(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* user_err (print_retype_error e) open Goptions let clear_hyp_by_default = ref false let use_clear_hyp_by_default () = !clear_hyp_by_default let () = declare_bool_option { optdepr = false; optkey = ["Default";"Clearing";"Used";"Hypotheses"]; optread = (fun () -> !clear_hyp_by_default) ; optwrite = (fun b -> clear_hyp_by_default := b) } (* Compatibility option useful in developments using apply intensively in ltac code *) let universal_lemma_under_conjunctions = ref false let accept_universal_lemma_under_conjunctions () = !universal_lemma_under_conjunctions let () = declare_bool_option { optdepr = false; optkey = ["Universal";"Lemma";"Under";"Conjunction"]; optread = (fun () -> !universal_lemma_under_conjunctions) ; optwrite = (fun b -> universal_lemma_under_conjunctions := b) } (*********************************************) (* Tactics *) (*********************************************) (******************************************) (* Primitive tactics *) (******************************************) (** This tactic creates a partial proof realizing the introduction rule, but does not check anything. *) let unsafe_intro env decl b = Refine.refine ~typecheck:false begin fun sigma -> let ctx = named_context_val env in let nctx = push_named_context_val decl ctx in let inst = identity_subst_val (named_context_val env) in let ninst = mkRel 1 :: inst in let nb = subst1 (mkVar (NamedDecl.get_id decl)) b in let (sigma, ev) = new_pure_evar nctx sigma nb ~principal:true in (sigma, mkLambda_or_LetIn (NamedDecl.to_rel_decl decl) (mkEvar (ev, ninst))) end let introduction id = Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in let hyps = named_context_val (Proofview.Goal.env gl) in let env = Proofview.Goal.env gl in let () = if mem_named_context_val id hyps then user_err ~hdr:"Tactics.introduction" (str "Variable " ++ Id.print id ++ str " is already declared.") in let open Context.Named.Declaration in match EConstr.kind sigma concl with | Prod (id0, t, b) -> unsafe_intro env (LocalAssum ({id0 with binder_name=id}, t)) b | LetIn (id0, c, t, b) -> unsafe_intro env (LocalDef ({id0 with binder_name=id}, c, t)) b | _ -> raise (RefinerError (env, sigma, IntroNeedsProduct)) end let error msg = CErrors.user_err Pp.(str msg) let convert_concl ~check ty k = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let conclty = Proofview.Goal.concl gl in Refine.refine ~typecheck:false begin fun sigma -> let sigma = if check then begin let sigma, _ = Typing.type_of env sigma ty in match Reductionops.infer_conv env sigma ty conclty with | None -> error "Not convertible." | Some sigma -> sigma end else sigma in let (sigma, x) = Evarutil.new_evar env sigma ~principal:true ty in let ans = if k == DEFAULTcast then x else mkCast(x,k,conclty) in (sigma, ans) end end let convert_hyp ~check ~reorder d = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ty = Proofview.Goal.concl gl in let sign = convert_hyp ~check ~reorder env sigma d in let env = reset_with_named_context sign env in Refine.refine ~typecheck:false begin fun sigma -> Evarutil.new_evar env sigma ~principal:true ty end end let convert_gen pb x y = Proofview.Goal.enter begin fun gl -> match Tacmach.New.pf_apply (Reductionops.infer_conv ~pb) gl x y with | Some sigma -> Proofview.Unsafe.tclEVARS sigma | None -> let info = Exninfo.reify () in Tacticals.New.tclFAIL ~info 0 (str "Not convertible") | exception e -> let _, info = Exninfo.capture e in (* FIXME: Sometimes an anomaly is raised from conversion *) Tacticals.New.tclFAIL ~info 0 (str "Not convertible") end let convert x y = convert_gen Reduction.CONV x y let convert_leq x y = convert_gen Reduction.CUMUL x y let clear_in_global_msg = function | None -> mt () | Some ref -> str " implicitly in " ++ Printer.pr_global ref let clear_dependency_msg env sigma id err inglobal = let ppidupper = function Some id -> Id.print id | None -> str "This variable" in let ppid = function Some id -> Id.print id | None -> str "this variable" in let pp = clear_in_global_msg inglobal in match err with | Evarutil.OccurHypInSimpleClause None -> ppidupper id ++ str " is used" ++ pp ++ str " in conclusion." | Evarutil.OccurHypInSimpleClause (Some id') -> ppidupper id ++ strbrk " is used" ++ pp ++ str " in hypothesis " ++ Id.print id' ++ str"." | Evarutil.EvarTypingBreak ev -> str "Cannot remove " ++ ppid id ++ strbrk " without breaking the typing of " ++ Printer.pr_existential env sigma ev ++ str"." | Evarutil.NoCandidatesLeft ev -> str "Cannot remove " ++ ppid id ++ str " as it would leave the existential " ++ Printer.pr_existential_key sigma ev ++ str" without candidates." let error_clear_dependency env sigma id err inglobal = user_err (clear_dependency_msg env sigma (Some id) err inglobal) let replacing_dependency_msg env sigma id err inglobal = let pp = clear_in_global_msg inglobal in match err with | Evarutil.OccurHypInSimpleClause None -> str "Cannot change " ++ Id.print id ++ str ", it is used" ++ pp ++ str " in conclusion." | Evarutil.OccurHypInSimpleClause (Some id') -> str "Cannot change " ++ Id.print id ++ strbrk ", it is used" ++ pp ++ str " in hypothesis " ++ Id.print id' ++ str"." | Evarutil.EvarTypingBreak ev -> str "Cannot change " ++ Id.print id ++ strbrk " without breaking the typing of " ++ Printer.pr_existential env sigma ev ++ str"." | Evarutil.NoCandidatesLeft ev -> str "Cannot change " ++ Id.print id ++ str " as it would leave the existential " ++ Printer.pr_existential_key sigma ev ++ str" without candidates." let error_replacing_dependency env sigma id err inglobal = user_err (replacing_dependency_msg env sigma id err inglobal) (* This tactic enables the user to remove hypotheses from the signature. * Some care is taken to prevent him from removing variables that are * subsequently used in other hypotheses or in the conclusion of the * goal. *) let clear_gen fail = function | [] -> Proofview.tclUNIT () | ids -> Proofview.Goal.enter begin fun gl -> let ids = List.fold_right Id.Set.add ids Id.Set.empty in (* clear_hyps_in_evi does not require nf terms *) let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl gl in let (sigma, hyps, concl) = try clear_hyps_in_evi env sigma (named_context_val env) concl ids with Evarutil.ClearDependencyError (id,err,inglobal) -> fail env sigma id err inglobal in let env = reset_with_named_context hyps env in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (Refine.refine ~typecheck:false begin fun sigma -> Evarutil.new_evar env sigma ~principal:true concl end) end let clear ids = clear_gen error_clear_dependency ids let clear_for_replacing ids = clear_gen error_replacing_dependency ids let apply_clear_request clear_flag dft c = Proofview.tclEVARMAP >>= fun sigma -> let check_isvar c = if not (isVar sigma c) then error "keep/clear modifiers apply only to hypothesis names." in let doclear = match clear_flag with | None -> dft && isVar sigma c | Some true -> check_isvar c; true | Some false -> false in if doclear then clear [destVar sigma c] else Tacticals.New.tclIDTAC (* Moving hypotheses *) let move_hyp id dest = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ty = Proofview.Goal.concl gl in let sign = named_context_val env in let sign' = move_hyp_in_named_context env sigma id dest sign in let env = reset_with_named_context sign' env in Refine.refine ~typecheck:false begin fun sigma -> Evarutil.new_evar env sigma ~principal:true ty end end (* Renaming hypotheses *) let rename_hyp repl = let fold accu (src, dst) = match accu with | None -> None | Some (srcs, dsts) -> if Id.Set.mem src srcs then None else if Id.Set.mem dst dsts then None else let srcs = Id.Set.add src srcs in let dsts = Id.Set.add dst dsts in Some (srcs, dsts) in let init = Some (Id.Set.empty, Id.Set.empty) in let dom = List.fold_left fold init repl in match dom with | None -> let info = Exninfo.reify () in Tacticals.New.tclZEROMSG ~info (str "Not a one-to-one name mapping") | Some (src, dst) -> Proofview.Goal.enter begin fun gl -> let hyps = Proofview.Goal.hyps gl in let concl = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in (* Check that we do not mess variables *) let fold accu decl = Id.Set.add (NamedDecl.get_id decl) accu in let vars = List.fold_left fold Id.Set.empty hyps in let () = if not (Id.Set.subset src vars) then let hyp = Id.Set.choose (Id.Set.diff src vars) in raise (RefinerError (env, sigma, NoSuchHyp hyp)) in let mods = Id.Set.diff vars src in let () = try let elt = Id.Set.choose (Id.Set.inter dst mods) in CErrors.user_err (Id.print elt ++ str " is already used") with Not_found -> () in (* All is well *) let make_subst (src, dst) = (src, mkVar dst) in let subst = List.map make_subst repl in let subst c = Vars.replace_vars subst c in let map decl = decl |> NamedDecl.map_id (fun id -> try List.assoc_f Id.equal id repl with Not_found -> id) |> NamedDecl.map_constr subst in let nhyps = List.map map hyps in let nconcl = subst concl in let nctx = val_of_named_context nhyps in let instance = EConstr.identity_subst_val (Environ.named_context_val env) in Refine.refine ~typecheck:false begin fun sigma -> let sigma, ev = Evarutil.new_pure_evar nctx sigma nconcl ~principal:true in sigma, mkEvar (ev, instance) end end (**************************************************************) (* Fresh names *) (**************************************************************) let fresh_id_in_env avoid id env = let avoid' = ids_of_named_context_val (named_context_val env) in let avoid = if Id.Set.is_empty avoid then avoid' else Id.Set.union avoid' avoid in next_ident_away_in_goal id avoid let fresh_id avoid id gl = fresh_id_in_env avoid id (Tacmach.pf_env gl) let new_fresh_id avoid id gl = fresh_id_in_env avoid id (Proofview.Goal.env gl) let id_of_name_with_default id = function | Anonymous -> id | Name id -> id let default_id_of_sort s = if Sorts.is_small s then default_small_ident else default_type_ident let default_id env sigma decl = let open Context.Rel.Declaration in match decl with | LocalAssum (name,t) -> let dft = default_id_of_sort (Retyping.get_sort_of env sigma t) in id_of_name_with_default dft name.binder_name | LocalDef (name,b,_) -> id_of_name_using_hdchar env sigma b name.binder_name (* Non primitive introduction tactics are treated by intro_then_gen There is possibly renaming, with possibly names to avoid and possibly a move to do after the introduction *) type name_flag = | NamingAvoid of Id.Set.t | NamingBasedOn of Id.t * Id.Set.t | NamingMustBe of lident let naming_of_name = function | Anonymous -> NamingAvoid Id.Set.empty | Name id -> NamingMustBe (CAst.make id) let find_name mayrepl decl naming gl = match naming with | NamingAvoid idl -> (* this case must be compatible with [find_intro_names] below. *) let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in new_fresh_id idl (default_id env sigma decl) gl | NamingBasedOn (id,idl) -> new_fresh_id idl id gl | NamingMustBe {CAst.loc;v=id} -> (* When name is given, we allow to hide a global name *) let ids_of_hyps = Tacmach.New.pf_ids_set_of_hyps gl in if not mayrepl && Id.Set.mem id ids_of_hyps then user_err ?loc (Id.print id ++ str" is already used."); id (**************************************************************) (* Computing position of hypotheses for replacing *) (**************************************************************) let get_next_hyp_position env sigma id = let rec aux = function | [] -> error_no_such_hypothesis env sigma id | decl :: right -> if Id.equal (NamedDecl.get_id decl) id then match right with decl::_ -> MoveBefore (NamedDecl.get_id decl) | [] -> MoveFirst else aux right in aux let get_previous_hyp_position env sigma id = let rec aux dest = function | [] -> error_no_such_hypothesis env sigma id | decl :: right -> let hyp = NamedDecl.get_id decl in if Id.equal hyp id then dest else aux (MoveAfter hyp) right in aux MoveLast (**************************************************************) (* Cut rule *) (**************************************************************) let clear_hyps2 env sigma ids sign t cl = try let sigma = Evd.clear_metas sigma in Evarutil.clear_hyps2_in_evi env sigma sign t cl ids with Evarutil.ClearDependencyError (id,err,inglobal) -> error_replacing_dependency env sigma id err inglobal let internal_cut ?(check=true) replace id t = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl gl in let sign = named_context_val env in let r = Retyping.relevance_of_type env sigma t in let env',t,concl,sigma = if replace then let nexthyp = get_next_hyp_position env sigma id (named_context_of_val sign) in let sigma,sign',t,concl = clear_hyps2 env sigma (Id.Set.singleton id) sign t concl in let sign' = insert_decl_in_named_context env sigma (LocalAssum (make_annot id r,t)) nexthyp sign' in Environ.reset_with_named_context sign' env,t,concl,sigma else (if check && mem_named_context_val id sign then user_err (str "Variable " ++ Id.print id ++ str " is already declared."); push_named (LocalAssum (make_annot id r,t)) env,t,concl,sigma) in let nf_t = nf_betaiota env sigma t in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (Refine.refine ~typecheck:false begin fun sigma -> let (sigma, ev) = Evarutil.new_evar env sigma nf_t in let (sigma, ev') = Evarutil.new_evar ~principal:true env' sigma concl in let term = mkLetIn (make_annot (Name id) r, ev, t, EConstr.Vars.subst_var id ev') in (sigma, term) end) end let assert_before_then_gen b naming t tac = let open Context.Rel.Declaration in Proofview.Goal.enter begin fun gl -> let id = find_name b (LocalAssum (make_annot Anonymous Sorts.Relevant,t)) naming gl in Tacticals.New.tclTHENLAST (internal_cut b id t) (tac id) end let assert_before_gen b naming t = assert_before_then_gen b naming t (fun _ -> Proofview.tclUNIT ()) let assert_before na = assert_before_gen false (naming_of_name na) let assert_before_replacing id = assert_before_gen true (NamingMustBe (CAst.make id)) let replace_error_option err tac = match err with | None -> tac | Some (e, info) -> Proofview.tclORELSE tac (fun _ -> Proofview.tclZERO ~info e) let assert_after_then_gen ?err b naming t tac = let open Context.Rel.Declaration in Proofview.Goal.enter begin fun gl -> let id = find_name b (LocalAssum (make_annot Anonymous Sorts.Relevant,t)) naming gl in Tacticals.New.tclTHENFIRST (replace_error_option err (internal_cut b id t <*> Proofview.cycle 1)) (tac id) end let assert_after_gen b naming t = assert_after_then_gen b naming t (fun _ -> (Proofview.tclUNIT ())) let assert_after na = assert_after_gen false (naming_of_name na) let assert_after_replacing id = assert_after_gen true (NamingMustBe (CAst.make id)) (**************************************************************) (* Fixpoints and CoFixpoints *) (**************************************************************) let rec mk_holes env sigma = function | [] -> (sigma, []) | arg :: rem -> let (sigma, arg) = Evarutil.new_evar env sigma arg in let (sigma, rem) = mk_holes env sigma rem in (sigma, arg :: rem) let rec check_mutind env sigma k cl = match EConstr.kind sigma (strip_outer_cast sigma cl) with | Prod (na, c1, b) -> if Int.equal k 1 then try let ((sp, _), u), _ = find_inductive env sigma c1 in (sp, u) with Not_found -> error "Cannot do a fixpoint on a non inductive type." else let open Context.Rel.Declaration in check_mutind (push_rel (LocalAssum (na, c1)) env) sigma (pred k) b | LetIn (na, c1, t, b) -> let open Context.Rel.Declaration in check_mutind (push_rel (LocalDef (na, c1, t)) env) sigma k b | _ -> error "Not enough products." (* Refine as a fixpoint *) let mutual_fix f n rest j = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl gl in let (sp, u) = check_mutind env sigma n concl in let firsts, lasts = List.chop j rest in let all = firsts @ (f, n, concl) :: lasts in let rec mk_sign sign = function | [] -> sign | (f, n, ar) :: oth -> let open Context.Named.Declaration in let (sp', u') = check_mutind env sigma n ar in if not (QMutInd.equal env sp sp') then error "Fixpoints should be on the same mutual inductive declaration."; if mem_named_context_val f sign then user_err ~hdr:"Logic.prim_refiner" (str "Name " ++ Id.print f ++ str " already used in the environment"); mk_sign (push_named_context_val (LocalAssum (make_annot f Sorts.Relevant, ar)) sign) oth in let nenv = reset_with_named_context (mk_sign (named_context_val env) all) env in Refine.refine ~typecheck:false begin fun sigma -> let (sigma, evs) = mk_holes nenv sigma (List.map pi3 all) in let ids = List.map pi1 all in let evs = List.map (Vars.subst_vars (List.rev ids)) evs in let indxs = Array.of_list (List.map (fun n -> n-1) (List.map pi2 all)) in (* TODO relevance *) let funnames = Array.of_list (List.map (fun i -> make_annot (Name i) Sorts.Relevant) ids) in let typarray = Array.of_list (List.map pi3 all) in let bodies = Array.of_list evs in let oterm = mkFix ((indxs,0),(funnames,typarray,bodies)) in (sigma, oterm) end end let fix id n = mutual_fix id n [] 0 let rec check_is_mutcoind env sigma cl = let b = whd_all env sigma cl in match EConstr.kind sigma b with | Prod (na, c1, b) -> let open Context.Rel.Declaration in check_is_mutcoind (push_rel (LocalAssum (na,c1)) env) sigma b | _ -> try let _ = find_coinductive env sigma b in () with Not_found -> error "All methods must construct elements in coinductive types." (* Refine as a cofixpoint *) let mutual_cofix f others j = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl gl in let firsts,lasts = List.chop j others in let all = firsts @ (f, concl) :: lasts in List.iter (fun (_, c) -> check_is_mutcoind env sigma c) all; let rec mk_sign sign = function | [] -> sign | (f, ar) :: oth -> let open Context.Named.Declaration in if mem_named_context_val f sign then error "Name already used in the environment."; mk_sign (push_named_context_val (LocalAssum (make_annot f Sorts.Relevant, ar)) sign) oth in let nenv = reset_with_named_context (mk_sign (named_context_val env) all) env in Refine.refine ~typecheck:false begin fun sigma -> let (ids, types) = List.split all in let (sigma, evs) = mk_holes nenv sigma types in let evs = List.map (Vars.subst_vars (List.rev ids)) evs in (* TODO relevance *) let funnames = Array.of_list (List.map (fun i -> make_annot (Name i) Sorts.Relevant) ids) in let typarray = Array.of_list types in let bodies = Array.of_list evs in let oterm = mkCoFix (0, (funnames, typarray, bodies)) in (sigma, oterm) end end let cofix id = mutual_cofix id [] 0 (**************************************************************) (* Reduction and conversion tactics *) (**************************************************************) type tactic_reduction = Reductionops.reduction_function type e_tactic_reduction = Reductionops.e_reduction_function let e_pf_change_decl (redfun : bool -> e_reduction_function) where env sigma decl = let open Context.Named.Declaration in match decl with | LocalAssum (id,ty) -> if where == InHypValueOnly then user_err (Id.print id.binder_name ++ str " has no value."); let (sigma, ty') = redfun false env sigma ty in (sigma, LocalAssum (id, ty')) | LocalDef (id,b,ty) -> let (sigma, b') = if where != InHypTypeOnly then redfun true env sigma b else (sigma, b) in let (sigma, ty') = if where != InHypValueOnly then redfun false env sigma ty else (sigma, ty) in (sigma, LocalDef (id,b',ty')) let bind_change_occurrences occs = function | None -> None | Some c -> Some (Redexpr.out_with_occurrences (occs,c)) (* The following two tactics apply an arbitrary reduction function either to the conclusion or to a certain hypothesis *) (** Tactic reduction modulo evars (for universes essentially) *) let e_change_in_concl ~check (redfun, sty) = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let (sigma, c') = redfun (Tacmach.New.pf_env gl) sigma (Tacmach.New.pf_concl gl) in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (convert_concl ~check c' sty) end let e_change_in_hyp ~check ~reorder redfun (id,where) = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let hyp = Tacmach.New.pf_get_hyp id gl in let (sigma, c) = e_pf_change_decl redfun where (Proofview.Goal.env gl) sigma hyp in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (convert_hyp ~check ~reorder c) end type hyp_conversion = | AnyHypConv (** Arbitrary conversion *) | StableHypConv (** Does not introduce new dependencies on variables *) | LocalHypConv (** Same as above plus no dependence on the named environment *) let e_change_in_hyps ~check ~reorder f args = match args with | [] -> Proofview.tclUNIT () | _ :: _ -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let (env, sigma) = match reorder with | LocalHypConv -> (* If the reduction function is known not to depend on the named context, then we can perform it in parallel. *) let fold accu arg = let (id, redfun) = f arg in let old = try Id.Map.find id accu with Not_found -> [] in Id.Map.add id (redfun :: old) accu in let reds = List.fold_left fold Id.Map.empty args in let evdref = ref sigma in let map d = let id = NamedDecl.get_id d in match Id.Map.find id reds with | reds -> let d = EConstr.of_named_decl d in let fold redfun (sigma, d) = redfun env sigma d in let (sigma, d) = List.fold_right fold reds (sigma, d) in let () = evdref := sigma in EConstr.Unsafe.to_named_decl d | exception Not_found -> d in let sign = Environ.map_named_val map (Environ.named_context_val env) in let env = reset_with_named_context sign env in (env, !evdref) | StableHypConv | AnyHypConv -> let reorder = reorder == AnyHypConv in let fold (env, sigma) arg = let (id, redfun) = f arg in let hyp = try lookup_named id env with Not_found -> raise (RefinerError (env, sigma, NoSuchHyp id)) in let (sigma, d) = redfun env sigma hyp in let sign = Logic.convert_hyp ~check ~reorder env sigma d in let env = reset_with_named_context sign env in (env, sigma) in List.fold_left fold (env, sigma) args in let ty = Proofview.Goal.concl gl in Proofview.Unsafe.tclEVARS sigma <*> Refine.refine ~typecheck:false begin fun sigma -> Evarutil.new_evar env sigma ~principal:true ty end end let e_reduct_in_concl = e_change_in_concl let reduct_in_concl ~check (redfun, sty) = let redfun env sigma c = (sigma, redfun env sigma c) in e_change_in_concl ~check (redfun, sty) let e_reduct_in_hyp ~check ~reorder redfun (id, where) = let redfun _ env sigma c = redfun env sigma c in e_change_in_hyp ~check ~reorder redfun (id, where) let reduct_in_hyp ~check ~reorder redfun (id, where) = let redfun _ env sigma c = (sigma, redfun env sigma c) in e_change_in_hyp ~check ~reorder redfun (id, where) let revert_cast (redfun,kind as r) = if kind == DEFAULTcast then (redfun,REVERTcast) else r let e_reduct_option ~check redfun = function | Some id -> e_reduct_in_hyp ~check ~reorder:check (fst redfun) id | None -> e_change_in_concl ~check (revert_cast redfun) let reduct_option ~check (redfun, sty) where = let redfun env sigma c = (sigma, redfun env sigma c) in e_reduct_option ~check (redfun, sty) where type change_arg = Ltac_pretype.patvar_map -> env -> evar_map -> evar_map * EConstr.constr let make_change_arg c pats env sigma = (sigma, replace_vars (Id.Map.bindings pats) c) let check_types env sigma mayneedglobalcheck deep newc origc = let t1 = Retyping.get_type_of env sigma newc in if deep then begin let t2 = Retyping.get_type_of env sigma origc in let sigma, t2 = Evarsolve.refresh_universes ~onlyalg:true (Some false) env sigma t2 in match infer_conv ~pb:Reduction.CUMUL env sigma t1 t2 with | None -> if isSort sigma (whd_all env sigma t1) && isSort sigma (whd_all env sigma t2) then (mayneedglobalcheck := true; sigma) else user_err ~hdr:"convert-check-hyp" (str "Types are incompatible.") | Some sigma -> sigma end else if not (isSort sigma (whd_all env sigma t1)) then user_err ~hdr:"convert-check-hyp" (str "Not a type.") else sigma (* Now we introduce different instances of the previous tacticals *) let change_and_check cv_pb mayneedglobalcheck deep t env sigma c = let (sigma, t') = t env sigma in let sigma = check_types env sigma mayneedglobalcheck deep t' c in match infer_conv ~pb:cv_pb env sigma t' c with | None -> user_err ~hdr:"convert-check-hyp" (str "Not convertible."); | Some sigma -> (sigma, t') (* Use cumulativity only if changing the conclusion not a subterm *) let change_on_subterm ~check cv_pb deep t where env sigma c = let mayneedglobalcheck = ref false in let (sigma, c) = match where with | None -> if check then change_and_check cv_pb mayneedglobalcheck deep (t Id.Map.empty) env sigma c else t Id.Map.empty env sigma | Some occl -> e_contextually false occl (fun subst -> if check then change_and_check Reduction.CONV mayneedglobalcheck true (t subst) else fun env sigma _c -> t subst env sigma) env sigma c in let sigma = if !mayneedglobalcheck then begin try fst (Typing.type_of env sigma c) with e when noncritical e -> error "Replacement would lead to an ill-typed term." end else sigma in (sigma, c) let change_in_concl ~check occl t = (* No need to check in e_change_in_concl, the check is done in change_on_subterm *) e_change_in_concl ~check:false ((change_on_subterm ~check Reduction.CUMUL false t occl),DEFAULTcast) let change_in_hyp ~check occl t id = (* Same as above *) e_change_in_hyp ~check:false ~reorder:check (fun x -> change_on_subterm ~check Reduction.CONV x t occl) id let concrete_clause_of enum_hyps cl = match cl.onhyps with | None -> let f id = (id, AllOccurrences, InHyp) in List.map f (enum_hyps ()) | Some l -> List.map (fun ((occs, id), w) -> (id, occs, w)) l let change ~check chg c cls = Proofview.Goal.enter begin fun gl -> let hyps = concrete_clause_of (fun () -> Tacmach.New.pf_ids_of_hyps gl) cls in begin match cls.concl_occs with | NoOccurrences -> Proofview.tclUNIT () | occs -> change_in_concl ~check (bind_change_occurrences occs chg) c end <*> let f (id, occs, where) = let occl = bind_change_occurrences occs chg in let redfun deep env sigma t = change_on_subterm ~check Reduction.CONV deep c occl env sigma t in let redfun env sigma d = e_pf_change_decl redfun where env sigma d in (id, redfun) in let reorder = if check then AnyHypConv else StableHypConv in (* Don't check, we do it already in [change_on_subterm] *) e_change_in_hyps ~check:false ~reorder f hyps end let change_concl t = change_in_concl ~check:true None (make_change_arg t) (* Pour usage interne (le niveau User est pris en compte par reduce) *) let red_in_concl = reduct_in_concl ~check:false (red_product,REVERTcast) let red_in_hyp = reduct_in_hyp ~check:false ~reorder:false red_product let red_option = reduct_option ~check:false (red_product,REVERTcast) let hnf_in_concl = reduct_in_concl ~check:false (hnf_constr,REVERTcast) let hnf_in_hyp = reduct_in_hyp ~check:false ~reorder:false hnf_constr let hnf_option = reduct_option ~check:false (hnf_constr,REVERTcast) let simpl_in_concl = reduct_in_concl ~check:false (simpl,REVERTcast) let simpl_in_hyp = reduct_in_hyp ~check:false ~reorder:false simpl let simpl_option = reduct_option ~check:false (simpl,REVERTcast) let normalise_in_concl = reduct_in_concl ~check:false (compute,REVERTcast) let normalise_in_hyp = reduct_in_hyp ~check:false ~reorder:false compute let normalise_option = reduct_option ~check:false (compute,REVERTcast) let normalise_vm_in_concl = reduct_in_concl ~check:false (Redexpr.cbv_vm,VMcast) let unfold_in_concl loccname = reduct_in_concl ~check:false (unfoldn loccname,REVERTcast) let unfold_in_hyp loccname = reduct_in_hyp ~check:false ~reorder:false (unfoldn loccname) let unfold_option loccname = reduct_option ~check:false (unfoldn loccname,DEFAULTcast) let pattern_option l = e_reduct_option ~check:false (pattern_occs l,DEFAULTcast) (* The main reduction function *) let is_local_flag env flags = if flags.rDelta then false else let check = function | EvalVarRef _ -> false | EvalConstRef c -> Id.Set.is_empty (Environ.vars_of_global env (GlobRef.ConstRef c)) in List.for_all check flags.rConst let is_local_unfold env flags = let check (_, c) = match c with | EvalVarRef _ -> false | EvalConstRef c -> Id.Set.is_empty (Environ.vars_of_global env (GlobRef.ConstRef c)) in List.for_all check flags let reduce redexp cl = let trace env sigma = let open Printer in let pr = ((fun e -> pr_econstr_env e), (fun e -> pr_leconstr_env e), pr_evaluable_reference, pr_constr_pattern_env) in Pp.(hov 2 (Ppred.pr_red_expr_env env sigma pr str redexp)) in Proofview.Trace.name_tactic trace begin Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let hyps = concrete_clause_of (fun () -> Tacmach.New.pf_ids_of_hyps gl) cl in let nbcl = (if cl.concl_occs = NoOccurrences then 0 else 1) + List.length hyps in let check = match redexp with Fold _ | Pattern _ -> true | _ -> false in let reorder = match redexp with | Fold _ | Pattern _ -> AnyHypConv | Simpl (flags, _) | Cbv flags | Cbn flags | Lazy flags -> if is_local_flag env flags then LocalHypConv else StableHypConv | Unfold flags -> if is_local_unfold env flags then LocalHypConv else StableHypConv | Red _ | Hnf | CbvVm _ | CbvNative _ -> StableHypConv | ExtraRedExpr _ -> StableHypConv (* Should we be that lenient ?*) in let redexp = Redexpr.eval_red_expr env redexp in begin match cl.concl_occs with | NoOccurrences -> Proofview.tclUNIT () | occs -> let redfun = Redexpr.reduction_of_red_expr_val ~occs:(occs, nbcl) redexp in e_change_in_concl ~check (revert_cast redfun) end <*> let f (id, occs, where) = let (redfun, _) = Redexpr.reduction_of_red_expr_val ~occs:(occs, nbcl) redexp in let redfun _ env sigma c = redfun env sigma c in let redfun env sigma d = e_pf_change_decl redfun where env sigma d in (id, redfun) in e_change_in_hyps ~check ~reorder f hyps end end (* Unfolding occurrences of a constant *) let unfold_constr = function | GlobRef.ConstRef sp -> unfold_in_concl [AllOccurrences,EvalConstRef sp] | GlobRef.VarRef id -> unfold_in_concl [AllOccurrences,EvalVarRef id] | _ -> user_err ~hdr:"unfold_constr" (str "Cannot unfold a non-constant.") (*******************************************) (* Introduction tactics *) (*******************************************) (* Returns the names that would be created by intros, without doing intros. This function is supposed to be compatible with an iteration of [find_name] above. As [default_id] checks the sort of the type to build hyp names, we maintain an environment to be able to type dependent hyps. *) let find_intro_names ctxt gl = let _, res, _ = List.fold_right (fun decl acc -> let env,idl,avoid = acc in let name = fresh_id avoid (default_id env gl.sigma decl) gl in let newenv = push_rel decl env in (newenv, name :: idl, Id.Set.add name avoid)) ctxt (Tacmach.pf_env gl, [], Id.Set.empty) in List.rev res let build_intro_tac id dest tac = match dest with | MoveLast -> Tacticals.New.tclTHEN (introduction id) (tac id) | dest -> Tacticals.New.tclTHENLIST [introduction id; move_hyp id dest; tac id] let rec intro_then_gen name_flag move_flag force_flag dep_flag tac = let open Context.Rel.Declaration in Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in let env = Tacmach.New.pf_env gl in let concl = Proofview.Goal.concl gl in match EConstr.kind sigma concl with | Prod (name,t,u) when not dep_flag || not (noccurn sigma 1 u) -> let name = find_name false (LocalAssum (name,t)) name_flag gl in build_intro_tac name move_flag tac | LetIn (name,b,t,u) when not dep_flag || not (noccurn sigma 1 u) -> let name = find_name false (LocalDef (name,b,t)) name_flag gl in build_intro_tac name move_flag tac | Evar ev when force_flag -> let sigma, t = Evardefine.define_evar_as_product env sigma ev in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (intro_then_gen name_flag move_flag force_flag dep_flag tac) | _ -> begin if not force_flag then let info = Exninfo.reify () in Proofview.tclZERO ~info (RefinerError (env, sigma, IntroNeedsProduct)) (* Note: red_in_concl includes betaiotazeta and this was like *) (* this since at least V6.3 (a pity *) (* that intro do betaiotazeta only when reduction is needed; and *) (* probably also a pity that intro does zeta *) else Proofview.tclUNIT () end <*> Proofview.tclORELSE (Tacticals.New.tclTHEN hnf_in_concl (intro_then_gen name_flag move_flag false dep_flag tac)) begin function (e, info) -> match e with | RefinerError (env, sigma, IntroNeedsProduct) -> Tacticals.New.tclZEROMSG ~info (str "No product even after head-reduction.") | e -> Proofview.tclZERO ~info e end end let drop_intro_name (_ : Id.t) = Proofview.tclUNIT () let intro_gen n m f d = intro_then_gen n m f d drop_intro_name let intro_mustbe_force id = intro_gen (NamingMustBe (CAst.make id)) MoveLast true false let intro_using_then id = intro_then_gen (NamingBasedOn (id, Id.Set.empty)) MoveLast false false let intro_using id = intro_using_then id drop_intro_name let intro_then = intro_then_gen (NamingAvoid Id.Set.empty) MoveLast false false let intro = intro_then drop_intro_name let introf = intro_gen (NamingAvoid Id.Set.empty) MoveLast true false let intro_avoiding l = intro_gen (NamingAvoid l) MoveLast false false let intro_move_avoid idopt avoid hto = match idopt with | None -> intro_gen (NamingAvoid avoid) hto true false | Some id -> intro_gen (NamingMustBe (CAst.make id)) hto true false let intro_move idopt hto = intro_move_avoid idopt Id.Set.empty hto (**** Multiple introduction tactics ****) let rec intros_using = function | [] -> Proofview.tclUNIT() | str::l -> Tacticals.New.tclTHEN (intro_using str) (intros_using l) let rec intros_mustbe_force = function | [] -> Proofview.tclUNIT() | str::l -> Tacticals.New.tclTHEN (intro_mustbe_force str) (intros_mustbe_force l) let rec intros_using_then_helper tac acc = function | [] -> tac (List.rev acc) | str::l -> intro_using_then str (fun str' -> intros_using_then_helper tac (str'::acc) l) let intros_using_then l tac = intros_using_then_helper tac [] l let intros = Tacticals.New.tclREPEAT intro let intro_forthcoming_then_gen name_flag move_flag dep_flag bound n tac = let rec aux n ids = (* Note: we always use the bound when there is one for "*" and "**" *) if (match bound with None -> true | Some p -> n < p) then Proofview.tclORELSE begin intro_then_gen name_flag move_flag false dep_flag (fun id -> aux (n+1) (id::ids)) end begin function (e, info) -> match e with | RefinerError (env, sigma, IntroNeedsProduct) -> tac ids | e -> Proofview.tclZERO ~info e end else tac ids in aux n [] let intro_replacing id = Proofview.Goal.enter begin fun gl -> let env, sigma = Proofview.Goal.(env gl, sigma gl) in let hyps = Proofview.Goal.hyps gl in let next_hyp = get_next_hyp_position env sigma id hyps in Tacticals.New.tclTHENLIST [ clear_for_replacing [id]; introduction id; move_hyp id next_hyp; ] end (* We have e.g. [x, y, y', x', y'' |- forall y y' y'', G] and want to reintroduce y, y,' y''. Note that we have to clear y, y' and y'' before introducing y because y' or y'' can e.g. depend on old y. *) (* This version assumes that replacement is actually possible *) (* (ids given in the introduction order) *) (* We keep a sub-optimality in cleaing for compatibility with *) (* the behavior of inversion *) let intros_possibly_replacing ids = let suboptimal = true in Proofview.Goal.enter begin fun gl -> let env, sigma = Proofview.Goal.(env gl, sigma gl) in let hyps = Proofview.Goal.hyps gl in let posl = List.map (fun id -> (id, get_next_hyp_position env sigma id hyps)) ids in Tacticals.New.tclTHEN (Tacticals.New.tclMAP (fun id -> Tacticals.New.tclTRY (clear_for_replacing [id])) (if suboptimal then ids else List.rev ids)) (Tacticals.New.tclMAP (fun (id,pos) -> Tacticals.New.tclORELSE (intro_move (Some id) pos) (intro_using id)) posl) end (* This version assumes that replacement is actually possible *) let intros_replacing ids = Proofview.Goal.enter begin fun gl -> let hyps = Proofview.Goal.hyps gl in let env, sigma = Proofview.Goal.(env gl, sigma gl) in let posl = List.map (fun id -> (id, get_next_hyp_position env sigma id hyps)) ids in Tacticals.New.tclTHEN (clear_for_replacing ids) (Tacticals.New.tclMAP (fun (id,pos) -> intro_move (Some id) pos) posl) end (* The standard for implementing Automatic Introduction *) let auto_intros_tac ids = let fold used = function | Name id -> Id.Set.add id used | Anonymous -> used in let avoid = NamingAvoid (List.fold_left fold Id.Set.empty ids) in let naming = function | Name id -> NamingMustBe CAst.(make id) | Anonymous -> avoid in Tacticals.New.tclMAP (fun name -> intro_gen (naming name) MoveLast true false) (List.rev ids) (* User-level introduction tactics *) let lookup_hypothesis_as_renamed env sigma ccl = function | AnonHyp n -> Detyping.lookup_index_as_renamed env sigma ccl n | NamedHyp id -> Detyping.lookup_name_as_displayed env sigma ccl id let lookup_hypothesis_as_renamed_gen red h gl = let env = Proofview.Goal.env gl in let rec aux ccl = match lookup_hypothesis_as_renamed env (Tacmach.New.project gl) ccl h with | None when red -> let (redfun, _) = Redexpr.reduction_of_red_expr env (Red true) in let (_, c) = redfun env (Proofview.Goal.sigma gl) ccl in aux c | x -> x in try aux (Proofview.Goal.concl gl) with Redelimination -> None let is_quantified_hypothesis id gl = match lookup_hypothesis_as_renamed_gen false (NamedHyp id) gl with | Some _ -> true | None -> false let msg_quantified_hypothesis = function | NamedHyp id -> str "quantified hypothesis named " ++ Id.print id | AnonHyp n -> pr_nth n ++ str " non dependent hypothesis" let warn_deprecated_intros_until_0 = CWarnings.create ~name:"deprecated-intros-until-0" ~category:"tactics" (fun () -> strbrk"\"intros until 0\" is deprecated, use \"intros *\"; instead of \"induction 0\" and \"destruct 0\" use explicitly a name.\"") let depth_of_quantified_hypothesis red h gl = if h = AnonHyp 0 then warn_deprecated_intros_until_0 (); match lookup_hypothesis_as_renamed_gen red h gl with | Some depth -> depth | None -> user_err ~hdr:"lookup_quantified_hypothesis" (str "No " ++ msg_quantified_hypothesis h ++ strbrk " in current goal" ++ (if red then strbrk " even after head-reduction" else mt ()) ++ str".") let intros_until_gen red h = Proofview.Goal.enter begin fun gl -> let n = depth_of_quantified_hypothesis red h gl in Tacticals.New.tclDO n (if red then introf else intro) end let intros_until_id id = intros_until_gen false (NamedHyp id) let intros_until_n_gen red n = intros_until_gen red (AnonHyp n) let intros_until = intros_until_gen true let intros_until_n = intros_until_n_gen true let tclCHECKVAR id = Proofview.Goal.enter begin fun gl -> let _ = Tacmach.New.pf_get_hyp id gl in Proofview.tclUNIT () end let try_intros_until_id_check id = Tacticals.New.tclORELSE (intros_until_id id) (tclCHECKVAR id) let try_intros_until tac = function | NamedHyp id -> Tacticals.New.tclTHEN (try_intros_until_id_check id) (tac id) | AnonHyp n -> Tacticals.New.tclTHEN (intros_until_n n) (Tacticals.New.onLastHypId tac) let rec intros_move = function | [] -> Proofview.tclUNIT () | (hyp,destopt) :: rest -> Tacticals.New.tclTHEN (intro_gen (NamingMustBe (CAst.make hyp)) destopt false false) (intros_move rest) (* Apply a tactic on a quantified hypothesis, an hypothesis in context or a term with bindings *) let tactic_infer_flags with_evar = { Pretyping.use_typeclasses = Pretyping.UseTC; Pretyping.solve_unification_constraints = true; Pretyping.fail_evar = not with_evar; Pretyping.expand_evars = true; Pretyping.program_mode = false; Pretyping.polymorphic = false; } type evars_flag = bool (* true = pose evars false = fail on evars *) type rec_flag = bool (* true = recursive false = not recursive *) type advanced_flag = bool (* true = advanced false = basic *) type clear_flag = bool option (* true = clear hyp, false = keep hyp, None = use default *) type 'a core_destruction_arg = | ElimOnConstr of 'a | ElimOnIdent of lident | ElimOnAnonHyp of int type 'a destruction_arg = clear_flag * 'a core_destruction_arg let onOpenInductionArg env sigma tac = function | clear_flag,ElimOnConstr f -> let (sigma', cbl) = f env sigma in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS sigma') (tac clear_flag (sigma,cbl)) | clear_flag,ElimOnAnonHyp n -> Tacticals.New.tclTHEN (intros_until_n n) (Tacticals.New.onLastHyp (fun c -> Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in tac clear_flag (sigma,(c,NoBindings)) end)) | clear_flag,ElimOnIdent {CAst.v=id} -> (* A quantified hypothesis *) Tacticals.New.tclTHEN (try_intros_until_id_check id) (Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in tac clear_flag (sigma,(mkVar id,NoBindings)) end) let onInductionArg tac = function | clear_flag,ElimOnConstr cbl -> tac clear_flag cbl | clear_flag,ElimOnAnonHyp n -> Tacticals.New.tclTHEN (intros_until_n n) (Tacticals.New.onLastHyp (fun c -> tac clear_flag (c,NoBindings))) | clear_flag,ElimOnIdent {CAst.v=id} -> (* A quantified hypothesis *) Tacticals.New.tclTHEN (try_intros_until_id_check id) (tac clear_flag (mkVar id,NoBindings)) let map_destruction_arg f sigma = function | clear_flag,ElimOnConstr g -> let sigma,x = f sigma g in (sigma, (clear_flag,ElimOnConstr x)) | clear_flag,ElimOnAnonHyp n as x -> (sigma,x) | clear_flag,ElimOnIdent id as x -> (sigma,x) let finish_delayed_evar_resolution with_evars env sigma f = let (sigma', (c, lbind)) = f env sigma in let flags = tactic_infer_flags with_evars in let (sigma', c) = finish_evar_resolution ~flags env sigma' (sigma,c) in (sigma', (c, lbind)) let with_no_bindings (c, lbind) = if lbind != NoBindings then error "'with' clause not supported here."; c let force_destruction_arg with_evars env sigma c = map_destruction_arg (finish_delayed_evar_resolution with_evars env) sigma c (****************************************) (* tactic "cut" (actually modus ponens) *) (****************************************) let cut c = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl gl in (* Backward compat: ensure that [c] is well-typed. Plus we need to know the relevance *) match Typing.sort_of env sigma c with | exception e when noncritical e -> let _, info = Exninfo.capture e in Tacticals.New.tclZEROMSG ~info (str "Not a proposition or a type.") | sigma, s -> let r = Sorts.relevance_of_sort s in let id = next_name_away_with_default "H" Anonymous (Tacmach.New.pf_ids_set_of_hyps gl) in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (Refine.refine ~typecheck:false begin fun h -> let (h, f) = Evarutil.new_evar ~principal:true env h (mkArrow c r (Vars.lift 1 concl)) in let (h, x) = Evarutil.new_evar env h c in let f = mkLetIn (make_annot (Name id) r, x, c, mkApp (Vars.lift 1 f, [|mkRel 1|])) in (h, f) end) end let error_uninstantiated_metas t clenv = let na = meta_name clenv.evd (List.hd (Metaset.elements (metavars_of t))) in let id = match na with Name id -> id | _ -> anomaly (Pp.str "unnamed dependent meta.") in user_err (str "Cannot find an instance for " ++ Id.print id ++ str".") let check_unresolved_evars_of_metas sigma clenv = (* This checks that Metas turned into Evars by *) (* Refiner.pose_all_metas_as_evars are resolved *) List.iter (fun (mv,b) -> match b with | Clval (_,(c,_),_) -> (match Constr.kind (EConstr.Unsafe.to_constr c.rebus) with | Evar (evk,_) when Evd.is_undefined clenv.evd evk && not (Evd.mem sigma evk) -> error_uninstantiated_metas (mkMeta mv) clenv | _ -> ()) | _ -> ()) (meta_list clenv.evd) let do_replace id = function | NamingMustBe {CAst.v=id'} when Option.equal Id.equal id (Some id') -> true | _ -> false (* For a clenv expressing some lemma [C[?1:T1,...,?n:Tn] : P] and some goal [G], [clenv_refine_in] returns [n+1] subgoals, the [n] last ones (resp [n] first ones if [sidecond_first] is [true]) being the [Ti] and the first one (resp last one) being [G] whose hypothesis [id] is replaced by P using the proof given by [tac] *) let clenv_refine_in ?err with_evars targetid replace sigma0 clenv tac = let clenv = Clenv.clenv_pose_dependent_evars ~with_evars clenv in let evd = Typeclasses.resolve_typeclasses ~fail:(not with_evars) clenv.env clenv.evd in let clenv = Clenv.update_clenv_evd clenv evd in let new_hyp_typ = clenv_type clenv in if not with_evars then check_unresolved_evars_of_metas sigma0 clenv; if not with_evars && occur_meta evd new_hyp_typ then error_uninstantiated_metas new_hyp_typ clenv; let new_hyp_prf = clenv_value clenv in let exact_tac = Logic.refiner ~check:false EConstr.Unsafe.(to_constr new_hyp_prf) in let naming = NamingMustBe (CAst.make targetid) in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS (clear_metas evd)) (Tacticals.New.tclTHENLAST (assert_after_then_gen ?err replace naming new_hyp_typ tac) exact_tac) (********************************************) (* Elimination tactics *) (********************************************) let last_arg sigma c = match EConstr.kind sigma c with | App (f,cl) -> Array.last cl | _ -> anomaly (Pp.str "last_arg.") let nth_arg sigma i c = if Int.equal i (-1) then last_arg sigma c else match EConstr.kind sigma c with | App (f,cl) -> cl.(i) | _ -> anomaly (Pp.str "nth_arg.") let index_of_ind_arg sigma t = let rec aux i j t = match EConstr.kind sigma t with | Prod (_,t,u) -> (* heuristic *) if isInd sigma (fst (decompose_app sigma t)) then aux (Some j) (j+1) u else aux i (j+1) u | _ -> match i with | Some i -> i | None -> error "Could not find inductive argument of elimination scheme." in aux None 0 t let rec contract_letin_in_lam_header sigma c = match EConstr.kind sigma c with | Lambda (x,t,c) -> mkLambda (x,t,contract_letin_in_lam_header sigma c) | LetIn (x,b,t,c) -> contract_letin_in_lam_header sigma (subst1 b c) | _ -> c let elimination_in_clause_scheme env sigma with_evars ~flags id hypmv elimclause = let hyp = mkVar id in let hyp_typ = Retyping.get_type_of env sigma hyp in let hypclause = mk_clenv_from_env env sigma (Some 0) (hyp, hyp_typ) in let elimclause'' = (* The evarmap of elimclause is assumed to be an extension of hypclause, so we do not need to merge the universes coming from hypclause. *) try clenv_fchain ~with_univs:false ~flags hypmv elimclause hypclause with PretypeError (env,evd,NoOccurrenceFound (op,_)) -> (* Set the hypothesis name in the message *) raise (PretypeError (env,evd,NoOccurrenceFound (op,Some id))) in let new_hyp_typ = clenv_type elimclause'' in if EConstr.eq_constr sigma hyp_typ new_hyp_typ then user_err ~hdr:"general_rewrite_in" (str "Nothing to rewrite in " ++ Id.print id ++ str"."); clenv_refine_in with_evars id true sigma elimclause'' (fun id -> Proofview.tclUNIT ()) (* * Elimination tactic with bindings and using an arbitrary * elimination constant called elimc. This constant should end * with a clause (x:I)(P .. ), where P is a bound variable. * The term c is of type t, which is a product ending with a type * matching I, lbindc are the expected terms for c arguments *) type eliminator = { elimindex : int option; (* None = find it automatically *) elimbody : EConstr.constr with_bindings } let general_elim_clause with_evars flags where indclause elim = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let (elimc,lbindelimc) = elim.elimbody in let elimt = Retyping.get_type_of env sigma elimc in let i = match elim.elimindex with None -> index_of_ind_arg sigma elimt | Some i -> i in let elimc = contract_letin_in_lam_header sigma elimc in let elimclause = make_clenv_binding env sigma (elimc, elimt) lbindelimc in let indmv = (match EConstr.kind sigma (nth_arg sigma i elimclause.templval.rebus) with | Meta mv -> mv | _ -> user_err ~hdr:"elimination_clause" (str "The type of elimination clause is not well-formed.")) in match where with | None -> let elimclause = clenv_fchain ~flags indmv elimclause indclause in Clenv.res_pf elimclause ~with_evars ~with_classes:true ~flags | Some id -> let hypmv = match List.remove Int.equal indmv (clenv_independent elimclause) with | [a] -> a | _ -> user_err ~hdr:"elimination_clause" (str "The type of elimination clause is not well-formed.") in let elimclause = clenv_fchain ~flags indmv elimclause indclause in elimination_in_clause_scheme env sigma with_evars ~flags id hypmv elimclause end let general_elim with_evars clear_flag (c, lbindc) elim = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ct = Retyping.get_type_of env sigma c in let t = try snd (reduce_to_quantified_ind env sigma ct) with UserError _ -> ct in let indclause = make_clenv_binding env sigma (c, t) lbindc in let sigma = meta_merge sigma (clear_metas indclause.evd) in let flags = elim_flags () in Proofview.Unsafe.tclEVARS sigma <*> Tacticals.New.tclTHEN (general_elim_clause with_evars flags None indclause elim) (apply_clear_request clear_flag (use_clear_hyp_by_default ()) c) end (* Case analysis tactics *) let general_case_analysis_in_context with_evars clear_flag (c,lbindc) = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let concl = Proofview.Goal.concl gl in let t = Retyping.get_type_of env sigma c in let (mind,_) = reduce_to_quantified_ind env sigma t in let sort = Tacticals.New.elimination_sort_of_goal gl in let mind = on_snd (fun u -> EInstance.kind sigma u) mind in let (sigma, elim) = if dependent sigma c concl then build_case_analysis_scheme env sigma mind true sort else build_case_analysis_scheme_default env sigma mind sort in let elim = EConstr.of_constr elim in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (general_elim with_evars clear_flag (c,lbindc) {elimindex = None; elimbody = (elim,NoBindings); }) end let general_case_analysis with_evars clear_flag (c,lbindc as cx) = Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma c with | Var id when lbindc == NoBindings -> Tacticals.New.tclTHEN (try_intros_until_id_check id) (general_case_analysis_in_context with_evars clear_flag cx) | _ -> general_case_analysis_in_context with_evars clear_flag cx let simplest_case c = general_case_analysis false None (c,NoBindings) let simplest_ecase c = general_case_analysis true None (c,NoBindings) (* Elimination tactic with bindings but using the default elimination * constant associated with the type. *) exception IsNonrec let is_nonrec mind = (Global.lookup_mind (fst mind)).mind_finite == Declarations.BiFinite let find_ind_eliminator env sigma ind s = let gr = lookup_eliminator env ind s in Evd.fresh_global env sigma gr let find_eliminator c gl = let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let concl = Proofview.Goal.concl gl in let sigma, t = Typing.type_of env sigma c in let ((ind,u),t) = reduce_to_quantified_ind env sigma t in if is_nonrec ind then raise IsNonrec; let sigma, c = find_ind_eliminator env sigma ind (Retyping.get_sort_family_of env sigma concl) in sigma, { elimindex = None; elimbody = (c,NoBindings) } let default_elim with_evars clear_flag (c,_ as cx) = Proofview.tclORELSE (Proofview.Goal.enter begin fun gl -> let sigma, elim = find_eliminator c gl in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (general_elim with_evars clear_flag cx elim) end) begin function (e, info) -> match e with | IsNonrec -> (* For records, induction principles aren't there by default anymore. Instead, we do a case analysis. *) general_case_analysis with_evars clear_flag cx | e -> Proofview.tclZERO ~info e end let elim_in_context with_evars clear_flag c = function | Some elim -> general_elim with_evars clear_flag c { elimindex = Some (-1); elimbody = elim } | None -> default_elim with_evars clear_flag c let elim with_evars clear_flag (c,lbindc as cx) elim = Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma c with | Var id when lbindc == NoBindings -> Tacticals.New.tclTHEN (try_intros_until_id_check id) (elim_in_context with_evars clear_flag cx elim) | _ -> elim_in_context with_evars clear_flag cx elim (* The simplest elimination tactic, with no substitutions at all. *) let simplest_elim c = default_elim false None (c,NoBindings) (* Elimination in hypothesis *) (* Typically, elimclause := (eq_ind ?x ?P ?H ?y ?Heq : ?P ?y) indclause : forall ..., hyps -> a=b (to take place of ?Heq) id : phi(a) (to take place of ?H) and the result is to overwrite id with the proof of phi(b) but this generalizes to any elimination scheme with one constructor (e.g. it could replace id:A->B->C by id:C, knowing A/\B) *) (* Apply a tactic below the products of the conclusion of a lemma *) type conjunction_status = | DefinedRecord of Constant.t option list | NotADefinedRecordUseScheme of constr let make_projection env sigma params cstr sign elim i n c u = let open Context.Rel.Declaration in let elim = match elim with | NotADefinedRecordUseScheme elim -> (* bugs: goes from right to left when i increases! *) let cs_args = List.map (fun d -> map_rel_decl EConstr.of_constr d) cstr.cs_args in let decl = List.nth cs_args i in let t = RelDecl.get_type decl in let b = match decl with LocalAssum _ -> mkRel (i+1) | LocalDef (_,b,_) -> b in let branch = it_mkLambda_or_LetIn b cs_args in if (* excludes dependent projection types *) noccur_between sigma 1 (n-i-1) t (* to avoid surprising unifications, excludes flexible projection types or lambda which will be instantiated by Meta/Evar *) && not (isEvar sigma (fst (whd_betaiota_stack env sigma t))) && (accept_universal_lemma_under_conjunctions () || not (isRel sigma t)) then let t = lift (i+1-n) t in let abselim = beta_applist sigma (elim, params@[t;branch]) in let args = Context.Rel.to_extended_vect mkRel 0 sign in let c = beta_applist sigma (abselim, [mkApp (c, args)]) in Some (it_mkLambda_or_LetIn c sign, it_mkProd_or_LetIn t sign) else None | DefinedRecord l -> (* goes from left to right when i increases! *) match List.nth l i with | Some proj -> let args = Context.Rel.to_extended_vect mkRel 0 sign in let proj = match Structures.PrimitiveProjections.find_opt proj with | Some proj -> mkProj (Projection.make proj false, mkApp (c, args)) | None -> mkApp (mkConstU (proj,u), Array.append (Array.of_list params) [|mkApp (c, args)|]) in let app = it_mkLambda_or_LetIn proj sign in let t = Retyping.get_type_of env sigma app in Some (app, t) | None -> None in elim let descend_in_conjunctions avoid tac (err, info) c = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in try let t = Retyping.get_type_of env sigma c in let ((ind,u),t) = reduce_to_quantified_ind env sigma t in let sign,ccl = EConstr.decompose_prod_assum sigma t in match match_with_tuple env sigma ccl with | Some (_,_,isrec) -> let n = (constructors_nrealargs env ind).(0) in let sort = Tacticals.New.elimination_sort_of_goal gl in let IndType (indf,_) = find_rectype env sigma ccl in let (_,inst), params = dest_ind_family indf in let params = List.map EConstr.of_constr params in let cstr = (get_constructors env indf).(0) in let elim = try DefinedRecord (Structures.Structure.find_projections ind) with Not_found -> let u = EInstance.kind sigma u in let (_, elim) = build_case_analysis_scheme env sigma (ind,u) false sort in let elim = EConstr.of_constr elim in NotADefinedRecordUseScheme elim in let or_tac t1 t2 e = Proofview.tclORELSE (t1 e) t2 in List.fold_right or_tac (List.init n (fun i (err, info) -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in match make_projection env sigma params cstr sign elim i n c u with | None -> Proofview.tclZERO ~info err | Some (p,pt) -> Tacticals.New.tclTHENS (Proofview.tclORELSE (assert_before_gen false (NamingAvoid avoid) pt) (fun _ -> Proofview.tclZERO ~info err)) [Proofview.tclORELSE (refiner ~check:true EConstr.Unsafe.(to_constr p)) (fun _ -> Proofview.tclZERO ~info err); (* Might be ill-typed due to forbidden elimination. *) Tacticals.New.onLastHypId (tac (err, info) (not isrec))] end)) (fun (err, info) -> Proofview.tclZERO ~info err) (err, info) | None -> Proofview.tclZERO ~info err with RefinerError _|UserError _ -> Proofview.tclZERO ~info err end (****************************************************) (* Resolution tactics *) (****************************************************) let tclORELSEOPT t k = Proofview.tclORELSE t (fun e -> match k e with | None -> let (e, info) = e in Proofview.tclZERO ~info e | Some tac -> tac) let general_apply ?(respect_opaque=false) with_delta with_destruct with_evars clear_flag {CAst.loc;v=(c,lbind : EConstr.constr with_bindings)} = Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in (* The actual type of the theorem. It will be matched against the goal. If this fails, then the head constant will be unfolded step by step. *) let concl_nprod = nb_prod_modulo_zeta sigma concl in let rec try_main_apply with_destruct c = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ts = if respect_opaque then Conv_oracle.get_transp_state (oracle env) else TransparentState.full in let flags = if with_delta then default_unify_flags () else default_no_delta_unify_flags ts in let thm_ty0 = nf_betaiota env sigma (Retyping.get_type_of env sigma c) in let try_apply thm_ty nprod = try let n = nb_prod_modulo_zeta sigma thm_ty - nprod in if n<0 then error "Applied theorem does not have enough premises."; let clause = make_clenv_binding_apply env sigma (Some n) (c,thm_ty) lbind in Clenv.res_pf clause ~with_evars ~flags with exn when noncritical exn -> let exn, info = Exninfo.capture exn in Proofview.tclZERO ~info exn in let rec try_red_apply thm_ty (exn0, info) = try (* Try to head-reduce the conclusion of the theorem *) let red_thm = try_red_product env sigma thm_ty in tclORELSEOPT (try_apply red_thm concl_nprod) (function (e, info) -> match e with | PretypeError _|RefinerError _|UserError _|Failure _ -> Some (try_red_apply red_thm (exn0, info)) | _ -> None) with Redelimination as exn -> (* Last chance: if the head is a variable, apply may try second order unification *) let exn, info = Exninfo.capture exn in let info = Option.cata (fun loc -> Loc.add_loc info loc) info loc in let tac = if with_destruct then descend_in_conjunctions Id.Set.empty (fun _ b id -> Tacticals.New.tclTHEN (try_main_apply b (mkVar id)) (clear [id])) (exn0, info) c else Proofview.tclZERO ~info exn0 in if not (Int.equal concl_nprod 0) then tclORELSEOPT (try_apply thm_ty 0) (function (e, info) -> match e with | PretypeError _|RefinerError _|UserError _|Failure _-> Some tac | _ -> None) else tac in tclORELSEOPT (try_apply thm_ty0 concl_nprod) (function (e, info) -> match e with | PretypeError _|RefinerError _|UserError _|Failure _ -> Some (try_red_apply thm_ty0 (e, info)) | _ -> None) end in Tacticals.New.tclTHEN (try_main_apply with_destruct c) (apply_clear_request clear_flag (use_clear_hyp_by_default ()) c) end let rec apply_with_bindings_gen b e = function | [] -> Proofview.tclUNIT () | [k,cb] -> general_apply b b e k cb | (k,cb)::cbl -> Tacticals.New.tclTHENLAST (general_apply b b e k cb) (apply_with_bindings_gen b e cbl) let apply_with_delayed_bindings_gen b e l = let one k {CAst.loc;v=f} = Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in let env = Proofview.Goal.env gl in let (sigma, cb) = f env sigma in Tacticals.New.tclWITHHOLES e (general_apply ~respect_opaque:(not b) b b e k CAst.(make ?loc cb)) sigma end in let rec aux = function | [] -> Proofview.tclUNIT () | [k,f] -> one k f | (k,f)::cbl -> Tacticals.New.tclTHENLAST (one k f) (aux cbl) in aux l let apply_with_bindings cb = apply_with_bindings_gen false false [None,(CAst.make cb)] let eapply_with_bindings cb = apply_with_bindings_gen false true [None,(CAst.make cb)] let apply c = apply_with_bindings_gen false false [None,(CAst.make (c,NoBindings))] let eapply c = apply_with_bindings_gen false true [None,(CAst.make (c,NoBindings))] let apply_list = function | c::l -> apply_with_bindings (c,ImplicitBindings l) | _ -> assert false (* [apply_in hyp c] replaces hyp : forall y1, ti -> t hyp : rho(u) ======================== with ============ and the ======= goal goal rho(ti) assuming that [c] has type [forall x1..xn -> t' -> u] for some [t] unifiable with [t'] with unifier [rho] *) let find_matching_clause unifier clause = let rec find clause = try unifier clause with e when noncritical e -> try find (clenv_push_prod clause) with NotExtensibleClause -> failwith "Cannot apply" in find clause exception UnableToApply let progress_with_clause flags innerclause clause = let ordered_metas = List.rev (clenv_independent clause) in if List.is_empty ordered_metas then raise UnableToApply; let f mv = try Some (find_matching_clause (clenv_fchain ~with_univs:false mv ~flags clause) innerclause) with Failure _ -> None in try List.find_map f ordered_metas with Not_found -> raise UnableToApply let explain_unable_to_apply_lemma ?loc env sigma thm innerclause = user_err ?loc (hov 0 (Pp.str "Unable to apply lemma of type" ++ brk(1,1) ++ Pp.quote (Printer.pr_leconstr_env env sigma thm) ++ spc() ++ str "on hypothesis of type" ++ brk(1,1) ++ Pp.quote (Printer.pr_leconstr_env innerclause.env innerclause.evd (clenv_type innerclause)) ++ str ".")) let apply_in_once_main flags innerclause env sigma (loc,d,lbind) = let thm = nf_betaiota env sigma (Retyping.get_type_of env sigma d) in let rec aux clause = try progress_with_clause flags innerclause clause with e when CErrors.noncritical e -> let e' = Exninfo.capture e in try aux (clenv_push_prod clause) with NotExtensibleClause -> match e with | UnableToApply -> explain_unable_to_apply_lemma ?loc env sigma thm innerclause | _ -> Exninfo.iraise e' in aux (make_clenv_binding env sigma (d,thm) lbind) let apply_in_once ?(respect_opaque = false) with_delta with_destruct with_evars naming id (clear_flag,{ CAst.loc; v= d,lbind}) tac = let open Context.Rel.Declaration in Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let t' = Tacmach.New.pf_get_hyp_typ id gl in let innerclause = mk_clenv_from_env env sigma (Some 0) (mkVar id,t') in let targetid = find_name true (LocalAssum (make_annot Anonymous Sorts.Relevant,t')) naming gl in let replace = Id.equal id targetid in let rec aux ?err idstoclear with_destruct c = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ts = if respect_opaque then Conv_oracle.get_transp_state (oracle env) else TransparentState.full in let flags = if with_delta then default_unify_flags () else default_no_delta_unify_flags ts in try let clause = apply_in_once_main flags innerclause env sigma (loc,c,lbind) in clenv_refine_in ?err with_evars targetid replace sigma clause (fun id -> replace_error_option err ( apply_clear_request clear_flag false c <*> clear idstoclear) <*> tac id) with e when with_destruct && CErrors.noncritical e -> let err = Option.default (Exninfo.capture e) err in (descend_in_conjunctions (Id.Set.singleton targetid) (fun err b id -> aux ~err (id::idstoclear) b (mkVar id)) err c) end in aux [] with_destruct d end let apply_in_delayed_once ?(respect_opaque = false) with_delta with_destruct with_evars naming id (clear_flag,{CAst.loc;v=f}) tac = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let (sigma, c) = f env sigma in Tacticals.New.tclWITHHOLES with_evars (apply_in_once ~respect_opaque with_delta with_destruct with_evars naming id (clear_flag,CAst.(make ?loc c)) tac) sigma end (* A useful resolution tactic which, if c:A->B, transforms |- C into |- B -> C and |- A ------------------- Gamma |- c : A -> B Gamma |- ?2 : A ---------------------------------------- Gamma |- B Gamma |- ?1 : B -> C ----------------------------------------------------- Gamma |- ? : C Ltac lapply c := let ty := check c in match eval hnf in ty with ?A -> ?B => cut B; [ idtac | apply c ] end. *) let cut_and_apply c = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let concl = Proofview.Goal.concl gl in let sigma, t = Typing.type_of env sigma c in match EConstr.kind sigma (hnf_constr env sigma t) with | Prod (_,c1,c2) when Vars.noccurn sigma 1 c2 -> Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (Refine.refine ~typecheck:false begin fun sigma -> let typ = mkProd (make_annot Anonymous Sorts.Relevant, c2, concl) in let (sigma, f) = Evarutil.new_evar env sigma typ in let (sigma, x) = Evarutil.new_evar env sigma c1 in (sigma, mkApp (f, [|mkApp (c, [|x|])|])) end) | _ -> error "lapply needs a non-dependent product." end (********************************************************************) (* Exact tactics *) (********************************************************************) let exact_no_check c = Refine.refine ~typecheck:false (fun h -> (h,c)) let exact_check c = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in (* We do not need to normalize the goal because we just check convertibility *) let concl = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in let sigma, ct = Typing.type_of env sigma c in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (Tacticals.New.tclTHEN (convert_leq ct concl) (exact_no_check c)) end let cast_no_check cast c = Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in exact_no_check (mkCast (c, cast, concl)) end let vm_cast_no_check c = cast_no_check VMcast c let native_cast_no_check c = cast_no_check NATIVEcast c let exact_proof c = let open Tacmach.New in Proofview.Goal.enter begin fun gl -> Refine.refine ~typecheck:false begin fun sigma -> let (c, ctx) = Constrintern.interp_casted_constr (pf_env gl) sigma c (pf_concl gl) in let sigma = Evd.merge_universe_context sigma ctx in (sigma, c) end end let assumption = let rec arec gl only_eq = function | [] -> if only_eq then let hyps = Proofview.Goal.hyps gl in arec gl false hyps else let info = Exninfo.reify () in Tacticals.New.tclZEROMSG ~info (str "No such assumption.") | decl::rest -> let t = NamedDecl.get_type decl in let concl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in let ans = if only_eq then if EConstr.eq_constr sigma t concl then Some sigma else None else let env = Proofview.Goal.env gl in infer_conv env sigma t concl in match ans with | Some sigma -> (Proofview.Unsafe.tclEVARS sigma) <*> exact_no_check (mkVar (NamedDecl.get_id decl)) | None -> arec gl only_eq rest in let assumption_tac gl = let hyps = Proofview.Goal.hyps gl in arec gl true hyps in Proofview.Goal.enter assumption_tac (*****************************************************************) (* Modification of a local context *) (*****************************************************************) let on_the_bodies = function | [] -> assert false | [id] -> str " depends on the body of " ++ Id.print id | l -> str " depends on the bodies of " ++ pr_sequence Id.print l exception DependsOnBody of Id.t option let check_is_type env sigma ty = try let sigma, _ = Typing.sort_of env sigma ty in sigma with e when CErrors.noncritical e -> raise (DependsOnBody None) let check_decl env sigma decl = let open Context.Named.Declaration in let ty = NamedDecl.get_type decl in try let sigma, _ = Typing.sort_of env sigma ty in let sigma = match decl with | LocalAssum _ -> sigma | LocalDef (_,c,_) -> Typing.check env sigma c ty in sigma with e when CErrors.noncritical e -> let id = NamedDecl.get_id decl in raise (DependsOnBody (Some id)) let clear_body ids = let open Context.Named.Declaration in Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let concl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in let ctx = named_context env in let map = function | LocalAssum (id,t) as decl -> let () = if List.mem_f Id.equal id.binder_name ids then user_err (str "Hypothesis " ++ Id.print id.binder_name ++ str " is not a local definition") in decl | LocalDef (id,_,t) as decl -> if List.mem_f Id.equal id.binder_name ids then LocalAssum (id, t) else decl in let ctx = List.map map ctx in let base_env = reset_context env in let env = push_named_context ctx base_env in let check = try let check (env, sigma, seen) decl = (* Do no recheck hypotheses that do not depend *) let sigma = if not seen then sigma else if List.exists (fun id -> occur_var_in_decl env sigma id decl) ids then check_decl env sigma decl else sigma in let seen = seen || List.mem_f Id.equal (NamedDecl.get_id decl) ids in (push_named decl env, sigma, seen) in let (env, sigma, _) = List.fold_left check (base_env, sigma, false) (List.rev ctx) in let sigma = if List.exists (fun id -> occur_var env sigma id concl) ids then check_is_type env sigma concl else sigma in Proofview.Unsafe.tclEVARS sigma with DependsOnBody where as exn -> let _, info = Exninfo.capture exn in let msg = match where with | None -> str "Conclusion" ++ on_the_bodies ids | Some id -> str "Hypothesis " ++ Id.print id ++ on_the_bodies ids in Tacticals.New.tclZEROMSG ~info msg in check <*> Refine.refine ~typecheck:false begin fun sigma -> Evarutil.new_evar env sigma ~principal:true concl end end let clear_wildcards ids = let clear_wildcards_msg ?loc env sigma _id err inglobal = user_err ?loc (clear_dependency_msg env sigma None err inglobal) in Tacticals.New.tclMAP (fun {CAst.loc;v=id} -> clear_gen (clear_wildcards_msg ?loc) [id]) ids (* Takes a list of booleans, and introduces all the variables * quantified in the goal which are associated with a value * true in the boolean list. *) let rec intros_clearing = function | [] -> Proofview.tclUNIT () | (false::tl) -> Tacticals.New.tclTHEN intro (intros_clearing tl) | (true::tl) -> Tacticals.New.tclTHENLIST [ intro; Tacticals.New.onLastHypId (fun id -> clear [id]); intros_clearing tl] (* Keeping only a few hypotheses *) let keep hyps = Proofview.Goal.enter begin fun gl -> Proofview.tclENV >>= fun env -> let ccl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in let cl,_ = fold_named_context_reverse (fun (clear,keep) decl -> let decl = map_named_decl EConstr.of_constr decl in let hyp = NamedDecl.get_id decl in if Id.List.mem hyp hyps || List.exists (occur_var_in_decl env sigma hyp) keep || occur_var env sigma hyp ccl then (clear,decl::keep) else (hyp::clear,keep)) ~init:([],[]) (Proofview.Goal.env gl) in clear cl end (*********************************) (* Basic generalization tactics *) (*********************************) (* Given a type [T] convertible to [forall x1..xn:A1..An(x1..xn-1), G(x1..xn)] and [a1..an:A1..An(a1..an-1)] such that the goal is [G(a1..an)], this generalizes [hyps |- goal] into [hyps |- T] *) let apply_type ~typecheck newcl args = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in Refine.refine ~typecheck begin fun sigma -> let newcl = nf_betaiota env sigma newcl (* As in former Logic.refine *) in let (sigma, ev) = Evarutil.new_evar env sigma ~principal:true newcl in (sigma, applist (ev, args)) end end (* Given a context [hyps] with domain [x1..xn], possibly with let-ins, and well-typed in the current goal, [bring_hyps hyps] generalizes [ctxt |- G(x1..xn] into [ctxt |- forall hyps, G(x1..xn)] *) let bring_hyps hyps = if List.is_empty hyps then Tacticals.New.tclIDTAC else Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let concl = Tacmach.New.pf_concl gl in let newcl = List.fold_right mkNamedProd_or_LetIn hyps concl in let args = Array.of_list (Context.Named.to_instance mkVar hyps) in Refine.refine ~typecheck:false begin fun sigma -> let (sigma, ev) = Evarutil.new_evar env sigma ~principal:true newcl in (sigma, mkApp (ev, args)) end end let revert hyps = Proofview.Goal.enter begin fun gl -> let ctx = List.map (fun id -> Tacmach.New.pf_get_hyp id gl) hyps in (bring_hyps ctx) <*> (clear hyps) end (************************) (* Introduction tactics *) (************************) let check_number_of_constructors expctdnumopt i nconstr = if Int.equal i 0 then error "The constructors are numbered starting from 1."; begin match expctdnumopt with | Some n when not (Int.equal n nconstr) -> user_err ~hdr:"Tactics.check_number_of_constructors" (str "Not an inductive goal with " ++ int n ++ str (String.plural n " constructor") ++ str ".") | _ -> () end; if i > nconstr then error "Not enough constructors." let constructor_core with_evars cstr lbind = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let (sigma, (cons, u)) = Evd.fresh_constructor_instance env sigma cstr in let cons = mkConstructU (cons, EInstance.make u) in let apply_tac = general_apply true false with_evars None (CAst.make (cons,lbind)) in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS sigma) apply_tac end let constructor_tac with_evars expctdnumopt i lbind = Proofview.Goal.enter begin fun gl -> let cl = Tacmach.New.pf_concl gl in let ((ind,_),redcl) = Tacmach.New.pf_apply Tacred.reduce_to_quantified_ind gl cl in let nconstr = Array.length (snd (Global.lookup_inductive ind)).mind_consnames in check_number_of_constructors expctdnumopt i nconstr; Tacticals.New.tclTHENLIST [ convert_concl ~check:false redcl DEFAULTcast; intros; constructor_core with_evars (ind, i) lbind ] end let one_constructor i lbind = constructor_tac false None i lbind (* Try to apply the constructor of the inductive definition followed by a tactic t given as an argument. Should be generalize in Constructor (Fun c : I -> tactic) *) let any_constructor with_evars tacopt = let one_constr = let tac cstr = constructor_core with_evars cstr NoBindings in match tacopt with | None -> tac | Some t -> fun cstr -> Tacticals.New.tclTHEN (tac cstr) t in let rec any_constr ind n i () = if Int.equal i n then one_constr (ind,i) else Tacticals.New.tclORD (one_constr (ind,i)) (any_constr ind n (i + 1)) in Proofview.Goal.enter begin fun gl -> let cl = Tacmach.New.pf_concl gl in let (ind,_),redcl = Tacmach.New.pf_apply Tacred.reduce_to_quantified_ind gl cl in let nconstr = Array.length (snd (Global.lookup_inductive ind)).mind_consnames in if Int.equal nconstr 0 then error "The type has no constructors."; Tacticals.New.tclTHENLIST [ convert_concl ~check:false redcl DEFAULTcast; intros; any_constr ind nconstr 1 () ] end let left_with_bindings with_evars = constructor_tac with_evars (Some 2) 1 let right_with_bindings with_evars = constructor_tac with_evars (Some 2) 2 let split_with_bindings with_evars l = Tacticals.New.tclMAP (constructor_tac with_evars (Some 1) 1) l let split_with_delayed_bindings with_evars bl = Tacticals.New.tclMAPDELAYEDWITHHOLES with_evars bl (constructor_tac with_evars (Some 1) 1) let left = left_with_bindings false let simplest_left = left NoBindings let right = right_with_bindings false let simplest_right = right NoBindings let split = constructor_tac false (Some 1) 1 let simplest_split = split NoBindings (*****************************) (* Decomposing introductions *) (*****************************) (* Rewriting function for rewriting one hypothesis at the time *) let (forward_general_rewrite_clause, general_rewrite_clause) = Hook.make () (* Rewriting function for substitution (x=t) everywhere at the same time *) let (forward_subst_one, subst_one) = Hook.make () let error_unexpected_extra_pattern loc bound pat = let nb = Option.get bound in let s1,s2,s3 = match pat with | IntroNaming (IntroIdentifier _) -> "name", (String.plural nb " introduction pattern"), "no" | _ -> "introduction pattern", "", "none" in user_err ?loc (str "Unexpected " ++ str s1 ++ str " (" ++ (if Int.equal nb 0 then (str s3 ++ str s2) else (str "at most " ++ int nb ++ str s2)) ++ spc () ++ str (if Int.equal nb 1 then "was" else "were") ++ strbrk " expected in the branch).") let intro_decomp_eq_function = ref (fun _ -> failwith "Not implemented") let declare_intro_decomp_eq f = intro_decomp_eq_function := f let my_find_eq_data_decompose env sigma t = try Some (find_eq_data_decompose env sigma t) with e when is_anomaly e (* Hack in case equality is not yet defined... one day, maybe, known equalities will be dynamically registered *) -> None | Constr_matching.PatternMatchingFailure -> None let intro_decomp_eq ?loc l thin tac id = Proofview.Goal.enter begin fun gl -> let c = mkVar id in let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let sigma, t = Typing.type_of env sigma c in let _,t = reduce_to_atomic_ind env sigma t in match my_find_eq_data_decompose env sigma t with | Some (eq,u,eq_args) -> !intro_decomp_eq_function (fun n -> tac ((CAst.make id)::thin) (Some n) l) (eq,t,eq_args) (c, t) | None -> let info = Exninfo.reify () in Tacticals.New.tclZEROMSG ~info (str "Not a primitive equality here.") end let intro_or_and_pattern ?loc with_evars ll thin tac id = Proofview.Goal.enter begin fun gl -> let c = mkVar id in let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let sigma, t = Typing.type_of env sigma c in let (ind,t) = reduce_to_quantified_ind env sigma t in let branchsigns = compute_constructor_signatures ~rec_flag:false ind in let nv_with_let = Array.map List.length branchsigns in let ll = fix_empty_or_and_pattern (Array.length branchsigns) ll in let ll = get_and_check_or_and_pattern ?loc ll branchsigns in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (Tacticals.New.tclTHENLASTn (Tacticals.New.tclTHEN (simplest_ecase c) (clear [id])) (Array.map2 (fun n l -> tac thin (Some n) l) nv_with_let ll)) end let rewrite_hyp_then with_evars thin l2r id tac = let rew_on l2r = Hook.get forward_general_rewrite_clause l2r with_evars (mkVar id,NoBindings) in let subst_on l2r x rhs = Hook.get forward_subst_one true x (id,rhs,l2r) in let clear_var_and_eq id' = clear [id';id] in let early_clear id' thin = List.filter (fun {CAst.v=id} -> not (Id.equal id id')) thin in Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let sigma, t = Typing.type_of env sigma (mkVar id) in let t = whd_all env sigma t in let eqtac, thin = match match_with_equality_type env sigma t with | Some (hdcncl,[_;lhs;rhs]) -> if l2r && isVar sigma lhs && not (occur_var env sigma (destVar sigma lhs) rhs) then let id' = destVar sigma lhs in subst_on l2r id' rhs, early_clear id' thin else if not l2r && isVar sigma rhs && not (occur_var env sigma (destVar sigma rhs) lhs) then let id' = destVar sigma rhs in subst_on l2r id' lhs, early_clear id' thin else Tacticals.New.tclTHEN (rew_on l2r onConcl) (clear [id]), thin | Some (hdcncl,[c]) -> let l2r = not l2r in (* equality of the form eq_true *) if isVar sigma c then let id' = destVar sigma c in Tacticals.New.tclTHEN (rew_on l2r allHypsAndConcl) (clear_var_and_eq id'), early_clear id' thin else Tacticals.New.tclTHEN (rew_on l2r onConcl) (clear [id]), thin | _ -> Tacticals.New.tclTHEN (rew_on l2r onConcl) (clear [id]), thin in (* Skip the side conditions of the rewriting step *) tclEVARSTHEN sigma (Tacticals.New.tclTHENFIRST eqtac (tac thin)) end let rec collect_intro_names = let open CAst in function | {v=IntroForthcoming _} :: l -> collect_intro_names l | {v=IntroNaming (IntroIdentifier id)} :: l -> let ids1, ids2 = collect_intro_names l in Id.Set.add id ids1, ids2 | {v=IntroAction (IntroOrAndPattern l)} :: l' -> let ll = match l with IntroAndPattern l -> [l] | IntroOrPattern ll -> ll in let fold (ids1',ids2') l = let ids1, ids2 = collect_intro_names (l@l') in Id.Set.union ids1 ids1', Id.Set.union ids2 ids2' in List.fold_left fold (Id.Set.empty,Id.Set.empty) ll | {v=IntroAction (IntroInjection l)} :: l' -> collect_intro_names (l@l') | {v=IntroAction (IntroApplyOn (c,pat))} :: l' -> collect_intro_names (pat::l') | {v=IntroNaming (IntroFresh id)} :: l -> let ids1, ids2 = collect_intro_names l in ids1, Id.Set.add id ids2 | {v=(IntroNaming IntroAnonymous | IntroAction (IntroWildcard | IntroRewrite _))} :: l -> collect_intro_names l | [] -> Id.Set.empty, Id.Set.empty let explicit_intro_names l = fst (collect_intro_names l) let explicit_all_intro_names l = let ids1,ids2 = collect_intro_names l in Id.Set.union ids1 ids2 let rec check_name_unicity env ok seen = let open CAst in function | {v=IntroForthcoming _} :: l -> check_name_unicity env ok seen l | {loc;v=IntroNaming (IntroIdentifier id)} :: l -> (try ignore (if List.mem_f Id.equal id ok then raise Not_found else lookup_named id env); user_err ?loc (Id.print id ++ str" is already used.") with Not_found -> if List.mem_f Id.equal id seen then user_err ?loc (Id.print id ++ str" is used twice.") else check_name_unicity env ok (id::seen) l) | {v=IntroAction (IntroOrAndPattern l)} :: l' -> let ll = match l with IntroAndPattern l -> [l] | IntroOrPattern ll -> ll in List.iter (fun l -> check_name_unicity env ok seen (l@l')) ll | {v=IntroAction (IntroInjection l)} :: l' -> check_name_unicity env ok seen (l@l') | {v=IntroAction (IntroApplyOn (c,pat))} :: l' -> check_name_unicity env ok seen (pat::l') | {v=(IntroNaming (IntroAnonymous | IntroFresh _) | IntroAction (IntroWildcard | IntroRewrite _))} :: l -> check_name_unicity env ok seen l | [] -> () let fresh_wild ids = let rec aux s = if Id.Set.exists (fun id -> String.is_prefix s (Id.to_string id)) ids then aux (s ^ "'") else Id.of_string s in aux "_H" let make_naming ?loc avoid l = function | IntroIdentifier id -> NamingMustBe (CAst.make ?loc id) | IntroAnonymous -> NamingAvoid (Id.Set.union avoid (explicit_intro_names l)) | IntroFresh id -> NamingBasedOn (id, Id.Set.union avoid (explicit_intro_names l)) let rec make_naming_action avoid l = function (* In theory, we could use a tmp id like "wild_id" for all actions but we prefer to avoid it to avoid this kind of "ugly" names *) | IntroWildcard -> NamingBasedOn (fresh_wild (Id.Set.union avoid (explicit_all_intro_names l)), Id.Set.empty) | IntroApplyOn (_,{CAst.v=pat;loc}) -> make_naming_pattern avoid ?loc l pat | (IntroOrAndPattern _ | IntroInjection _ | IntroRewrite _) as pat -> NamingAvoid(Id.Set.union avoid (explicit_intro_names ((CAst.make @@ IntroAction pat)::l))) and make_naming_pattern ?loc avoid l = function | IntroNaming pat -> make_naming ?loc avoid l pat | IntroAction pat -> make_naming_action avoid l pat | IntroForthcoming _ -> NamingAvoid (Id.Set.union avoid (explicit_intro_names l)) let prepare_naming ?loc pat = make_naming ?loc Id.Set.empty [] pat let fit_bound n = function | None -> true | Some n' -> n = n' let exceed_bound n = function | None -> false | Some n' -> n >= n' (* We delay thinning until the completion of the whole intros tactic to ensure that dependent hypotheses are cleared in the right dependency order (see BZ#1000); we use fresh names, not used in the tactic, for the hyps to clear *) (* In [intro_patterns_core b avoid ids thin destopt bound n tac patl]: [b]: compatibility flag, if false at toplevel, do not complete incomplete trailing toplevel or_and patterns (as in "intros []", see [bracketing_last_or_and_intro_pattern]) [avoid]: names to avoid when creating an internal name [ids]: collect introduced names for possible use by the [tac] continuation [thin]: collect names to erase at the end [destopt]: position in the context where to introduce the hypotheses [bound]: number of pending intros to do in the current or-and pattern, with remembering of [b] flag if at toplevel [n]: number of introduction done in the current or-and pattern [tac]: continuation tactic [patl]: introduction patterns to interpret *) let rec intro_patterns_core with_evars avoid ids thin destopt bound n tac = function | [] when fit_bound n bound -> tac ids thin | [] -> (* Behave as IntroAnonymous *) intro_patterns_core with_evars avoid ids thin destopt bound n tac [CAst.make @@ IntroNaming IntroAnonymous] | {CAst.loc;v=pat} :: l -> if exceed_bound n bound then error_unexpected_extra_pattern loc bound pat else let naming = make_naming_pattern avoid l pat in match pat with | IntroForthcoming onlydeps -> intro_forthcoming_then_gen naming destopt onlydeps bound n (fun ids -> intro_patterns_core with_evars avoid ids thin destopt bound (n+List.length ids) tac l) | IntroAction pat -> intro_then_gen naming destopt true false (intro_pattern_action ?loc with_evars pat thin destopt (fun thin bound' -> intro_patterns_core with_evars avoid ids thin destopt bound' 0 (fun ids thin -> intro_patterns_core with_evars avoid ids thin destopt bound (n+1) tac l))) | IntroNaming pat -> intro_then_gen naming destopt true false (fun id -> intro_patterns_core with_evars avoid (id::ids) thin destopt bound (n+1) tac l) and intro_pattern_action ?loc with_evars pat thin destopt tac id = match pat with | IntroWildcard -> tac (CAst.(make ?loc id)::thin) None [] | IntroOrAndPattern ll -> intro_or_and_pattern ?loc with_evars ll thin tac id | IntroInjection l' -> intro_decomp_eq ?loc l' thin tac id | IntroRewrite l2r -> rewrite_hyp_then with_evars thin l2r id (fun thin -> tac thin None []) | IntroApplyOn ({CAst.loc=loc';v=f},{CAst.loc;v=pat}) -> let naming = NamingMustBe (CAst.make ?loc id) in let tac_ipat = prepare_action ?loc with_evars destopt pat in let f env sigma = let (sigma, c) = f env sigma in (sigma,(c, NoBindings)) in apply_in_delayed_once true true with_evars naming id (None,CAst.make ?loc:loc' f) (fun id -> Tacticals.New.tclTHENLIST [tac_ipat id; tac thin None []]) and prepare_action ?loc with_evars destopt = function | IntroNaming ipat -> (fun _ -> Proofview.tclUNIT ()) | IntroAction ipat -> (let tac thin bound = intro_patterns_core with_evars Id.Set.empty [] thin destopt bound 0 (fun _ l -> clear_wildcards l) in fun id -> intro_pattern_action ?loc with_evars ipat [] destopt tac id) | IntroForthcoming _ -> user_err ?loc (str "Introduction pattern for one hypothesis expected.") let intro_patterns_head_core with_evars destopt bound pat = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in check_name_unicity env [] [] pat; intro_patterns_core with_evars Id.Set.empty [] [] destopt bound 0 (fun _ l -> clear_wildcards l) pat end let intro_patterns_bound_to with_evars n destopt = intro_patterns_head_core with_evars destopt (Some n) let intro_patterns_to with_evars destopt = intro_patterns_head_core with_evars destopt None let intro_pattern_to with_evars destopt pat = intro_patterns_to with_evars destopt [CAst.make pat] let intro_patterns with_evars = intro_patterns_to with_evars MoveLast (* Implements "intros" *) let intros_patterns with_evars = function | [] -> intros | l -> intro_patterns_to with_evars MoveLast l (**************************) (* Forward reasoning *) (**************************) let prepare_intros_opt with_evars dft destopt ipat = let naming, loc, ipat = match ipat with | None -> let pat = IntroNaming dft in make_naming_pattern Id.Set.empty [] pat, None, pat | Some {CAst.loc;v=(IntroNaming pat as ipat)} -> (* "apply ... in H as id" needs to use id and H is kept iff id<>H *) prepare_naming ?loc pat, loc, ipat | Some {CAst.loc;v=(IntroAction pat as ipat)} -> (* "apply ... in H as pat" reuses H so that old H is always cleared *) (match dft with IntroIdentifier _ -> prepare_naming ?loc dft | _ -> make_naming_action Id.Set.empty [] pat), loc, ipat | Some {CAst.loc;v=(IntroForthcoming _)} -> assert false in naming, prepare_action ?loc with_evars destopt ipat let ipat_of_name = function | Anonymous -> None | Name id -> Some (CAst.make @@ IntroNaming (IntroIdentifier id)) let head_ident sigma c = let c = fst (decompose_app sigma (snd (decompose_lam_assum sigma c))) in if isVar sigma c then Some (destVar sigma c) else None let assert_as first hd ipat t = let naming,tac = prepare_intros_opt false IntroAnonymous MoveLast ipat in let repl = do_replace hd naming in let tac = if repl then (fun id -> Proofview.tclUNIT ()) else tac in if first then assert_before_then_gen repl naming t tac else assert_after_then_gen repl naming t tac (* apply in as *) let general_apply_in ?(respect_opaque=false) with_delta with_destruct with_evars id lemmas ipat then_tac = let tac (naming,lemma) tac id = apply_in_delayed_once ~respect_opaque with_delta with_destruct with_evars naming id lemma tac in Proofview.Goal.enter begin fun gl -> let destopt = if with_evars then MoveLast (* evars would depend on the whole context *) else ( let env, sigma = Proofview.Goal.(env gl, sigma gl) in get_previous_hyp_position env sigma id (Proofview.Goal.hyps gl) ) in let naming,ipat_tac = prepare_intros_opt with_evars (IntroIdentifier id) destopt ipat in let lemmas_target, last_lemma_target = let last,first = List.sep_last lemmas in List.map (fun lem -> (NamingMustBe (CAst.make id),lem)) first, (naming,last) in (* We chain apply_in_once, ending with an intro pattern *) List.fold_right tac lemmas_target (tac last_lemma_target (fun id -> Tacticals.New.tclTHEN (ipat_tac id) then_tac)) id end (* if sidecond_first then (* Skip the side conditions of the applied lemma *) Tacticals.New.tclTHENLAST (tclMAPLAST tac lemmas_target) (ipat_tac id) else Tacticals.New.tclTHENFIRST (tclMAPFIRST tac lemmas_target) (ipat_tac id) *) let apply_in simple with_evars id lemmas ipat = let lemmas = List.map (fun (k,{CAst.loc;v=l}) -> k, CAst.make ?loc (fun _ sigma -> (sigma,l))) lemmas in general_apply_in simple simple with_evars id lemmas ipat Tacticals.New.tclIDTAC let apply_delayed_in simple with_evars id lemmas ipat then_tac = general_apply_in ~respect_opaque:true simple simple with_evars id lemmas ipat then_tac (*****************************) (* Tactics abstracting terms *) (*****************************) (* Implementation without generalisation: abbrev will be lost in hyps in *) (* in the extracted proof *) let decode_hyp = function | None -> MoveLast | Some id -> MoveAfter id (* [letin_tac b (... abstract over c ...) gl] transforms [...x1:T1(c),...,x2:T2(c),... |- G(c)] into [...x:T;Heqx:(x=c);x1:T1(x),...,x2:T2(x),... |- G(x)] if [b] is false or [...x:=c:T;x1:T1(x),...,x2:T2(x),... |- G(x)] if [b] is true *) let letin_tac_gen with_eq (id,depdecls,lastlhyp,ccl,c) ty = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let (sigma, t) = match ty with | Some t -> (sigma, t) | None -> let t = typ_of env sigma c in Evarsolve.refresh_universes ~onlyalg:true (Some false) env sigma t in let (sigma, (newcl, eq_tac)) = match with_eq with | Some (lr,{CAst.loc;v=ido}) -> let heq = match ido with | IntroAnonymous -> new_fresh_id (Id.Set.singleton id) (add_prefix "Heq" id) gl | IntroFresh heq_base -> new_fresh_id (Id.Set.singleton id) heq_base gl | IntroIdentifier id -> id in let eqdata = build_coq_eq_data () in let args = if lr then [t;mkVar id;c] else [t;c;mkVar id]in let (sigma, eq) = Evd.fresh_global env sigma eqdata.eq in let (sigma, refl) = Evd.fresh_global env sigma eqdata.refl in let eq = applist (eq,args) in let refl = applist (refl, [t;mkVar id]) in let term = mkNamedLetIn (make_annot id Sorts.Relevant) c t (mkLetIn (make_annot (Name heq) Sorts.Relevant, refl, eq, ccl)) in let sigma, _ = Typing.type_of env sigma term in let ans = term, Tacticals.New.tclTHENLIST [ intro_gen (NamingMustBe CAst.(make ?loc heq)) (decode_hyp lastlhyp) true false; clear_body [heq;id]] in (sigma, ans) | None -> (sigma, (mkNamedLetIn (make_annot id Sorts.Relevant) c t ccl, Proofview.tclUNIT ())) in Tacticals.New.tclTHENLIST [ Proofview.Unsafe.tclEVARS sigma; convert_concl ~check:false newcl DEFAULTcast; intro_gen (NamingMustBe (CAst.make id)) (decode_hyp lastlhyp) true false; Tacticals.New.tclMAP (convert_hyp ~check:false ~reorder:false) depdecls; eq_tac ] end let insert_before decls lasthyp env = match lasthyp with | None -> push_named_context decls env | Some id -> Environ.fold_named_context (fun _ d env -> let d = map_named_decl EConstr.of_constr d in let env = if Id.equal id (NamedDecl.get_id d) then push_named_context decls env else env in push_named d env) ~init:(reset_context env) env let mk_eq_name env id {CAst.loc;v=ido} = match ido with | IntroAnonymous -> fresh_id_in_env (Id.Set.singleton id) (add_prefix "Heq" id) env | IntroFresh heq_base -> fresh_id_in_env (Id.Set.singleton id) heq_base env | IntroIdentifier id -> if List.mem id (ids_of_named_context (named_context env)) then user_err ?loc (Id.print id ++ str" is already used."); id (* unsafe *) let mkletin_goal env sigma with_eq dep (id,lastlhyp,ccl,c) ty = let open Context.Named.Declaration in let t = match ty with Some t -> t | _ -> typ_of env sigma c in let r = Retyping.relevance_of_type env sigma t in let decl = if dep then LocalDef (make_annot id r,c,t) else LocalAssum (make_annot id r,t) in match with_eq with | Some (lr,heq) -> let eqdata = build_coq_eq_data () in let args = if lr then [t;mkVar id;c] else [t;c;mkVar id]in let (sigma, eq) = Evd.fresh_global env sigma eqdata.eq in let (sigma, refl) = Evd.fresh_global env sigma eqdata.refl in let eq = applist (eq,args) in let refl = applist (refl, [t;mkVar id]) in let newenv = insert_before [LocalAssum (make_annot heq Sorts.Relevant,eq); decl] lastlhyp env in let (sigma, x) = new_evar newenv sigma ~principal:true ccl in (sigma, mkNamedLetIn (make_annot id r) c t (mkNamedLetIn (make_annot heq Sorts.Relevant) refl eq x)) | None -> let newenv = insert_before [decl] lastlhyp env in let (sigma, x) = new_evar newenv sigma ~principal:true ccl in (sigma, mkNamedLetIn (make_annot id r) c t x) let pose_tac na c = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let hyps = named_context_val env in let concl = Proofview.Goal.concl gl in let t = typ_of env sigma c in let (sigma, t) = Evarsolve.refresh_universes ~onlyalg:true (Some false) env sigma t in let id = match na with | Name id -> let () = if mem_named_context_val id hyps then user_err (str "Variable " ++ Id.print id ++ str " is already declared.") in id | Anonymous -> let id = id_of_name_using_hdchar env sigma t Anonymous in next_ident_away_in_goal id (ids_of_named_context_val hyps) in Proofview.Unsafe.tclEVARS sigma <*> Refine.refine ~typecheck:false begin fun sigma -> (* TODO relevance *) let id = make_annot id Sorts.Relevant in let nhyps = EConstr.push_named_context_val (NamedDecl.LocalDef (id, c, t)) hyps in let (sigma, ev) = Evarutil.new_pure_evar nhyps sigma concl in let inst = EConstr.identity_subst_val hyps in let body = mkEvar (ev, mkRel 1 :: inst) in (sigma, mkLetIn (map_annot Name.mk_name id, c, t, body)) end end let letin_tac with_eq id c ty occs = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let ccl = Proofview.Goal.concl gl in let abs = AbstractExact (id,c,ty,occs,true) in let (id,_,depdecls,lastlhyp,ccl,res) = make_abstraction env sigma ccl abs in (* We keep the original term to match but record the potential side-effects of unifying universes. *) let (sigma, c) = match res with | None -> (sigma, c) | Some (sigma, _) -> (sigma, c) in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (letin_tac_gen with_eq (id,depdecls,lastlhyp,ccl,c) ty) end let letin_pat_tac with_evars with_eq id c occs = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let ccl = Proofview.Goal.concl gl in let check t = true in let abs = AbstractPattern (false,check,id,c,occs,false) in let (id,_,depdecls,lastlhyp,ccl,res) = make_abstraction env sigma ccl abs in let (sigma, c) = match res with | None -> finish_evar_resolution ~flags:(tactic_infer_flags with_evars) env sigma c | Some res -> res in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (letin_tac_gen with_eq (id,depdecls,lastlhyp,ccl,c) None) end (* Tactics "pose proof" (usetac=None) and "assert"/"enough" (otherwise) *) let forward b usetac ipat c = match usetac with | None -> Proofview.Goal.enter begin fun gl -> let t = Tacmach.New.pf_get_type_of gl c in let sigma = Tacmach.New.project gl in let hd = head_ident sigma c in Tacticals.New.tclTHENFIRST (assert_as true hd ipat t) (exact_no_check c) end | Some tac -> let tac = match tac with | None -> Tacticals.New.tclIDTAC | Some tac -> Tacticals.New.tclCOMPLETE tac in if b then Tacticals.New.tclTHENFIRST (assert_as b None ipat c) tac else Tacticals.New.tclTHENS3PARTS (assert_as b None ipat c) [||] tac [|Tacticals.New.tclIDTAC|] let pose_proof na c = forward true None (ipat_of_name na) c let assert_by na t tac = forward true (Some (Some tac)) (ipat_of_name na) t let enough_by na t tac = forward false (Some (Some tac)) (ipat_of_name na) t (***************************) (* Generalization tactics *) (***************************) (* Compute a name for a generalization *) let generalized_name env sigma c t ids cl = function | Name id as na -> if Id.List.mem id ids then user_err (Id.print id ++ str " is already used."); na | Anonymous -> match EConstr.kind sigma c with | Var id -> (* Keep the name even if not occurring: may be used by intros later *) Name id | _ -> if noccurn sigma 1 cl then Anonymous else (* On ne s'etait pas casse la tete : on avait pris pour nom de variable la premiere lettre du type, meme si "c" avait ete une constante dont on aurait pu prendre directement le nom *) named_hd env sigma t Anonymous (* Abstract over [c] in [forall x1:A1(c)..xi:Ai(c).T(c)] producing [forall x, x1:A1(x1), .., xi:Ai(x). T(x)] with all [c] abtracted in [Ai] but only those at [occs] in [T] *) let generalize_goal_gen env sigma ids i ((occs,c,b),na) t cl = let open Context.Rel.Declaration in let decls,cl = decompose_prod_n_assum sigma i cl in let dummy_prod = it_mkProd_or_LetIn mkProp decls in let newdecls,_ = let c = Termops.collapse_appl sigma c in let arity = Array.length (snd (Termops.decompose_app_vect sigma c)) in let cache = ref Int.Map.empty in let eq sigma k t = let c = try Int.Map.find k !cache with Not_found -> let c = EConstr.Vars.lift k c in let () = cache := Int.Map.add k c !cache in c in (* We use a nounivs equality because generalize morally takes a pattern as argument, so we have to ignore freshly generated sorts. *) EConstr.eq_constr_nounivs sigma c t in decompose_prod_n_assum sigma i (replace_term_gen sigma eq arity (mkRel 1) dummy_prod) in let cl',sigma' = subst_closed_term_occ env sigma (AtOccs occs) c (it_mkProd_or_LetIn cl newdecls) in let na = generalized_name env sigma c t ids cl' na in let r = Retyping.relevance_of_type env sigma t in let decl = match b with | None -> LocalAssum (make_annot na r,t) | Some b -> LocalDef (make_annot na r,b,t) in mkProd_or_LetIn decl cl', sigma' let generalize_goal gl i ((occs,c,b),na as o) (cl,sigma) = let open Tacmach.New in let env = pf_env gl in let ids = pf_ids_of_hyps gl in let sigma, t = Typing.type_of env sigma c in generalize_goal_gen env sigma ids i o t cl let generalize_dep ?(with_let=false) c = let open Tacmach.New in let open Tacticals.New in Proofview.Goal.enter begin fun gl -> let env = pf_env gl in let sign = Proofview.Goal.hyps gl in let sigma = project gl in let init_ids = ids_of_named_context (Global.named_context()) in let seek (d:named_declaration) (toquant:named_context) = if List.exists (fun d' -> occur_var_in_decl env sigma (NamedDecl.get_id d') d) toquant || dependent_in_decl sigma c d then d::toquant else toquant in let to_quantify = Context.Named.fold_outside seek sign ~init:[] in let to_quantify_rev = List.rev to_quantify in let qhyps = List.map NamedDecl.get_id to_quantify_rev in let tothin = List.filter (fun id -> not (Id.List.mem id init_ids)) qhyps in let tothin' = match EConstr.kind sigma c with | Var id when mem_named_context_val id (val_of_named_context sign) && not (Id.List.mem id init_ids) -> id::tothin | _ -> tothin in let cl' = it_mkNamedProd_or_LetIn (pf_concl gl) to_quantify in let is_var, body = match EConstr.kind sigma c with | Var id -> let body = NamedDecl.get_value (pf_get_hyp id gl) in let is_var = Option.is_empty body && not (List.mem id init_ids) in if with_let then is_var, body else is_var, None | _ -> false, None in let cl'',evd = generalize_goal gl 0 ((AllOccurrences,c,body),Anonymous) (cl',project gl) in (* Check that the generalization is indeed well-typed *) let evd = (* No need to retype for variables, term is statically well-typed *) if is_var then evd else fst (Typing.type_of env evd cl'') in let args = Context.Named.to_instance mkVar to_quantify_rev in tclTHENLIST [ Proofview.Unsafe.tclEVARS evd; apply_type ~typecheck:false cl'' (if Option.is_empty body then c::args else args); clear (List.rev tothin')] end (** *) let generalize_gen_let lconstr = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let newcl, evd = List.fold_right_i (generalize_goal gl) 0 lconstr (Tacmach.New.pf_concl gl,Tacmach.New.project gl) in let (evd, _) = Typing.type_of env evd newcl in let map ((_, c, b),_) = if Option.is_empty b then Some c else None in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evd) (apply_type ~typecheck:false newcl (List.map_filter map lconstr)) end let new_generalize_gen_let lconstr = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let concl = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in let ids = Tacmach.New.pf_ids_of_hyps gl in let newcl, sigma, args = List.fold_right_i (fun i ((_,c,b),_ as o) (cl, sigma, args) -> let sigma, t = Typing.type_of env sigma c in let args = if Option.is_empty b then c :: args else args in let cl, sigma = generalize_goal_gen env sigma ids i o t cl in (cl, sigma, args)) 0 lconstr (concl, sigma, []) in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (Refine.refine ~typecheck:false begin fun sigma -> let (sigma, ev) = Evarutil.new_evar env sigma ~principal:true newcl in (sigma, applist (ev, args)) end) end let generalize_gen lconstr = generalize_gen_let (List.map (fun (occs_c,na) -> let (occs,c) = Redexpr.out_with_occurrences occs_c in (occs,c,None),na) lconstr) let new_generalize_gen lconstr = new_generalize_gen_let (List.map (fun ((occs,c),na) -> (occs,c,None),na) lconstr) let generalize l = new_generalize_gen_let (List.map (fun c -> ((AllOccurrences,c,None),Anonymous)) l) (* Faudra-t-il une version avec plusieurs args de generalize_dep ? Cela peut-être troublant de faire "Generalize Dependent H n" dans "n:nat; H:n=n |- P(n)" et d'échouer parce que H a disparu après la généralisation dépendante par n. let quantify lconstr = List.fold_right (fun com tac -> tclTHEN tac (tactic_com generalize_dep c)) lconstr tclIDTAC *) (* Modifying/Adding an hypothesis *) (* This applies (f i) to all elements of ctxt where the debrujn i is free (so it is lifted at each level). *) let rec map_rel_context_lift f env i (ctxt:EConstr.rel_context):EConstr.rel_context = match ctxt with | [] -> ctxt | decl::ctxt' -> f i decl :: map_rel_context_lift f env (i+1) ctxt' (* Instantiating some arguments (whatever their position) of an hypothesis or any term, leaving other arguments quantified. If operating on an hypothesis of the goal, the new hypothesis replaces it. (c,lbind) are supposed to be of the form ((H t1 t2 ... tm) , someBindings) whete t1..tn are user given args, to which someBinding must be combined. The goal is to pose a proof with body (fun y1...yp => H t1 t2 ... tm u1 ... uq) where yi are the remaining arguments of H that lbind could not solve, ui are a mix of inferred args and yi. The overall effect is to remove from H as much quantification as possible given lbind. *) let specialize (c,lbind) ipat = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let typ_of_c = Retyping.get_type_of env sigma c in let sigma, term, typ = if lbind == NoBindings then sigma, c, typ_of_c else (* ***** SOLVING ARGS ******* *) (* If the term is lambda then we put a letin to put avoid interaction between the term and the bindings. *) let c = match EConstr.kind sigma c with | Lambda _ -> mkLetIn(make_annot Name.Anonymous Sorts.Relevant, c, typ_of_c, (mkRel 1)) | _ -> c in let clause = make_clenv_binding env sigma (c,typ_of_c) lbind in let flags = { (default_unify_flags ()) with resolve_evars = true } in let clause = clenv_unify_meta_types ~flags clause in let sigma = clause.evd in let (thd,tstack) = whd_nored_stack env sigma (clenv_value clause) in (* The completely applied term is (thd tstack), but tstack may contain unsolved metas, so now we must reabstract them args with there name to have fun unsolv1 unsolv2 ... => (thd tstack_with _rels) Note: letins have been reudced, they are not present in tstack *) (* ****** REBUILDING UNSOLVED FORALLs ****** *) (* thd is the thing to which we reapply everything, solved or unsolved, unsolved things are requantified too *) let liftrel x = match kind sigma x with | Rel n -> mkRel (n+1) | _ -> x in (* We grab names used in product to remember them at re-abstracting phase *) let typ_of_c_hd = pf_get_type_of gl thd in let (lprod:rel_context), concl = decompose_prod_assum sigma typ_of_c_hd in (* lprd = initial products (including letins). l(tstack initially) = the same products after unification vs lbind (some metas remain) args: accumulator : args to apply to hd: inferred args + metas reabstracted *) let rec rebuild sigma concl (lprd:rel_context) (accargs:EConstr.t list) (accprods:rel_context) hd (l:EConstr.t list) = let open Context.Rel.Declaration in match lprd , l with | _, [] -> sigma , applist (hd, (List.map (nf_evar sigma) (List.rev accargs))) , EConstr.it_mkProd_or_LetIn concl accprods | (LocalAssum(nme,_) as assum)::lp' , t::l' when occur_meta sigma t -> (* nme has not been resolved, let us re-abstract it. Same name but type updated by instantiation of other args. *) let sigma,new_typ_of_t = Typing.type_of clause.env sigma t in let r = Retyping.relevance_of_type env sigma new_typ_of_t in (* lifting rels in the accumulator args *) let liftedargs = List.map liftrel accargs in let sigma,hd',prods = rebuild sigma concl lp' (mkRel 1 ::liftedargs) (assum::accprods) hd l' in (* replace meta variable by the abstracted variable *) let hd'' = subst_term sigma t hd' in (* we reabstract the non solved argument *) sigma,mkLambda ({nme with binder_relevance=r},new_typ_of_t,hd''),prods | (LocalAssum (nme,tnme))::lp' , t::l' -> (* thie arg was solved, we update thing accordingly *) (* we replace in lprod the arg by rel 1 *) let substlp' = (* rel 1 must be lifted along the context *) map_rel_context_lift (fun i x -> map_constr (replace_term sigma (mkRel i) t) x) env 1 lp' in (* Then we lift every rel above the just removed arg *) let updatedlp' = map_rel_context_lift (fun i x -> map_constr (liftn (-1) i) x) env 1 substlp' in (* We replace also the term in the conclusion, its rel index is the length of the list lprd (remaining products before concl) *) let concl'' = replace_term sigma (mkRel (List.length lprd)) t concl in (* we also lift in concl the index above the arg *) let concl' = liftn (-1) (List.length lprd) concl'' in rebuild sigma concl' updatedlp' (t::accargs) accprods hd l' | LocalDef _ as assum::lp' , _ -> (* letins have been reduced in l and should anyway not correspond to an arg, we ignore them, but we remember them in accprod, so that they remain in the type. *) rebuild sigma concl lp' accargs (assum::accprods) hd l | _ ,_ -> assert false in let sigma,hd,newtype = rebuild sigma concl (List.rev lprod) [] [] thd tstack in Evd.clear_metas sigma, hd, newtype in let tac = match EConstr.kind sigma (fst(EConstr.decompose_app sigma (snd(EConstr.decompose_lam_assum sigma c)))) with | Var id when Id.List.mem id (Tacmach.New.pf_ids_of_hyps gl) -> (* Like assert (id:=id args) but with the concept of specialization *) let naming,tac = prepare_intros_opt false (IntroIdentifier id) MoveLast ipat in let repl = do_replace (Some id) naming in Tacticals.New.tclTHENFIRST (assert_before_then_gen repl naming typ tac) (exact_no_check term) | _ -> match ipat with | None -> (* Like generalize with extra support for "with" bindings *) (* even though the "with" bindings forces full application *) (* TODO: add intro to be more homogeneous. It will break scripts but will be easy to fix *) (Tacticals.New.tclTHENLAST (cut typ) (exact_no_check term)) | Some _ as ipat -> (* Like pose proof with extra support for "with" bindings *) (* even though the "with" bindings forces full application *) let naming, tac = prepare_intros_opt false IntroAnonymous MoveLast ipat in Tacticals.New.tclTHENFIRST (assert_before_then_gen false naming typ tac) (exact_no_check term) in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS sigma) tac end (*****************************) (* Ad hoc unfold *) (*****************************) (* The two following functions should already exist, but found nowhere *) (* Unfolds x by its definition everywhere *) let unfold_body x = let open Context.Named.Declaration in Proofview.Goal.enter begin fun gl -> (* We normalize the given hypothesis immediately. *) let env = Proofview.Goal.env gl in let xval = match Environ.lookup_named x env with | LocalAssum _ -> user_err ~hdr:"unfold_body" (Id.print x ++ str" is not a defined hypothesis.") | LocalDef (_,xval,_) -> xval in let xval = EConstr.of_constr xval in Tacticals.New.afterHyp x begin fun aft -> let hl = List.fold_right (fun decl cl -> (NamedDecl.get_id decl, InHyp) :: cl) aft [] in let rfun _ _ c = replace_vars [x, xval] c in let reducth h = reduct_in_hyp ~check:false ~reorder:false rfun h in let reductc = reduct_in_concl ~check:false (rfun, DEFAULTcast) in Tacticals.New.tclTHENLIST [Tacticals.New.tclMAP reducth hl; reductc] end end let warn_cannot_remove_as_expected = CWarnings.create ~name:"cannot-remove-as-expected" ~category:"tactics" (fun (id,inglobal) -> let pp = match inglobal with | None -> mt () | Some ref -> str ", it is used implicitly in " ++ Printer.pr_global ref in str "Cannot remove " ++ Id.print id ++ pp ++ str ".") let clear_for_destruct ids = Proofview.tclORELSE (clear_gen (fun env sigma id err inglobal -> raise (ClearDependencyError (id,err,inglobal))) ids) (function | ClearDependencyError (id,err,inglobal),_ -> warn_cannot_remove_as_expected (id,inglobal); Proofview.tclUNIT () | e -> Exninfo.iraise e) (* Either unfold and clear if defined or simply clear if not a definition *) let expand_hyp id = Tacticals.New.tclTRY (unfold_body id) <*> clear_for_destruct [id] (*****************************) (* High-level induction *) (*****************************) (* * A "natural" induction tactic * - [H0:T0, ..., Hi:Ti, hyp0:P->I(args), Hi+1:Ti+1, ..., Hn:Tn |-G] is the goal - [hyp0] is the induction hypothesis - we extract from [args] the variables which are not rigid parameters of the inductive type, this is [indvars] (other terms are forgotten); - we look for all hyps depending of [hyp0] or one of [indvars]: this is [dephyps] of types [deptyps] respectively - [statuslist] tells for each hyps in [dephyps] after which other hyp fixed in the context they must be moved (when induction is done) - [hyp0succ] is the name of the hyp fixed in the context after which to move the subterms of [hyp0succ] in the i-th branch where it is supposed to be the i-th constructor of the inductive type. Strategy: (cf in [induction_with_atomization_of_ind_arg]) - requantify and clear all [dephyps] - apply induction on [hyp0] - clear those of [indvars] that are variables and [hyp0] - in the i-th subgoal, intro the arguments of the i-th constructor of the inductive type after [hyp0succ] (done in [induct_discharge]) let the induction hypotheses on top of the hyps because they may depend on variables between [hyp0] and the top. A counterpart is that the dep hyps programmed to be intro-ed on top must now be intro-ed after the induction hypotheses - move each of [dephyps] at the right place following the [statuslist] *) let warn_unused_intro_pattern env sigma = CWarnings.create ~name:"unused-intro-pattern" ~category:"tactics" (fun names -> strbrk"Unused introduction " ++ str (String.plural (List.length names) "pattern") ++ str": " ++ prlist_with_sep spc (Miscprint.pr_intro_pattern (fun c -> Printer.pr_econstr_env env sigma (snd (c env sigma)))) names) let check_unused_names env sigma names = if not (List.is_empty names) then warn_unused_intro_pattern env sigma names let intropattern_of_name gl avoid = function | Anonymous -> IntroNaming IntroAnonymous | Name id -> IntroNaming (IntroIdentifier (new_fresh_id avoid id gl)) let rec consume_pattern avoid na isdep gl = let open CAst in function | [] -> ((CAst.make @@ intropattern_of_name gl avoid na), []) | {loc;v=IntroForthcoming true}::names when not isdep -> consume_pattern avoid na isdep gl names | {loc;v=IntroForthcoming _}::names as fullpat -> (CAst.make ?loc @@ intropattern_of_name gl avoid na, fullpat) | {loc;v=IntroNaming IntroAnonymous}::names -> (CAst.make ?loc @@ intropattern_of_name gl avoid na, names) | {loc;v=IntroNaming (IntroFresh id')}::names -> (CAst.make ?loc @@ IntroNaming (IntroIdentifier (new_fresh_id avoid id' gl)), names) | pat::names -> (pat,names) let re_intro_dependent_hypotheses (lstatus,rstatus) (_,tophyp) = let tophyp = match tophyp with None -> MoveLast | Some hyp -> MoveAfter hyp in let newlstatus = (* if some IH has taken place at the top of hyps *) List.map (function (hyp,MoveLast) -> (hyp,tophyp) | x -> x) lstatus in Tacticals.New.tclTHEN (intros_move rstatus) (intros_move newlstatus) let dest_intro_patterns with_evars avoid thin dest pat tac = intro_patterns_core with_evars avoid [] thin dest None 0 tac pat let safe_dest_intro_patterns with_evars avoid thin dest pat tac = Proofview.tclORELSE (dest_intro_patterns with_evars avoid thin dest pat tac) begin function (e, info) -> match e with | UserError (Some "move_hyp",_) -> (* May happen e.g. with "destruct x using s" with an hypothesis which is morally an induction hypothesis to be "MoveLast" if known as such but which is considered instead as a subterm of a constructor to be move at the place of x. *) dest_intro_patterns with_evars avoid thin MoveLast pat tac | e -> Proofview.tclZERO ~info e end type elim_arg_kind = RecArg | IndArg | OtherArg type recarg_position = | AfterFixedPosition of Id.t option (* None = top of context *) let update_dest (recargdests,tophyp as dests) = function | [] -> dests | hyp::_ -> (match recargdests with | AfterFixedPosition None -> AfterFixedPosition (Some hyp) | x -> x), (match tophyp with None -> Some hyp | x -> x) let get_recarg_dest (recargdests,tophyp) = match recargdests with | AfterFixedPosition None -> MoveLast | AfterFixedPosition (Some id) -> MoveAfter id (* Current policy re-introduces recursive arguments of destructed variable at the place of the original variable while induction hypothesese are introduced at the top of the context. Since in the general case of an inductive scheme, the induction hypotheses can arrive just after the recursive arguments (e.g. as in "forall t1:tree, P t1 -> forall t2:tree, P t2 -> P (node t1 t2)", we need to update the position for t2 after "P t1" is introduced if ever t2 had to be introduced at the top of the context). *) let induct_discharge with_evars dests avoid' tac (avoid,ra) names = let avoid = Id.Set.union avoid' (Id.Set.union avoid (explicit_intro_names names)) in let rec peel_tac ra dests names thin = match ra with | (RecArg,_,deprec,recvarname) :: (IndArg,_,depind,hyprecname) :: ra' -> Proofview.Goal.enter begin fun gl -> let (recpat,names) = match names with | [{CAst.loc;v=IntroNaming (IntroIdentifier id)} as pat] -> let id' = new_fresh_id avoid (add_prefix "IH" id) gl in (pat, [CAst.make @@ IntroNaming (IntroIdentifier id')]) | _ -> consume_pattern avoid (Name recvarname) deprec gl names in let dest = get_recarg_dest dests in dest_intro_patterns with_evars avoid thin dest [recpat] (fun ids thin -> Proofview.Goal.enter begin fun gl -> let (hyprec,names) = consume_pattern avoid (Name hyprecname) depind gl names in dest_intro_patterns with_evars avoid thin MoveLast [hyprec] (fun ids' thin -> peel_tac ra' (update_dest dests ids') names thin) end) end | (IndArg,_,dep,hyprecname) :: ra' -> Proofview.Goal.enter begin fun gl -> (* Rem: does not happen in Coq schemes, only in user-defined schemes *) let pat,names = consume_pattern avoid (Name hyprecname) dep gl names in dest_intro_patterns with_evars avoid thin MoveLast [pat] (fun ids thin -> peel_tac ra' (update_dest dests ids) names thin) end | (RecArg,_,dep,recvarname) :: ra' -> Proofview.Goal.enter begin fun gl -> let (pat,names) = consume_pattern avoid (Name recvarname) dep gl names in let dest = get_recarg_dest dests in dest_intro_patterns with_evars avoid thin dest [pat] (fun ids thin -> peel_tac ra' dests names thin) end | (OtherArg,_,dep,_) :: ra' -> Proofview.Goal.enter begin fun gl -> let (pat,names) = consume_pattern avoid Anonymous dep gl names in let dest = get_recarg_dest dests in safe_dest_intro_patterns with_evars avoid thin dest [pat] (fun ids thin -> peel_tac ra' dests names thin) end | [] -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in check_unused_names env sigma names; Tacticals.New.tclTHEN (clear_wildcards thin) (tac dests) end in peel_tac ra dests names [] (* - le recalcul de indtyp à chaque itération de atomize_one est pour ne pas s'embêter à regarder si un letin_tac ne fait pas des substitutions aussi sur l'argument voisin *) let expand_projections env sigma c = let rec aux env c = match EConstr.kind sigma c with | Proj (p, c) -> Retyping.expand_projection env sigma p (aux env c) [] | _ -> map_constr_with_full_binders env sigma push_rel aux env c in aux env c (* Marche pas... faut prendre en compte l'occurrence précise... *) let atomize_param_of_ind_then (indref,nparams,_) hyp0 tac = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let tmptyp0 = Tacmach.New.pf_get_hyp_typ hyp0 gl in let reduce_to_quantified_ref = Tacmach.New.pf_apply reduce_to_quantified_ref gl in let typ0 = reduce_to_quantified_ref indref tmptyp0 in let prods, indtyp = decompose_prod_assum sigma typ0 in let hd,argl = decompose_app sigma indtyp in let env' = push_rel_context prods env in let params = List.firstn nparams argl in let params' = List.map (expand_projections env' sigma) params in (* le gl est important pour ne pas préévaluer *) let rec atomize_one i args args' avoid = if Int.equal i nparams then let t = applist (hd, params@args) in Tacticals.New.tclTHEN (change_in_hyp ~check:false None (make_change_arg t) (hyp0,InHypTypeOnly)) (tac avoid) else let c = List.nth argl (i-1) in match EConstr.kind sigma c with | Var id when not (List.exists (fun c -> occur_var env sigma id c) args') && not (List.exists (fun c -> occur_var env sigma id c) params') -> (* Based on the knowledge given by the user, all constraints on the variable are generalizable in the current environment so that it is clearable after destruction *) atomize_one (i-1) (c::args) (c::args') (Id.Set.add id avoid) | _ -> let c' = expand_projections env' sigma c in let dependent t = dependent sigma c t in if List.exists dependent params' || List.exists dependent args' then (* This is a case where the argument is constrained in a way which would require some kind of inversion; we follow the (old) discipline of not generalizing over this term, since we don't try to invert the constraint anyway. *) atomize_one (i-1) (c::args) (c'::args') avoid else (* We reason blindly on the term and do as if it were generalizable, ignoring the constraints coming from its structure *) let id = match EConstr.kind sigma c with | Var id -> id | _ -> let type_of = Tacmach.New.pf_get_type_of gl in id_of_name_using_hdchar env sigma (type_of c) Anonymous in let x = fresh_id_in_env avoid id env in Tacticals.New.tclTHEN (letin_tac None (Name x) c None allHypsAndConcl) (atomize_one (i-1) (mkVar x::args) (mkVar x::args') (Id.Set.add x avoid)) in atomize_one (List.length argl) [] [] Id.Set.empty end (* [cook_sign] builds the lists [beforetoclear] (preceding the ind. var.) and [aftertoclear] (coming after the ind. var.) of hyps that must be erased, the lists of hyps to be generalize [decldeps] on the goal together with the places [(lstatus,rstatus)] where to re-intro them after induction. To know where to re-intro the dep hyp, we remember the name of the hypothesis [lhyp] after which (if the dep hyp is more recent than [hyp0]) or [rhyp] before which (if older than [hyp0]) its equivalent must be moved when the induction has been applied. Since computation of dependencies and [rhyp] is from more ancient (on the right) to more recent hyp (on the left) but the computation of [lhyp] progresses from the other way, [cook_hyp] is in two passes (an alternative would have been to write an higher-order algorithm). We use references to reduce the accumulation of arguments. To summarize, the situation looks like this Goal(n,x) -| H6:(Q n); x:A; H5:True; H4:(le O n); H3:(P n); H2:True; n:nat Left Right Induction hypothesis is H4 ([hyp0]) Variable parameters of (le O n) is the singleton list with "n" ([indvars]) The dependent hyps are H3 and H6 ([dephyps]) For H3 the memorized places are H5 ([lhyp]) and H2 ([rhyp]) because these names are among the hyp which are fixed through the induction For H6 the neighbours are None ([lhyp]) and H5 ([rhyp]) For H3, because on the right of H4, we remember rhyp (here H2) For H6, because on the left of H4, we remember lhyp (here None) For H4, we remember lhyp (here H5) The right neighbour is then translated into the left neighbour because move_hyp tactic needs the name of the hyp _after_ which we move the hyp to move. But, say in the 2nd subgoal of the hypotheses, the goal will be (m:nat)((P m)->(Q m)->(Goal m)) -> (P Sm)-> (Q Sm)-> (Goal Sm) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^ both go where H4 was goes where goes where H3 was H6 was We have to intro and move m and the recursive hyp first, but then where to move H3 ??? Only the hyp on its right is relevant, but we have to translate it into the name of the hyp on the left Note: this case where some hyp(s) in [dephyps] has(have) the same left neighbour as [hyp0] is the only problematic case with right neighbours. For the other cases (e.g. an hyp H1:(R n) between n and H2 would have posed no problem. But for uniformity, we decided to use the right hyp for all hyps on the right of H4. Other solutions are welcome PC 9 fev 06: Adapted to accept multi argument principle with no main arg hyp. hyp0 is now optional, meaning that it is possible that there is no main induction hypotheses. In this case, we consider the last "parameter" (in [indvars]) as the limit between "left" and "right", BUT it must be included in indhyps. Other solutions are still welcome *) exception Shunt of Id.t move_location let cook_sign hyp0_opt inhyps indvars env sigma = (* First phase from L to R: get [toclear], [decldep] and [statuslist] for the hypotheses before (= more ancient than) hyp0 (see above) *) let toclear = ref [] in let avoid = ref Id.Set.empty in let decldeps = ref [] in let ldeps = ref [] in let rstatus = ref [] in let lstatus = ref [] in let before = ref true in let maindep = ref false in let seek_deps env decl rhyp = let decl = map_named_decl EConstr.of_constr decl in let hyp = NamedDecl.get_id decl in if (match hyp0_opt with Some hyp0 -> Id.equal hyp hyp0 | _ -> false) then begin before:=false; (* Note that if there was no main induction hypotheses, then hyp is one of indvars too *) toclear := hyp::!toclear; MoveFirst (* fake value *) end else if Id.Set.mem hyp indvars then begin (* The variables in indvars are such that they don't occur any more after generalization, so declare them to clear. *) toclear := hyp::!toclear; rhyp end else let dephyp0 = List.is_empty inhyps && (Option.cata (fun id -> occur_var_in_decl env sigma id decl) false hyp0_opt) in let depother = List.is_empty inhyps && (Id.Set.exists (fun id -> occur_var_in_decl env sigma id decl) indvars || List.exists (fun decl' -> occur_var_in_decl env sigma (NamedDecl.get_id decl') decl) !decldeps) in if not (List.is_empty inhyps) && Id.List.mem hyp inhyps || dephyp0 || depother then begin decldeps := decl::!decldeps; avoid := Id.Set.add hyp !avoid; maindep := dephyp0 || !maindep; if !before then begin toclear := hyp::!toclear; rstatus := (hyp,rhyp)::!rstatus end else begin toclear := hyp::!toclear; ldeps := hyp::!ldeps (* status computed in 2nd phase *) end; MoveBefore hyp end else MoveBefore hyp in let _ = fold_named_context seek_deps env ~init:MoveFirst in (* 2nd phase from R to L: get left hyp of [hyp0] and [lhyps] *) let compute_lstatus lhyp decl = let hyp = NamedDecl.get_id decl in if (match hyp0_opt with Some hyp0 -> Id.equal hyp hyp0 | _ -> false) then raise (Shunt lhyp); if Id.List.mem hyp !ldeps then begin lstatus := (hyp,lhyp)::!lstatus; lhyp end else if Id.List.mem hyp !toclear then lhyp else MoveAfter hyp in try let _ = fold_named_context_reverse compute_lstatus ~init:MoveLast env in raise (Shunt MoveLast) (* ?? FIXME *) with Shunt lhyp0 -> let lhyp0 = match lhyp0 with | MoveLast -> None | MoveAfter hyp -> Some hyp | _ -> assert false in let statuslists = (!lstatus,List.rev !rstatus) in let recargdests = AfterFixedPosition (if Option.is_empty hyp0_opt then None else lhyp0) in (statuslists, (recargdests,None), !toclear, !decldeps, !avoid, !maindep) (* The general form of an induction principle is the following: forall prm1 prm2 ... prmp, (induction parameters) forall Q1...,(Qi:Ti_1 -> Ti_2 ->...-> Ti_ni),...Qq, (predicates) branch1, branch2, ... , branchr, (branches of the principle) forall (x1:Ti_1) (x2:Ti_2) ... (xni:Ti_ni), (induction arguments) (HI: I prm1..prmp x1...xni) (optional main induction arg) -> (Qi x1...xni HI (f prm1...prmp x1...xni)).(conclusion) ^^ ^^^^^^^^^^^^^^^^^^^^^^^^ optional optional argument added if even if HI principle generated by functional present above induction, only if HI does not exist [indarg] [farg] HI is not present when the induction principle does not come directly from an inductive type (like when it is generated by functional induction for example). HI is present otherwise BUT may not appear in the conclusion (dependent principle). HI and (f...) cannot be both present. Principles taken from functional induction have the final (f...).*) (* [rel_contexts] and [rel_declaration] actually contain triples, and lists are actually in reverse order to fit [compose_prod]. *) type elim_scheme = { elimc: constr with_bindings option; elimt: types; indref: GlobRef.t option; params: rel_context; (* (prm1,tprm1);(prm2,tprm2)...(prmp,tprmp) *) nparams: int; (* number of parameters *) predicates: rel_context; (* (Qq, (Tq_1 -> Tq_2 ->...-> Tq_nq)), (Q1,...) *) npredicates: int; (* Number of predicates *) branches: rel_context; (* branchr,...,branch1 *) nbranches: int; (* Number of branches *) args: rel_context; (* (xni, Ti_ni) ... (x1, Ti_1) *) nargs: int; (* number of arguments *) indarg: rel_declaration option; (* Some (H,I prm1..prmp x1...xni) if HI is in premisses, None otherwise *) concl: types; (* Qi x1...xni HI (f...), HI and (f...) are optional and mutually exclusive *) indarg_in_concl: bool; (* true if HI appears at the end of conclusion *) farg_in_concl: bool; (* true if (f...) appears at the end of conclusion *) } let empty_scheme = { elimc = None; elimt = mkProp; indref = None; params = []; nparams = 0; predicates = []; npredicates = 0; branches = []; nbranches = 0; args = []; nargs = 0; indarg = None; concl = mkProp; indarg_in_concl = false; farg_in_concl = false; } let make_base n id = if Int.equal n 0 || Int.equal n 1 then id else (* This extends the name to accept new digits if it already ends with *) (* digits *) Id.of_string (atompart_of_id (make_ident (Id.to_string id) (Some 0))) (* Builds two different names from an optional inductive type and a number, also deals with a list of names to avoid. If the inductive type is None, then hyprecname is IHi where i is a number. *) let make_up_names n ind_opt cname = let is_hyp = String.equal (atompart_of_id cname) "H" in let base = Id.to_string (make_base n cname) in let ind_prefix = "IH" in let base_ind = if is_hyp then match ind_opt with | None -> Id.of_string ind_prefix | Some ind_id -> add_prefix ind_prefix (Nametab.basename_of_global ind_id) else add_prefix ind_prefix cname in let hyprecname = make_base n base_ind in let avoid = if Int.equal n 1 (* Only one recursive argument *) || Int.equal n 0 then Id.Set.empty else (* Forbid to use cname, cname0, hyprecname and hyprecname0 *) (* in order to get names such as f1, f2, ... *) let avoid = Id.Set.add (make_ident (Id.to_string hyprecname) None) (Id.Set.singleton (make_ident (Id.to_string hyprecname) (Some 0))) in if not (String.equal (atompart_of_id cname) "H") then Id.Set.add (make_ident base (Some 0)) (Id.Set.add (make_ident base None) avoid) else avoid in Id.of_string base, hyprecname, avoid let error_ind_scheme s = let s = if not (String.is_empty s) then s^" " else s in user_err ~hdr:"Tactics" (str "Cannot recognize " ++ str s ++ str "an induction scheme.") let coq_eq sigma = Evarutil.new_global sigma Coqlib.(lib_ref "core.eq.type") let coq_eq_refl sigma = Evarutil.new_global sigma Coqlib.(lib_ref "core.eq.refl") let coq_heq_ref = lazy (Coqlib.lib_ref "core.JMeq.type") let coq_heq sigma = Evarutil.new_global sigma (Lazy.force coq_heq_ref) let coq_heq_refl sigma = Evarutil.new_global sigma (Coqlib.lib_ref "core.JMeq.refl") (* let coq_heq_refl = lazy (glob (lib_ref "core.JMeq.refl")) *) let mkEq sigma t x y = let sigma, eq = coq_eq sigma in sigma, mkApp (eq, [| t; x; y |]) let mkRefl sigma t x = let sigma, refl = coq_eq_refl sigma in sigma, mkApp (refl, [| t; x |]) let mkHEq sigma t x u y = let sigma, c = coq_heq sigma in sigma, mkApp (c,[| t; x; u; y |]) let mkHRefl sigma t x = let sigma, c = coq_heq_refl sigma in sigma, mkApp (c, [| t; x |]) let lift_togethern n l = let l', _ = List.fold_right (fun x (acc, n) -> (lift n x :: acc, succ n)) l ([], n) in l' let lift_list l = List.map (lift 1) l let ids_of_constr sigma ?(all=false) vars c = let rec aux vars c = match EConstr.kind sigma c with | Var id -> Id.Set.add id vars | App (f, args) -> (match EConstr.kind sigma f with | Construct ((ind,_),_) | Ind (ind,_) -> let (mib,mip) = Global.lookup_inductive ind in Array.fold_left_from (if all then 0 else mib.Declarations.mind_nparams) aux vars args | _ -> EConstr.fold sigma aux vars c) | _ -> EConstr.fold sigma aux vars c in aux vars c let decompose_indapp sigma f args = match EConstr.kind sigma f with | Construct ((ind,_),_) | Ind (ind,_) -> let (mib,mip) = Global.lookup_inductive ind in let first = mib.Declarations.mind_nparams_rec in let pars, args = Array.chop first args in mkApp (f, pars), args | _ -> f, args let mk_term_eq homogeneous env sigma ty t ty' t' = if homogeneous then let sigma, eq = mkEq sigma ty t t' in let sigma, refl = mkRefl sigma ty' t' in sigma, (eq, refl) else let sigma, heq = mkHEq sigma ty t ty' t' in let sigma, hrefl = mkHRefl sigma ty' t' in sigma, (heq, hrefl) let make_abstract_generalize env id typ concl dep ctx body c eqs args refls = let open Context.Rel.Declaration in Refine.refine ~typecheck:false begin fun sigma -> let eqslen = List.length eqs in (* Abstract by the "generalized" hypothesis equality proof if necessary. *) let sigma, abshypeq, abshypt = if dep then let ty = lift 1 c in let homogeneous = Reductionops.is_conv env sigma ty typ in let sigma, (eq, refl) = mk_term_eq homogeneous (push_rel_context ctx env) sigma ty (mkRel 1) typ (mkVar id) in sigma, mkProd (make_annot Anonymous Sorts.Relevant, eq, lift 1 concl), [| refl |] else sigma, concl, [||] in (* Abstract by equalities *) let eqs = lift_togethern 1 eqs in (* lift together and past genarg *) let abseqs = it_mkProd_or_LetIn (lift eqslen abshypeq) (List.map (fun x -> LocalAssum (make_annot Anonymous Sorts.Relevant, x)) eqs) in let r = Sorts.Relevant in (* TODO relevance *) let decl = match body with | None -> LocalAssum (make_annot (Name id) r, c) | Some body -> LocalDef (make_annot (Name id) r, body, c) in (* Abstract by the "generalized" hypothesis. *) let genarg = mkProd_or_LetIn decl abseqs in (* Abstract by the extension of the context *) let genctyp = it_mkProd_or_LetIn genarg ctx in (* The goal will become this product. *) let (sigma, genc) = Evarutil.new_evar env sigma ~principal:true genctyp in (* Apply the old arguments giving the proper instantiation of the hyp *) let instc = mkApp (genc, Array.of_list args) in (* Then apply to the original instantiated hyp. *) let instc = Option.cata (fun _ -> instc) (mkApp (instc, [| mkVar id |])) body in (* Apply the reflexivity proofs on the indices. *) let appeqs = mkApp (instc, Array.of_list refls) in (* Finally, apply the reflexivity proof for the original hyp, to get a term of type gl again. *) (sigma, mkApp (appeqs, abshypt)) end let hyps_of_vars env sigma sign nogen hyps = if Id.Set.is_empty hyps then [] else let (_,lh) = Context.Named.fold_inside (fun (hs,hl) d -> let x = NamedDecl.get_id d in if Id.Set.mem x nogen then (hs,hl) else if Id.Set.mem x hs then (hs,x::hl) else let xvars = global_vars_set_of_decl env sigma d in if not (Id.Set.is_empty (Id.Set.diff xvars hs)) then (Id.Set.add x hs, x :: hl) else (hs, hl)) ~init:(hyps,[]) sign in lh exception Seen let linear sigma vars args = let seen = ref vars in try Array.iter (fun i -> let rels = ids_of_constr sigma ~all:true Id.Set.empty i in let seen' = Id.Set.fold (fun id acc -> if Id.Set.mem id acc then raise Seen else Id.Set.add id acc) rels !seen in seen := seen') args; true with Seen -> false let is_defined_variable env id = env |> lookup_named id |> is_local_def let abstract_args gl generalize_vars dep id defined f args = let open Context.Rel.Declaration in let sigma = ref (Tacmach.New.project gl) in let env = Tacmach.New.pf_env gl in let concl = Tacmach.New.pf_concl gl in let hyps = Proofview.Goal.hyps gl in let dep = dep || local_occur_var !sigma id concl in let avoid = ref Id.Set.empty in let get_id name = let id = fresh_id_in_env !avoid (match name with Name n -> n | Anonymous -> Id.of_string "gen_x") env in avoid := Id.Set.add id !avoid; id in (* Build application generalized w.r.t. the argument plus the necessary eqs. From env |- c : forall G, T and args : G we build (T[G'], G' : ctx, env ; G' |- args' : G, eqs := G'_i = G_i, refls : G' = G, vars to generalize) eqs are not lifted w.r.t. each other yet. (* will be needed when going to dependent indexes *) *) let aux (prod, ctx, ctxenv, c, args, eqs, refls, nongenvars, vars) arg = let name, ty_relevance, ty, arity = let rel, c = Reductionops.splay_prod_n env !sigma 1 prod in let decl = List.hd rel in RelDecl.get_name decl, RelDecl.get_relevance decl, RelDecl.get_type decl, c in let sigma', argty = Typing.type_of env !sigma arg in let sigma', ty = Evarsolve.refresh_universes (Some true) env sigma' ty in let () = sigma := sigma' in let lenctx = List.length ctx in let liftargty = lift lenctx argty in let leq = constr_cmp !sigma Reduction.CUMUL liftargty ty in match EConstr.kind !sigma arg with | Var id when not (is_defined_variable env id) && leq && not (Id.Set.mem id nongenvars) -> (subst1 arg arity, ctx, ctxenv, mkApp (c, [|arg|]), args, eqs, refls, Id.Set.add id nongenvars, Id.Set.remove id vars) | _ -> let name = get_id name in let decl = LocalAssum (make_annot (Name name) ty_relevance, ty) in let ctx = decl :: ctx in let c' = mkApp (lift 1 c, [|mkRel 1|]) in let args = arg :: args in let liftarg = lift (List.length ctx) arg in let eq, refl = if leq then let sigma', eq = mkEq !sigma (lift 1 ty) (mkRel 1) liftarg in let sigma', refl = mkRefl sigma' (lift (-lenctx) ty) arg in sigma := sigma'; eq, refl else let sigma', eq = mkHEq !sigma (lift 1 ty) (mkRel 1) liftargty liftarg in let sigma', refl = mkHRefl sigma' argty arg in sigma := sigma'; eq, refl in let eqs = eq :: lift_list eqs in let refls = refl :: refls in let argvars = ids_of_constr !sigma vars arg in (arity, ctx, push_rel decl ctxenv, c', args, eqs, refls, nongenvars, Id.Set.union argvars vars) in let f', args' = decompose_indapp !sigma f args in let dogen, f', args' = let parvars = ids_of_constr !sigma ~all:true Id.Set.empty f' in if not (linear !sigma parvars args') then true, f, args else match Array.findi (fun i x -> not (isVar !sigma x) || is_defined_variable env (destVar !sigma x)) args' with | None -> false, f', args' | Some nonvar -> let before, after = Array.chop nonvar args' in true, mkApp (f', before), after in if dogen then let sigma', tyf' = Typing.type_of env !sigma f' in sigma := sigma'; let arity, ctx, ctxenv, c', args, eqs, refls, nogen, vars = Array.fold_left aux (tyf',[],env,f',[],[],[],Id.Set.empty,Id.Set.empty) args' in let args, refls = List.rev args, List.rev refls in let vars = if generalize_vars then let nogen = Id.Set.add id nogen in hyps_of_vars env !sigma hyps nogen vars else [] in let body, c' = if defined then Some c', Retyping.get_type_of ctxenv !sigma c' else None, c' in let typ = Tacmach.New.pf_get_hyp_typ id gl in let tac = make_abstract_generalize env id typ concl dep ctx body c' eqs args refls in let tac = Proofview.Unsafe.tclEVARS !sigma <*> tac in Some (tac, dep, succ (List.length ctx), vars) else None let abstract_generalize ?(generalize_vars=true) ?(force_dep=false) id = let open Context.Named.Declaration in Proofview.Goal.enter begin fun gl -> Coqlib.(check_required_library jmeq_module_name); let sigma = Tacmach.New.project gl in let (f, args, def, id, oldid) = let oldid = Tacmach.New.pf_get_new_id id gl in match Tacmach.New.pf_get_hyp id gl with | LocalAssum (_,t) -> let f, args = decompose_app sigma t in (f, args, false, id, oldid) | LocalDef (_,t,_) -> let f, args = decompose_app sigma t in (f, args, true, id, oldid) in if List.is_empty args then Proofview.tclUNIT () else let args = Array.of_list args in let newc = abstract_args gl generalize_vars force_dep id def f args in match newc with | None -> Proofview.tclUNIT () | Some (tac, dep, n, vars) -> let tac = if dep then Tacticals.New.tclTHENLIST [ tac; rename_hyp [(id, oldid)]; Tacticals.New.tclDO n intro; generalize_dep ~with_let:true (mkVar oldid)] else Tacticals.New.tclTHENLIST [ tac; clear [id]; Tacticals.New.tclDO n intro] in if List.is_empty vars then tac else Tacticals.New.tclTHEN tac (Tacticals.New.tclFIRST [revert vars ; Tacticals.New.tclMAP (fun id -> Tacticals.New.tclTRY (generalize_dep ~with_let:true (mkVar id))) vars]) end let compare_upto_variables sigma x y = let rec compare x y = if (isVar sigma x || isRel sigma x) && (isVar sigma y || isRel sigma y) then true else compare_constr sigma compare x y in compare x y let specialize_eqs id = let open Context.Rel.Declaration in Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let ty = Tacmach.New.pf_get_hyp_typ id gl in let evars = ref (Proofview.Goal.sigma gl) in let unif env evars c1 c2 = compare_upto_variables !evars c1 c2 && (match Evarconv.unify_delay env !evars c1 c2 with | sigma -> evars := sigma; true | exception Evarconv.UnableToUnify _ -> false) in let rec aux in_eqs ctx acc ty = match EConstr.kind !evars ty with | Prod (na, t, b) -> (match EConstr.kind !evars t with | App (eq, [| eqty; x; y |]) when isRefX !evars Coqlib.(lib_ref "core.eq.type") eq -> let c = if noccur_between !evars 1 (List.length ctx) x then y else x in let pt = mkApp (eq, [| eqty; c; c |]) in let ind = destInd !evars eq in let p = mkApp (mkConstructUi (ind,0), [| eqty; c |]) in if unif (push_rel_context ctx env) evars pt t then aux true ctx (mkApp (acc, [| p |])) (subst1 p b) else acc, in_eqs, ctx, ty | App (heq, [| eqty; x; eqty'; y |]) when isRefX !evars (Lazy.force coq_heq_ref) heq -> let eqt, c = if noccur_between !evars 1 (List.length ctx) x then eqty', y else eqty, x in let pt = mkApp (heq, [| eqt; c; eqt; c |]) in let ind = destInd !evars heq in let p = mkApp (mkConstructUi (ind,0), [| eqt; c |]) in if unif (push_rel_context ctx env) evars pt t then aux true ctx (mkApp (acc, [| p |])) (subst1 p b) else acc, in_eqs, ctx, ty | _ -> if in_eqs then acc, in_eqs, ctx, ty else let sigma, e = Evarutil.new_evar (push_rel_context ctx env) !evars t in evars := sigma; aux false (LocalDef (na,e,t) :: ctx) (mkApp (lift 1 acc, [| mkRel 1 |])) b) | t -> acc, in_eqs, ctx, ty in let acc, worked, ctx, ty = aux false [] (mkVar id) ty in let ctx' = nf_rel_context_evar !evars ctx in let ctx'' = List.map (function | LocalDef (n,k,t) when isEvar !evars k -> LocalAssum (n,t) | decl -> decl) ctx' in let ty' = it_mkProd_or_LetIn ty ctx'' in let acc' = it_mkLambda_or_LetIn acc ctx'' in let ty' = Tacred.whd_simpl env !evars ty' and acc' = Tacred.whd_simpl env !evars acc' in let ty' = Evarutil.nf_evar !evars ty' in if worked then Tacticals.New.tclTHENFIRST (internal_cut true id ty') (exact_no_check ((* refresh_universes_strict *) acc')) else let info = Exninfo.reify () in Tacticals.New.tclFAIL ~info 0 (str "Nothing to do in hypothesis " ++ Id.print id) end let specialize_eqs id = Proofview.Goal.enter begin fun gl -> let msg = str "Specialization not allowed on dependent hypotheses" in Proofview.tclOR (clear [id]) (fun (_,info) -> Tacticals.New.tclZEROMSG ~info msg) >>= fun () -> specialize_eqs id end let occur_rel sigma n c = let res = not (noccurn sigma n c) in res (* This function splits the products of the induction scheme [elimt] into four parts: - branches, easily detectable (they are not referred by rels in the subterm) - what was found before branches (acc1) that is: parameters and predicates - what was found after branches (acc3) that is: args and indarg if any if there is no branch, we try to fill in acc3 with args/indargs. We also return the conclusion. *) let decompose_paramspred_branch_args sigma elimt = let open Context.Rel.Declaration in let rec cut_noccur elimt acc2 = match EConstr.kind sigma elimt with | Prod(nme,tpe,elimt') -> let hd_tpe,_ = decompose_app sigma (snd (decompose_prod_assum sigma tpe)) in if not (occur_rel sigma 1 elimt') && isRel sigma hd_tpe then cut_noccur elimt' (LocalAssum (nme,tpe)::acc2) else let acc3,ccl = decompose_prod_assum sigma elimt in acc2 , acc3 , ccl | App(_, _) | Rel _ -> acc2 , [] , elimt | _ -> error_ind_scheme "" in let rec cut_occur elimt acc1 = match EConstr.kind sigma elimt with | Prod(nme,tpe,c) when occur_rel sigma 1 c -> cut_occur c (LocalAssum (nme,tpe)::acc1) | Prod(nme,tpe,c) -> let acc2,acc3,ccl = cut_noccur elimt [] in acc1,acc2,acc3,ccl | App(_, _) | Rel _ -> acc1,[],[],elimt | _ -> error_ind_scheme "" in let acc1, acc2 , acc3, ccl = cut_occur elimt [] in (* Particular treatment when dealing with a dependent empty type elim scheme: if there is no branch, then acc1 contains all hyps which is wrong (acc1 should contain parameters and predicate only). This happens for an empty type (See for example Empty_set_ind, as False would actually be ok). Then we must find the predicate of the conclusion to separate params_pred from args. We suppose there is only one predicate here. *) match acc2 with | [] -> let hyps,ccl = decompose_prod_assum sigma elimt in let hd_ccl_pred,_ = decompose_app sigma ccl in begin match EConstr.kind sigma hd_ccl_pred with | Rel i -> let acc3,acc1 = List.chop (i-1) hyps in acc1 , [] , acc3 , ccl | _ -> error_ind_scheme "" end | _ -> acc1, acc2 , acc3, ccl let exchange_hd_app sigma subst_hd t = let hd,args= decompose_app sigma t in mkApp (subst_hd,Array.of_list args) (* Builds an elim_scheme from its type and calling form (const+binding). We first separate branches. We obtain branches, hyps before (params + preds), hyps after (args <+ indarg if present>) and conclusion. Then we proceed as follows: - separate parameters and predicates in params_preds. For that we build: forall (x1:Ti_1)(xni:Ti_ni) (HI:I prm1..prmp x1...xni), DUMMY x1...xni HI/farg ^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^ optional opt Free rels appearing in this term are parameters (branches should not appear, and the only predicate would have been Qi but we replaced it by DUMMY). We guess this heuristic catches all params. TODO: generalize to the case where args are merged with branches (?) and/or where several predicates are cited in the conclusion. - finish to fill in the elim_scheme: indarg/farg/args and finally indref. *) let compute_elim_sig sigma ?elimc elimt = let open Context.Rel.Declaration in let params_preds,branches,args_indargs,conclusion = decompose_paramspred_branch_args sigma elimt in let ccl = exchange_hd_app sigma (mkVar (Id.of_string "__QI_DUMMY__")) conclusion in let concl_with_args = it_mkProd_or_LetIn ccl args_indargs in let nparams = Int.Set.cardinal (free_rels sigma concl_with_args) in let preds,params = List.chop (List.length params_preds - nparams) params_preds in (* A first approximation, further analysis will tweak it *) let res = ref { empty_scheme with (* This fields are ok: *) elimc = elimc; elimt = elimt; concl = conclusion; predicates = preds; npredicates = List.length preds; branches = branches; nbranches = List.length branches; farg_in_concl = isApp sigma ccl && isApp sigma (last_arg sigma ccl); params = params; nparams = nparams; (* all other fields are unsure at this point. Including these:*) args = args_indargs; nargs = List.length args_indargs; } in try (* Order of tests below is important. Each of them exits if successful. *) (* 1- First see if (f x...) is in the conclusion. *) if !res.farg_in_concl then begin res := { !res with indarg = None; indarg_in_concl = false; farg_in_concl = true }; raise Exit end; (* 2- If no args_indargs (=!res.nargs at this point) then no indarg *) if Int.equal !res.nargs 0 then raise Exit; (* 3- Look at last arg: is it the indarg? *) ignore ( match List.hd args_indargs with | LocalDef (hiname,_,hi) -> error_ind_scheme "" | LocalAssum (hiname,hi) -> let hi_ind, hi_args = decompose_app sigma hi in let hi_is_ind = (* hi est d'un type globalisable *) match EConstr.kind sigma hi_ind with | Ind (mind,_) -> true | Var _ -> true | Const _ -> true | Construct _ -> true | _ -> false in let hi_args_enough = (* hi a le bon nbre d'arguments *) Int.equal (List.length hi_args) (List.length params + !res.nargs -1) in (* FIXME: Ces deux tests ne sont pas suffisants. *) if not (hi_is_ind && hi_args_enough) then raise Exit (* No indarg *) else (* Last arg is the indarg *) res := {!res with indarg = Some (List.hd !res.args); indarg_in_concl = occur_rel sigma 1 ccl; args = List.tl !res.args; nargs = !res.nargs - 1; }; raise Exit); raise Exit(* exit anyway *) with Exit -> (* Ending by computing indref: *) match !res.indarg with | None -> !res (* No indref *) | Some (LocalDef _) -> error_ind_scheme "" | Some (LocalAssum (_,ind)) -> let indhd,indargs = decompose_app sigma ind in try {!res with indref = Some (fst (destRef sigma indhd)) } with DestKO -> error "Cannot find the inductive type of the inductive scheme." let compute_scheme_signature evd scheme names_info ind_type_guess = let open Context.Rel.Declaration in let f,l = decompose_app evd scheme.concl in (* Vérifier que les arguments de Qi sont bien les xi. *) let cond, check_concl = match scheme.indarg with | Some (LocalDef _) -> error "Strange letin, cannot recognize an induction scheme." | None -> (* Non standard scheme *) let cond hd = EConstr.eq_constr evd hd ind_type_guess && not scheme.farg_in_concl in (cond, fun _ _ -> ()) | Some (LocalAssum (_,ind)) -> (* Standard scheme from an inductive type *) let indhd,indargs = decompose_app evd ind in let cond hd = EConstr.eq_constr evd hd indhd in let check_concl is_pred p = (* Check again conclusion *) let ccl_arg_ok = is_pred (p + scheme.nargs + 1) f == IndArg in let ind_is_ok = List.equal (fun c1 c2 -> EConstr.eq_constr evd c1 c2) (List.lastn scheme.nargs indargs) (Context.Rel.to_extended_list mkRel 0 scheme.args) in if not (ccl_arg_ok && ind_is_ok) then error_ind_scheme "the conclusion of" in (cond, check_concl) in let is_pred n c = let hd = fst (decompose_app evd c) in match EConstr.kind evd hd with | Rel q when n < q && q <= n+scheme.npredicates -> IndArg | _ when cond hd -> RecArg | _ -> OtherArg in let rec check_branch p c = match EConstr.kind evd c with | Prod (_,t,c) -> (is_pred p t, true, not (Vars.noccurn evd 1 c)) :: check_branch (p+1) c | LetIn (_,_,_,c) -> (OtherArg, false, not (Vars.noccurn evd 1 c)) :: check_branch (p+1) c | _ when is_pred p c == IndArg -> [] | _ -> raise Exit in let rec find_branches p lbrch = match lbrch with | LocalAssum (_,t) :: brs -> (try let lchck_brch = check_branch p t in let n = List.fold_left (fun n (b,_,_) -> if b == RecArg then n+1 else n) 0 lchck_brch in let recvarname, hyprecname, avoid = make_up_names n scheme.indref names_info in let namesign = List.map (fun (b,is_assum,dep) -> (b,is_assum,dep,if b == IndArg then hyprecname else recvarname)) lchck_brch in (avoid,namesign) :: find_branches (p+1) brs with Exit-> error_ind_scheme "the branches of") | LocalDef _ :: _ -> error_ind_scheme "the branches of" | [] -> check_concl is_pred p; [] in Array.of_list (find_branches 0 (List.rev scheme.branches)) (* Check that the elimination scheme has a form similar to the elimination schemes built by Coq. Schemes may have the standard form computed from an inductive type OR (feb. 2006) a non standard form. That is: with no main induction argument and with an optional extra final argument of the form (f x y ...) in the conclusion. In the non standard case, naming of generated hypos is slightly different. *) let compute_elim_signature (evd,(elimc,elimt),ind_type_guess) names_info = let scheme = compute_elim_sig evd ~elimc:elimc elimt in evd, (compute_scheme_signature evd scheme names_info ind_type_guess, scheme) let guess_elim isrec dep s hyp0 gl = let tmptyp0 = Tacmach.New.pf_get_hyp_typ hyp0 gl in let (mind, u), _ = Tacmach.New.pf_reduce_to_quantified_ind gl tmptyp0 in let env = Tacmach.New.pf_env gl in let sigma = Tacmach.New.project gl in let sigma, elimc = if isrec && not (is_nonrec mind) then let gr = lookup_eliminator env mind s in Evd.fresh_global env sigma gr else let u = EInstance.kind sigma u in if dep then let (sigma, ind) = build_case_analysis_scheme env sigma (mind, u) true s in let ind = EConstr.of_constr ind in (sigma, ind) else let (sigma, ind) = build_case_analysis_scheme_default env sigma (mind, u) s in let ind = EConstr.of_constr ind in (sigma, ind) in let sigma, elimt = Typing.type_of env sigma elimc in sigma, ((elimc, NoBindings), elimt), mkIndU (mind, u) let given_elim hyp0 (elimc,lbind as e) gl = let sigma = Tacmach.New.project gl in let tmptyp0 = Tacmach.New.pf_get_hyp_typ hyp0 gl in let ind_type_guess,_ = decompose_app sigma (snd (decompose_prod sigma tmptyp0)) in let sigma, elimt = Tacmach.New.pf_type_of gl elimc in sigma, (e, elimt), ind_type_guess type scheme_signature = (Id.Set.t * (elim_arg_kind * bool * bool * Id.t) list) array type eliminator_source = | ElimUsing of (eliminator * EConstr.types) * scheme_signature | ElimOver of bool * Id.t let find_induction_type isrec elim hyp0 gl = let sigma, indref, nparams, elim = match elim with | None -> let sort = Tacticals.New.elimination_sort_of_goal gl in let sigma', (elimc,elimt),_ = guess_elim isrec false sort hyp0 gl in let scheme = compute_elim_sig sigma' ~elimc elimt in (* We drop the scheme and elimc/elimt waiting to know if it is dependent, this needs no update to sigma at this point. *) Tacmach.New.project gl, scheme.indref, scheme.nparams, ElimOver (isrec,hyp0) | Some e -> let sigma, (elimc,elimt),ind_guess = given_elim hyp0 e gl in let scheme = compute_elim_sig sigma ~elimc elimt in if Option.is_empty scheme.indarg then error "Cannot find induction type"; let indsign = compute_scheme_signature sigma scheme hyp0 ind_guess in let elim = ({ elimindex = Some(-1); elimbody = elimc },elimt) in sigma, scheme.indref, scheme.nparams, ElimUsing (elim,indsign) in match indref with | None -> error_ind_scheme "" | Some ref -> sigma, (ref, nparams, elim) let get_elim_signature elim hyp0 gl = compute_elim_signature (given_elim hyp0 elim gl) hyp0 let is_functional_induction elimc gl = let sigma = Tacmach.New.project gl in let scheme = compute_elim_sig sigma ~elimc (Tacmach.New.pf_get_type_of gl (fst elimc)) in (* The test is not safe: with non-functional induction on non-standard induction scheme, this may fail *) Option.is_empty scheme.indarg (* Wait the last moment to guess the eliminator so as to know if we need a dependent one or not *) let get_eliminator elim dep s gl = match elim with | ElimUsing (elim,indsign) -> Tacmach.New.project gl, (* bugged, should be computed *) true, elim, indsign | ElimOver (isrec,id) -> let evd, (elimc,elimt),_ as elims = guess_elim isrec dep s id gl in let _, (l, s) = compute_elim_signature elims id in evd, isrec, ({ elimindex = None; elimbody = elimc }, elimt), l (* Instantiate all meta variables of elimclause using lid, some elts of lid are parameters (first ones), the other are arguments. Returns the clause obtained. *) let recolle_clenv i params args elimclause gl = let _,arr = destApp elimclause.evd elimclause.templval.rebus in let lindmv = Array.map (fun x -> match EConstr.kind elimclause.evd x with | Meta mv -> mv | _ -> user_err ~hdr:"elimination_clause" (str "The type of the elimination clause is not well-formed.")) arr in let k = match i with -1 -> Array.length lindmv - List.length args | _ -> i in (* parameters correspond to first elts of lid. *) let clauses_params = List.map_i (fun i id -> mkVar id , pf_get_hyp_typ id gl, lindmv.(i)) 0 params in let clauses_args = List.map_i (fun i id -> mkVar id , pf_get_hyp_typ id gl, lindmv.(k+i)) 0 args in let clauses = clauses_params@clauses_args in (* iteration of clenv_fchain with all infos we have. *) List.fold_right (fun e acc -> let x,y,i = e in (* from_n (Some 0) means that x should be taken "as is" without trying to unify (which would lead to trying to apply it to evars if y is a product). *) let indclause = mk_clenv_from_n gl (Some 0) (x,y) in let elimclause' = clenv_fchain ~with_univs:false i acc indclause in elimclause') (List.rev clauses) elimclause (* Unification of the goal and the principle applied to meta variables: (elimc ?i ?j ?k...?l). This solves partly meta variables (and may produce new ones). Then refine with the resulting term with holes. *) let induction_tac with_evars params indvars elim = Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in let ({ elimindex=i;elimbody=(elimc,lbindelimc) },elimt) = elim in let i = match i with None -> index_of_ind_arg sigma elimt | Some i -> i in (* elimclause contains this: (elimc ?i ?j ?k...?l) *) let elimc = contract_letin_in_lam_header sigma elimc in let elimc = mkCast (elimc, DEFAULTcast, elimt) in let elimclause = Tacmach.New.pf_apply make_clenv_binding gl (elimc,elimt) lbindelimc in (* elimclause' is built from elimclause by instantiating all args and params. *) let elimclause' = recolle_clenv i params indvars elimclause gl in (* one last resolution (useless?) *) Clenv.res_pf ~with_evars ~flags:(elim_flags ()) elimclause' end (* Apply induction "in place" taking into account dependent hypotheses from the context, replacing the main hypothesis on which induction applies with the induction hypotheses *) let apply_induction_in_context with_evars hyp0 inhyps elim indvars names induct_tac = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let concl = Tacmach.New.pf_concl gl in let statuslists,lhyp0,toclear,deps,avoid,dep_in_hyps = cook_sign hyp0 inhyps indvars env sigma in let dep_in_concl = Option.cata (fun id -> occur_var env sigma id concl) false hyp0 in let dep = dep_in_hyps || dep_in_concl in let tmpcl = it_mkNamedProd_or_LetIn concl deps in let s = Retyping.get_sort_family_of env sigma tmpcl in let deps_cstr = List.fold_left (fun a decl -> if NamedDecl.is_local_assum decl then (mkVar (NamedDecl.get_id decl))::a else a) [] deps in let (sigma, isrec, elim, indsign) = get_eliminator elim dep s gl in let branchletsigns = let f (_,is_not_let,_,_) = is_not_let in Array.map (fun (_,l) -> List.map f l) indsign in let names = compute_induction_names true branchletsigns names in Array.iter (check_name_unicity env toclear []) names; let tac = (if isrec then Tacticals.New.tclTHENFIRSTn else Tacticals.New.tclTHENLASTn) (Tacticals.New.tclTHENLIST [ (* Generalize dependent hyps (but not args) *) if deps = [] then Proofview.tclUNIT () else apply_type ~typecheck:false tmpcl deps_cstr; (* side-conditions in elim (resp case) schemes come last (resp first) *) induct_tac elim; Tacticals.New.tclMAP expand_hyp toclear; ]) (Array.map2 (induct_discharge with_evars lhyp0 avoid (re_intro_dependent_hypotheses statuslists)) indsign names) in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) tac end let induction_with_atomization_of_ind_arg isrec with_evars elim names hyp0 inhyps = Proofview.Goal.enter begin fun gl -> let sigma, elim_info = find_induction_type isrec elim hyp0 gl in tclEVARSTHEN sigma (atomize_param_of_ind_then elim_info hyp0 (fun indvars -> apply_induction_in_context with_evars (Some hyp0) inhyps (pi3 elim_info) indvars names (fun elim -> induction_tac with_evars [] [hyp0] elim))) end let msg_not_right_number_induction_arguments scheme = str"Not the right number of induction arguments (expected " ++ pr_enum (fun x -> x) [ if scheme.farg_in_concl then str "the function name" else mt(); if scheme.nparams != 0 then int scheme.nparams ++ str (String.plural scheme.nparams " parameter") else mt (); if scheme.nargs != 0 then int scheme.nargs ++ str (String.plural scheme.nargs " argument") else mt ()] ++ str ")." (* Induction on a list of induction arguments. Analyze the elim scheme (which is mandatory for multiple ind args), check that all parameters and arguments are given (mandatory too). Main differences with induction_from_context is that there is no main induction argument. On the other hand, all args and params must be given, so we help a bit the unifier by making the "pattern" by hand before calling induction_tac *) let induction_without_atomization isrec with_evars elim names lid = Proofview.Goal.enter begin fun gl -> let sigma, (indsign,scheme) = get_elim_signature elim (List.hd lid) gl in let nargs_indarg_farg = scheme.nargs + (if scheme.farg_in_concl then 1 else 0) in if not (Int.equal (List.length lid) (scheme.nparams + nargs_indarg_farg)) then let info = Exninfo.reify () in Tacticals.New.tclZEROMSG ~info (msg_not_right_number_induction_arguments scheme) else let indvars,lid_params = List.chop nargs_indarg_farg lid in (* terms to patternify we must patternify indarg or farg if present in concl *) let realindvars = List.rev (if scheme.farg_in_concl then List.tl indvars else indvars) in let lidcstr = List.map mkVar (List.rev indvars) in let params = List.rev lid_params in let indvars = (* Temporary hack for compatibility, while waiting for better analysis of the form of induction schemes: a scheme like gt_wf_rec was taken as a functional scheme with no parameters, but by chance, because of the addition of at least hyp0 for cook_sign, it behaved as if there was a real induction arg. *) if List.is_empty indvars then Id.Set.singleton (List.hd lid_params) else Id.Set.of_list indvars in let induct_tac elim = Tacticals.New.tclTHENLIST [ (* pattern to make the predicate appear. *) reduce (Pattern (List.map inj_with_occurrences lidcstr)) onConcl; (* Induction by "refine (indscheme ?i ?j ?k...)" + resolution of all possible holes using arguments given by the user (but the functional one). *) (* FIXME: Tester ca avec un principe dependant et non-dependant *) induction_tac with_evars params realindvars elim; ] in let elim = ElimUsing (({ elimindex = Some (-1); elimbody = Option.get scheme.elimc }, scheme.elimt), indsign) in apply_induction_in_context with_evars None [] elim indvars names induct_tac end (* assume that no occurrences are selected *) let clear_unselected_context id inhyps cls = Proofview.Goal.enter begin fun gl -> if occur_var (Tacmach.New.pf_env gl) (Tacmach.New.project gl) id (Tacmach.New.pf_concl gl) && cls.concl_occs == NoOccurrences then user_err (str "Conclusion must be mentioned: it depends on " ++ Id.print id ++ str "."); match cls.onhyps with | Some hyps -> let to_erase d = let id' = NamedDecl.get_id d in if Id.List.mem id' inhyps then (* if selected, do not erase *) None else (* erase if not selected and dependent on id or selected hyps *) let test id = occur_var_in_decl (Tacmach.New.pf_env gl) (Tacmach.New.project gl) id d in if List.exists test (id::inhyps) then Some id' else None in let ids = List.map_filter to_erase (Proofview.Goal.hyps gl) in clear ids | None -> Proofview.tclUNIT () end let use_bindings env sigma elim must_be_closed (c,lbind) typ = let typ = if elim == None then (* w/o an scheme, the term has to be applied at least until obtaining an inductive type (even though the arity might be known only by pattern-matching, as in the case of a term of the form "nat_rect ?A ?o ?s n", with ?A to be inferred by matching. *) let sign,t = splay_prod env sigma typ in it_mkProd t sign else (* Otherwise, we exclude the case of an induction argument in an explicitly functional type. Henceforth, we can complete the pattern until it has as type an atomic type (even though this atomic type can hide a functional type, for which the "using" clause has a scheme). *) typ in let rec find_clause typ = try let indclause = make_clenv_binding env sigma (c,typ) lbind in if must_be_closed && occur_meta indclause.evd (clenv_value indclause) then error "Need a fully applied argument."; (* We lose the possibility of coercions in with-bindings *) pose_all_metas_as_evars env indclause.evd (clenv_value indclause) with e when noncritical e -> try find_clause (try_red_product env sigma typ) with Redelimination -> raise e in find_clause typ let check_expected_type env sigma (elimc,bl) elimt = (* Compute the expected template type of the term in case a using clause is given *) let sign,_ = splay_prod env sigma elimt in let n = List.length sign in if n == 0 then error "Scheme cannot be applied."; let sigma,cl = make_evar_clause env sigma ~len:(n - 1) elimt in let sigma = solve_evar_clause env sigma true cl bl in let (_,u,_) = destProd sigma (whd_all env sigma cl.cl_concl) in fun t -> match Evarconv.unify_leq_delay env sigma t u with | _sigma -> true | exception Evarconv.UnableToUnify _ -> false let check_enough_applied env sigma elim = (* A heuristic to decide whether the induction arg is enough applied *) match elim with | None -> (* No eliminator given *) fun u -> let t,_ = decompose_app sigma (whd_all env sigma u) in isInd sigma t | Some elimc -> let elimt = Retyping.get_type_of env sigma (fst elimc) in let scheme = compute_elim_sig sigma ~elimc elimt in match scheme.indref with | None -> (* in the absence of information, do not assume it may be partially applied *) fun _ -> true | Some _ -> (* Last argument is supposed to be the induction argument *) check_expected_type env sigma elimc elimt let guard_no_unifiable = Proofview.guard_no_unifiable >>= function | None -> Proofview.tclUNIT () | Some l -> Proofview.tclENV >>= function env -> Proofview.tclEVARMAP >>= function sigma -> let info = Exninfo.reify () in Proofview.tclZERO ~info (RefinerError (env, sigma, UnresolvedBindings l)) let pose_induction_arg_then isrec with_evars (is_arg_pure_hyp,from_prefix) elim id ((pending,(c0,lbind)),(eqname,names)) t0 inhyps cls tac = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let ccl = Proofview.Goal.concl gl in let check = check_enough_applied env sigma elim in let (sigma', c) = use_bindings env sigma elim false (c0,lbind) t0 in let abs = AbstractPattern (from_prefix,check,Name id,(pending,c),cls,false) in let (id,sign,_,lastlhyp,ccl,res) = make_abstraction env sigma' ccl abs in match res with | None -> (* pattern not found *) let with_eq = Option.map (fun eq -> (false,mk_eq_name env id eq)) eqname in let inhyps = if List.is_empty inhyps then inhyps else Option.fold_left (fun inhyps (_,heq) -> heq::inhyps) inhyps with_eq in (* we restart using bindings after having tried type-class resolution etc. on the term given by the user *) let flags = tactic_infer_flags (with_evars && (* do not give a success semantics to edestruct on an open term yet *) false) in let (sigma, c0) = finish_evar_resolution ~flags env sigma (pending,c0) in let tac = (if isrec then (* Historically, induction has side conditions last *) Tacticals.New.tclTHENFIRST else (* and destruct has side conditions first *) Tacticals.New.tclTHENLAST) (Tacticals.New.tclTHENLIST [ Refine.refine ~typecheck:false begin fun sigma -> let b = not with_evars && with_eq != None in let (sigma, c) = use_bindings env sigma elim b (c0,lbind) t0 in let t = Retyping.get_type_of env sigma c in mkletin_goal env sigma with_eq false (id,lastlhyp,ccl,c) (Some t) end; if with_evars then Proofview.shelve_unifiable else guard_no_unifiable; if is_arg_pure_hyp then Proofview.tclEVARMAP >>= fun sigma -> Tacticals.New.tclTRY (clear [destVar sigma c0]) else Proofview.tclUNIT (); if isrec then Proofview.cycle (-1) else Proofview.tclUNIT () ]) (tac inhyps) in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) tac | Some (sigma', c) -> (* pattern found *) (* TODO: if ind has predicate parameters, use JMeq instead of eq *) let env = reset_with_named_context sign env in let with_eq = Option.map (fun eq -> (false,mk_eq_name env id eq)) eqname in let inhyps = if List.is_empty inhyps then inhyps else Option.fold_left (fun inhyps (_,heq) -> heq::inhyps) inhyps with_eq in let tac = Tacticals.New.tclTHENLIST [ Refine.refine ~typecheck:false begin fun sigma -> mkletin_goal env sigma with_eq true (id,lastlhyp,ccl,c) None end; (tac inhyps) ] in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma') tac end let has_generic_occurrences_but_goal cls id env sigma ccl = clause_with_generic_context_selection cls && (* TODO: whd_evar of goal *) (cls.concl_occs != NoOccurrences || not (occur_var env sigma id ccl)) let induction_gen clear_flag isrec with_evars elim ((_pending,(c,lbind)),(eqname,names) as arg) cls = let inhyps = match cls with | Some {onhyps=Some hyps} -> List.map (fun ((_,id),_) -> id) hyps | _ -> [] in Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let evd = Proofview.Goal.sigma gl in let ccl = Proofview.Goal.concl gl in let cls = Option.default allHypsAndConcl cls in let t = typ_of env evd c in let is_arg_pure_hyp = isVar evd c && not (mem_named_context_val (destVar evd c) (Global.named_context_val ())) && lbind == NoBindings && not with_evars && Option.is_empty eqname && clear_flag == None && has_generic_occurrences_but_goal cls (destVar evd c) env evd ccl in let enough_applied = check_enough_applied env evd elim t in if is_arg_pure_hyp && enough_applied then (* First case: induction on a variable already in an inductive type and with maximal abstraction over the variable. This is a situation where the induction argument is a clearable variable of the goal w/o occurrence selection and w/o equality kept: no need to generalize *) let id = destVar evd c in Tacticals.New.tclTHEN (clear_unselected_context id inhyps cls) (induction_with_atomization_of_ind_arg isrec with_evars elim names id inhyps) else (* Otherwise, we look for the pattern, possibly adding missing arguments and declaring the induction argument as a new local variable *) let id = (* Type not the right one if partially applied but anyway for internal use*) let avoid = match eqname with | Some {CAst.v=IntroIdentifier id} -> Id.Set.singleton id | _ -> Id.Set.empty in let x = id_of_name_using_hdchar env evd t Anonymous in new_fresh_id avoid x gl in let info_arg = (is_arg_pure_hyp, not enough_applied) in pose_induction_arg_then isrec with_evars info_arg elim id arg t inhyps cls (induction_with_atomization_of_ind_arg isrec with_evars elim names id) end (* Induction on a list of arguments. First make induction arguments atomic (using letins), then do induction. The specificity here is that all arguments and parameters of the scheme are given (mandatory for the moment), so we don't need to deal with parameters of the inductive type as in induction_gen. *) let induction_gen_l isrec with_evars elim names lc = let newlc = ref [] in let lc = List.map (function | (c,None) -> c | (c,Some{CAst.loc;v=eqname}) -> user_err ?loc (str "Do not know what to do with " ++ Miscprint.pr_intro_pattern_naming eqname)) lc in let rec atomize_list l = match l with | [] -> Proofview.tclUNIT () | c::l' -> Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma c with | Var id when not (mem_named_context_val id (Global.named_context_val ())) && not with_evars -> let () = newlc:= id::!newlc in atomize_list l' | _ -> Proofview.Goal.enter begin fun gl -> let sigma, t = pf_apply Typing.type_of gl c in let x = id_of_name_using_hdchar (Proofview.Goal.env gl) sigma t Anonymous in let id = new_fresh_id Id.Set.empty x gl in let newl' = List.map (fun r -> replace_term sigma c (mkVar id) r) l' in let () = newlc:=id::!newlc in Tacticals.New.tclTHENLIST [ tclEVARS sigma; letin_tac None (Name id) c None allHypsAndConcl; atomize_list newl'; ] end in Tacticals.New.tclTHENLIST [ (atomize_list lc); (Proofview.tclUNIT () >>= fun () -> (* ensure newlc has been computed *) induction_without_atomization isrec with_evars elim names !newlc) ] (* Induction either over a term, over a quantified premisse, or over several quantified premisses (like with functional induction principles). TODO: really unify induction with one and induction with several args *) let induction_destruct isrec with_evars (lc,elim) = match lc with | [] -> assert false (* ensured by syntax, but if called inside caml? *) | [c,(eqname,names as allnames),cls] -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in match elim with | Some elim when is_functional_induction elim gl -> (* Standard induction on non-standard induction schemes *) (* will be removable when is_functional_induction will be more clever *) if not (Option.is_empty cls) then error "'in' clause not supported here."; let _,c = force_destruction_arg false env sigma c in onInductionArg (fun _clear_flag c -> induction_gen_l isrec with_evars elim names [with_no_bindings c,eqname]) c | _ -> (* standard induction *) onOpenInductionArg env sigma (fun clear_flag c -> induction_gen clear_flag isrec with_evars elim (c,allnames) cls) c end | _ -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in match elim with | None -> (* Several arguments, without "using" clause *) (* TODO: Do as if the arguments after the first one were called with *) (* "destruct", but selecting occurrences on the initial copy of *) (* the goal *) let (a,b,cl) = List.hd lc in let l = List.tl lc in (* TODO *) Tacticals.New.tclTHEN (onOpenInductionArg env sigma (fun clear_flag a -> induction_gen clear_flag isrec with_evars None (a,b) cl) a) (Tacticals.New.tclMAP (fun (a,b,cl) -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in onOpenInductionArg env sigma (fun clear_flag a -> induction_gen clear_flag false with_evars None (a,b) cl) a end) l) | Some elim -> (* Several induction hyps with induction scheme *) let lc = List.map (on_pi1 (fun c -> snd (force_destruction_arg false env sigma c))) lc in let newlc = List.map (fun (x,(eqn,names),cls) -> if cls != None then error "'in' clause not yet supported here."; match x with (* FIXME: should we deal with ElimOnIdent? *) | _clear_flag,ElimOnConstr x -> if eqn <> None then error "'eqn' clause not supported here."; (with_no_bindings x,names) | _ -> error "Don't know where to find some argument.") lc in (* Check that "as", if any, is given only on the last argument *) let names,rest = List.sep_last (List.map snd newlc) in if List.exists (fun n -> not (Option.is_empty n)) rest then error "'as' clause with multiple arguments and 'using' clause can only occur last."; let newlc = List.map (fun (x,_) -> (x,None)) newlc in induction_gen_l isrec with_evars elim names newlc end let induction ev clr c l e = induction_gen clr true ev e ((Evd.empty,(c,NoBindings)),(None,l)) None let destruct ev clr c l e = induction_gen clr false ev e ((Evd.empty,(c,NoBindings)),(None,l)) None (* * Eliminations giving the type instead of the proof. * These tactics use the default elimination constant and * no substitutions at all. * May be they should be integrated into Elim ... *) let elim_scheme_type elim t = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let sigma, elimt = Typing.type_of env sigma elim in let clause = mk_clenv_from_env env sigma None (elim,elimt) in match EConstr.kind clause.evd (last_arg clause.evd clause.templval.rebus) with | Meta mv -> let clause' = (* t is inductive, then CUMUL or CONV is irrelevant *) clenv_unify ~flags:(elim_flags ()) Reduction.CUMUL t (clenv_meta_type clause mv) clause in Clenv.res_pf clause' ~flags:(elim_flags ()) ~with_evars:false | _ -> anomaly (Pp.str "elim_scheme_type.") end let elim_type t = Proofview.Goal.enter begin fun gl -> let (ind,t) = Tacmach.New.pf_apply reduce_to_atomic_ind gl t in let evd, elimc = Tacmach.New.pf_apply find_ind_eliminator gl (fst ind) (Tacticals.New.elimination_sort_of_goal gl) in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evd) (elim_scheme_type elimc t) end let case_type t = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Tacmach.New.pf_env gl in let ((ind, u), t) = reduce_to_atomic_ind env sigma t in let u = EInstance.kind sigma u in let s = Tacticals.New.elimination_sort_of_goal gl in let (evd, elimc) = build_case_analysis_scheme_default env sigma (ind, u) s in let elimc = EConstr.of_constr elimc in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evd) (elim_scheme_type elimc t) end (************************************************) (* Tactics related with logic connectives *) (************************************************) (* Reflexivity tactics *) let (forward_setoid_reflexivity, setoid_reflexivity) = Hook.make () let maybe_betadeltaiota_concl allowred gl = let concl = Tacmach.New.pf_concl gl in let sigma = Tacmach.New.project gl in if not allowred then concl else let env = Proofview.Goal.env gl in whd_all env sigma concl let reflexivity_red allowred = Proofview.Goal.enter begin fun gl -> (* PL: usual reflexivity don't perform any reduction when searching for an equality, but we may need to do some when called back from inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *) let env = Tacmach.New.pf_env gl in let sigma = Tacmach.New.project gl in let concl = maybe_betadeltaiota_concl allowred gl in match match_with_equality_type env sigma concl with | None -> let info = Exninfo.reify () in Proofview.tclZERO ~info NoEquationFound | Some _ -> one_constructor 1 NoBindings end let reflexivity = Proofview.tclORELSE (reflexivity_red false) begin function (e, info) -> match e with | NoEquationFound -> Hook.get forward_setoid_reflexivity | e -> Proofview.tclZERO ~info e end let intros_reflexivity = (Tacticals.New.tclTHEN intros reflexivity) (* Symmetry tactics *) (* This tactic first tries to apply a constant named sym_eq, where eq is the name of the equality predicate. If this constant is not defined and the conclusion is a=b, it solves the goal doing (Cut b=a;Intro H;Case H;Constructor 1) *) let (forward_setoid_symmetry, setoid_symmetry) = Hook.make () (* This is probably not very useful any longer *) let prove_symmetry hdcncl eq_kind = let symc = match eq_kind with | MonomorphicLeibnizEq (c1,c2) -> mkApp(hdcncl,[|c2;c1|]) | PolymorphicLeibnizEq (typ,c1,c2) -> mkApp(hdcncl,[|typ;c2;c1|]) | HeterogenousEq (t1,c1,t2,c2) -> mkApp(hdcncl,[|t2;c2;t1;c1|]) in Tacticals.New.tclTHENFIRST (cut symc) (Tacticals.New.tclTHENLIST [ intro; Tacticals.New.onLastHyp simplest_case; one_constructor 1 NoBindings ]) let match_with_equation c = Proofview.tclEVARMAP >>= fun sigma -> Proofview.tclENV >>= fun env -> try let res = match_with_equation env sigma c in Proofview.tclUNIT res with NoEquationFound as exn -> let _, info = Exninfo.capture exn in Proofview.tclZERO ~info NoEquationFound let symmetry_red allowred = Proofview.Goal.enter begin fun gl -> (* PL: usual symmetry don't perform any reduction when searching for an equality, but we may need to do some when called back from inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *) let concl = maybe_betadeltaiota_concl allowred gl in match_with_equation concl >>= fun with_eqn -> match with_eqn with | Some eq_data,_,_ -> Tacticals.New.tclTHEN (convert_concl ~check:false concl DEFAULTcast) (Tacticals.New.pf_constr_of_global eq_data.sym >>= apply) | None,eq,eq_kind -> prove_symmetry eq eq_kind end let symmetry = Proofview.tclORELSE (symmetry_red false) begin function (e, info) -> match e with | NoEquationFound -> Hook.get forward_setoid_symmetry | e -> Proofview.tclZERO ~info e end let (forward_setoid_symmetry_in, setoid_symmetry_in) = Hook.make () let symmetry_in id = Proofview.Goal.enter begin fun gl -> let sigma, ctype = Tacmach.New.pf_type_of gl (mkVar id) in let sign,t = decompose_prod_assum sigma ctype in tclEVARSTHEN sigma (Proofview.tclORELSE begin match_with_equation t >>= fun (_,hdcncl,eq) -> let symccl = match eq with | MonomorphicLeibnizEq (c1,c2) -> mkApp (hdcncl, [| c2; c1 |]) | PolymorphicLeibnizEq (typ,c1,c2) -> mkApp (hdcncl, [| typ; c2; c1 |]) | HeterogenousEq (t1,c1,t2,c2) -> mkApp (hdcncl, [| t2; c2; t1; c1 |]) in Tacticals.New.tclTHENS (cut (EConstr.it_mkProd_or_LetIn symccl sign)) [ intro_replacing id; Tacticals.New.tclTHENLIST [ intros; symmetry; apply (mkVar id); assumption ] ] end begin function (e, info) -> match e with | NoEquationFound -> Hook.get forward_setoid_symmetry_in id | e -> Proofview.tclZERO ~info e end) end let intros_symmetry = Tacticals.New.onClause (function | None -> Tacticals.New.tclTHEN intros symmetry | Some id -> symmetry_in id) (* Transitivity tactics *) (* This tactic first tries to apply a constant named eq_trans, where eq is the name of the equality predicate. If this constant is not defined and the conclusion is a=b, it solves the goal doing Cut x1=x2; [Cut x2=x3; [Intros e1 e2; Case e2;Assumption | Idtac] | Idtac] --Eduardo (19/8/97) *) let (forward_setoid_transitivity, setoid_transitivity) = Hook.make () (* This is probably not very useful any longer *) let prove_transitivity hdcncl eq_kind t = Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in let sigma, eq1, eq2 = match eq_kind with | MonomorphicLeibnizEq (c1,c2) -> sigma, mkApp (hdcncl, [| c1; t|]), mkApp (hdcncl, [| t; c2 |]) | PolymorphicLeibnizEq (typ,c1,c2) -> sigma, mkApp (hdcncl, [| typ; c1; t |]), mkApp (hdcncl, [| typ; t; c2 |]) | HeterogenousEq (typ1,c1,typ2,c2) -> let env = Proofview.Goal.env gl in let sigma, typt = Typing.type_of env sigma t in sigma, mkApp(hdcncl, [| typ1; c1; typt ;t |]), mkApp(hdcncl, [| typt; t; typ2; c2 |]) in tclEVARSTHEN sigma (Tacticals.New.tclTHENFIRST (cut eq2) (Tacticals.New.tclTHENFIRST (cut eq1) (Tacticals.New.tclTHENLIST [ Tacticals.New.tclDO 2 intro; Tacticals.New.onLastHyp simplest_case; assumption ]))) end let transitivity_red allowred t = Proofview.Goal.enter begin fun gl -> (* PL: usual transitivity don't perform any reduction when searching for an equality, but we may need to do some when called back from inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *) let concl = maybe_betadeltaiota_concl allowred gl in match_with_equation concl >>= fun with_eqn -> match with_eqn with | Some eq_data,_,_ -> Tacticals.New.tclTHEN (convert_concl ~check:false concl DEFAULTcast) (match t with | None -> Tacticals.New.pf_constr_of_global eq_data.trans >>= eapply | Some t -> Tacticals.New.pf_constr_of_global eq_data.trans >>= fun trans -> apply_list [trans; t]) | None,eq,eq_kind -> match t with | None -> let info = Exninfo.reify () in Tacticals.New.tclZEROMSG ~info (str"etransitivity not supported for this relation.") | Some t -> prove_transitivity eq eq_kind t end let transitivity_gen t = Proofview.tclORELSE (transitivity_red false t) begin function (e, info) -> match e with | NoEquationFound -> Hook.get forward_setoid_transitivity t | e -> Proofview.tclZERO ~info e end let etransitivity = transitivity_gen None let transitivity t = transitivity_gen (Some t) let intros_transitivity n = Tacticals.New.tclTHEN intros (transitivity_gen n) let constr_eq ~strict x y = let fail ~info = Tacticals.New.tclFAIL ~info 0 (str "Not equal") in let fail_universes ~info = Tacticals.New.tclFAIL ~info 0 (str "Not equal (due to universes)") in Proofview.Goal.enter begin fun gl -> let env = Tacmach.New.pf_env gl in let evd = Tacmach.New.project gl in match EConstr.eq_constr_universes env evd x y with | Some csts -> let csts = UnivProblem.to_constraints ~force_weak:false (Evd.universes evd) csts in if strict then if Evd.check_constraints evd csts then Proofview.tclUNIT () else let info = Exninfo.reify () in fail_universes ~info else (match Evd.add_constraints evd csts with | evd -> Proofview.Unsafe.tclEVARS evd | exception (Univ.UniverseInconsistency _ as e) -> let _, info = Exninfo.capture e in fail_universes ~info) | None -> let info = Exninfo.reify () in fail ~info end let unify ?(state=TransparentState.full) x y = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in try let core_flags = { (default_unify_flags ()).core_unify_flags with modulo_delta = state; modulo_conv_on_closed_terms = Some state} in (* What to do on merge and subterm flags?? *) let flags = { (default_unify_flags ()) with core_unify_flags = core_flags; merge_unify_flags = core_flags; subterm_unify_flags = { core_flags with modulo_delta = TransparentState.empty } } in let sigma = w_unify (Tacmach.New.pf_env gl) sigma Reduction.CONV ~flags x y in Proofview.Unsafe.tclEVARS sigma with e when noncritical e -> let e, info = Exninfo.capture e in Proofview.tclZERO ~info (PretypeError (env, sigma, CannotUnify (x, y, None))) end (** [tclWRAPFINALLY before tac finally] runs [before] before each entry-point of [tac] and passes the result of [before] to [finally], which is then run at each exit-point of [tac], regardless of whether it succeeds or fails. Said another way, if [tac] succeeds, then it behaves as [before >>= fun v -> tac >>= fun ret -> finally v <*> tclUNIT ret]; otherwise, if [tac] fails with [e], it behaves as [before >>= fun v -> finally v <*> tclZERO e]. Note that if [tac] succeeds [n] times before finally failing, [before] and [finally] are both run [n+1] times (once around each succuess, and once more around the final failure). *) (* We should probably export this somewhere, but it's not clear where. As per https://github.com/coq/coq/pull/12197#discussion_r418480525 and https://gitter.im/coq/coq?at=5ead5c35347bd616304e83ef, we don't export it from Proofview, because it seems somehow not primitive enough. We don't export it from this file because it is more of a tactical than a tactic. But we also don't export it from Tacticals because all of the non-New tacticals there operate on `tactic`, not `Proofview.tactic`, and all of the `New` tacticals that deal with multi-success things are focussing, i.e., apply their arguments on each goal separately (and it even says so in the comment on `New`), whereas it's important that `tclWRAPFINALLY` doesn't introduce extra focussing. *) let rec tclWRAPFINALLY before tac finally = let open Proofview in let open Proofview.Notations in before >>= fun v -> tclCASE tac >>= function | Fail (e, info) -> finally v >>= fun () -> tclZERO ~info e | Next (ret, tac') -> tclOR (finally v >>= fun () -> tclUNIT ret) (fun e -> tclWRAPFINALLY before (tac' e) finally) let with_set_strategy lvl_ql k = let glob_key r = match r with | GlobRef.ConstRef sp -> ConstKey sp | GlobRef.VarRef id -> VarKey id | _ -> user_err Pp.(str "cannot set an inductive type or a constructor as transparent") in let kl = List.concat (List.map (fun (lvl, ql) -> List.map (fun q -> (lvl, glob_key q)) ql) lvl_ql) in tclWRAPFINALLY (Proofview.tclENV >>= fun env -> let orig_kl = List.map (fun (_lvl, k) -> (Conv_oracle.get_strategy (Environ.oracle env) k, k)) kl in (* Because the global env might be desynchronized from the proof-local env, we need to update the global env to have this tactic play nicely with abstract. TODO: When abstract no longer depends on Global, delete this let orig_kl_global = ... in *) let orig_kl_global = List.map (fun (_lvl, k) -> (Conv_oracle.get_strategy (Environ.oracle (Global.env ())) k, k)) kl in let env = List.fold_left (fun env (lvl, k) -> Environ.set_oracle env (Conv_oracle.set_strategy (Environ.oracle env) k lvl)) env kl in Proofview.Unsafe.tclSETENV env <*> (* TODO: When abstract no longer depends on Global, remove this [Proofview.tclLIFT] block *) Proofview.tclLIFT (Proofview.NonLogical.make (fun () -> List.iter (fun (lvl, k) -> Global.set_strategy k lvl) kl)) <*> Proofview.tclUNIT (orig_kl, orig_kl_global)) k (fun (orig_kl, orig_kl_global) -> (* TODO: When abstract no longer depends on Global, remove this [Proofview.tclLIFT] block *) Proofview.tclLIFT (Proofview.NonLogical.make (fun () -> List.iter (fun (lvl, k) -> Global.set_strategy k lvl) orig_kl_global)) <*> Proofview.tclENV >>= fun env -> let env = List.fold_left (fun env (lvl, k) -> Environ.set_oracle env (Conv_oracle.set_strategy (Environ.oracle env) k lvl)) env orig_kl in Proofview.Unsafe.tclSETENV env) module Simple = struct (** Simplified version of some of the above tactics *) let intro x = intro_move (Some x) MoveLast let apply c = apply_with_bindings_gen false false [None,(CAst.make (c,NoBindings))] let eapply c = apply_with_bindings_gen false true [None,(CAst.make (c,NoBindings))] let elim c = elim false None (c,NoBindings) None let case c = general_case_analysis false None (c,NoBindings) let apply_in id c = apply_in false false id [None,(CAst.make (c, NoBindings))] None end (** Tacticals defined directly in term of Proofview *) module New = struct let reduce_after_refine = (* For backward compatibility reasons, we do not contract let-ins, but we unfold them. *) let redfun env t = let open CClosure in let flags = RedFlags.red_add_transparent allnolet TransparentState.empty in clos_norm_flags flags env t in reduct_in_concl ~check:false (redfun,DEFAULTcast) let refine ~typecheck c = Refine.refine ~typecheck c <*> reduce_after_refine end