Inductive sigT3 {A: Type} {P: A -> Type} (Q: forall a: A, P a -> Type) := existT3: forall a: A, forall b: P a, Q a b -> sigT3 Q . Definition projT3_1 {A: Type} {P: A -> Type} {Q: forall a: A, P a -> Type} (a: sigT3 Q) := let 'existT3 _ x0 _ _ := a in x0. Definition projT3_2 {A: Type} {P: A -> Type} {Q: forall a: A, P a -> Type} (a: sigT3 Q) : P (projT3_1 a) := let 'existT3 _ x0 x1 _ := a in x1. Lemma projT3_3_eq' (A B: Type) (Q: B -> Type) (a b: sigT3 (fun (_: A) b => Q b)) (H: a = b) : unit. Proof. destruct a as [x0 x1 x2], b as [y0 y1 y2]. assert (H' := f_equal projT3_1 H). cbn in H'. subst x0. assert (H' := f_equal (projT3_2 (P := fun _ => B)) H). cbn in H'. subst x1. injection H as H'. exact tt. Qed.