Set Universe Polymorphism. Axiom M : Type -> Prop. Axiom raise : forall {T}, M T. Inductive goal : Type := | AHyp : forall {A : Type}, goal. Definition gtactic@{u u0} := goal@{u} -> M@{u0} (False). Class Seq (C : Type) := seq : C -> gtactic. Arguments seq {C _} _. Instance seq_one : Seq@{Set _ _} (gtactic) := fun t2 => fun g => raise. Definition x1 : gtactic := @seq@{_ _ _} _ _ (fun g : goal => raise). Definition x2 : gtactic := @seq@{_ _ _} _ seq_one (fun g : goal => raise).