Set Implicit Arguments. Definition hprop := nat -> Prop. Definition himpl := fun H1 H2 : hprop => forall (h : nat), H1 h -> H2 h. Parameter himpl_refl : forall H : hprop, himpl H H. Parameter hstar : hprop -> hprop -> hprop. Parameter hpure : hprop. Lemma test : (forall (H:hprop), himpl (hstar H H) hpure -> True) -> True. Proof. intros M. eapply M. apply himpl_refl. Abort.