From Coq Require Import Setoid ssreflect. Lemma test A (R : relation A) `{Equivalence _ R} (x y z : A) : R x y -> R y z -> R x z. Proof. intros Hxy Hyz. rewrite -Hxy in Hyz. exact Hyz. Qed. Axiom envs_lookup_delete : bool. Axiom envs_lookup_delete_Some : envs_lookup_delete = true <-> False. Goal envs_lookup_delete = true -> False. Proof. intros Hlookup. rewrite envs_lookup_delete_Some in Hlookup *. (* <- used to revert Hlookup *) exact Hlookup. Qed.