 : nat -> t | C_119 : nat -> t | C_120 : nat -> t | C_121 : nat -> t | C_122 : nat -> t | C_123 : nat -> t | C_124 : nat -> t | C_125 : nat -> t | C_126 : nat -> t | C_127 : nat -> t | C_128 : nat -> t | C_129 : nat -> t | C_130 : nat -> t | C_131 : nat -> t | C_132 : nat -> t | C_133 : nat -> t | C_134 : nat -> t | C_135 : nat -> t | C_136 : nat -> t | C_137 : nat -> t | C_138 : nat -> t | C_139 : nat -> t | C_140 : nat -> t | C_141 : nat -> t | C_142 : nat -> t | C_143 : nat -> t | C_144 : nat -> t | C_145 : nat -> t | C_146 : nat -> t | C_147 : nat -> t | C_148 : nat -> t | C_149 : nat -> t | C_150 : nat -> t | C_151 : nat -> t | C_152 : nat -> t | C_153 : nat -> t | C_154 : nat -> t | C_155 : nat -> t | C_156 : nat -> t | C_157 : nat -> t | C_158 : nat -> t | C_159 : nat -> t | C_160 : nat -> t | C_161 : nat -> t | C_162 : nat -> t | C_163 : nat -> t | C_164 : nat -> t | C_165 : nat -> t | C_166 : nat -> t | C_167 : nat -> t | C_168 : nat -> t | C_169 : nat -> t | C_170 : nat -> t | C_171 : nat -> t | C_172 : nat -> t | C_173 : nat -> t | C_174 : nat -> t | C_175 : nat -> t | C_176 : nat -> t | C_177 : nat -> t | C_178 : nat -> t | C_179 : nat -> t | C_180 : nat -> t | C_181 : nat -> t | C_182 : nat -> t | C_183 : nat -> t | C_184 : nat -> t | C_185 : nat -> t | C_186 : nat -> t | C_187 : nat -> t | C_188 : nat -> t | C_189 : nat -> t | C_190 : nat -> t | C_191 : nat -> t | C_192 : nat -> t | C_193 : nat -> t | C_194 : nat -> t | C_195 : nat -> t | C_196 : nat -> t | C_197 : nat -> t | C_198 : nat -> t | C_199 : nat -> t | C_200 : nat -> t | C_201 : nat -> t | C_202 : nat -> t | C_203 : nat -> t | C_204 : nat -> t | C_205 : nat -> t | C_206 : nat -> t | C_207 : nat -> t | C_208 : nat -> t | C_209 : nat -> t | C_210 : nat -> t | C_211 : nat -> t | C_212 : nat -> t | C_213 : nat -> t | C_214 : nat -> t | C_215 : nat -> t | C_216 : nat -> t | C_217 : nat -> t | C_218 : nat -> t | C_219 : nat -> t | C_220 : nat -> t | C_221 : nat -> t | C_222 : nat -> t | C_223 : nat -> t | C_224 : nat -> t | C_225 : nat -> t | C_226 : nat -> t | C_227 : nat -> t | C_228 : nat -> t | C_229 : nat -> t | C_230 : nat -> t | C_231 : nat -> t | C_232 : nat -> t | C_233 : nat -> t | C_234 : nat -> t | C_235 : nat -> t | C_236 : nat -> t | C_237 : nat -> t | C_238 : nat -> t | C_239 : nat -> t | C_240 : nat -> t | C_241 : nat -> t | C_242 : nat -> t | C_243 : nat -> t | C_244 : nat -> t | C_245 : nat -> t | C_246 : nat -> t | C_247 : nat -> t | C_248 : nat -> t | C_249 : nat -> t | C_250 : nat -> t | C_251 : nat -> t | C_252 : nat -> t | C_253 : nat -> t | C_254 : nat -> t | C_255 : nat -> t | C_256 : nat -> t. Definition is_256 (x : t) : bool := match x with | C_256 _ => true | _ => false end. Lemma falso : False. assert (is_256 (C_256 0) = true) by reflexivity. (* The next line was successful in 8.2pl3 *) Fail assert (is_256 (C_256 0) = false) by (vm_compute; reflexivity). Abort.