(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* head_bound sigma b | LetIn (_, _, _, b) -> head_bound sigma b | App (c, _) -> head_bound sigma c | Case (_, _, _, c, _) -> head_bound sigma c | Ind (ind, _) -> GlobRef.IndRef ind | Const (c, _) -> GlobRef.ConstRef c | Construct (c, _) -> GlobRef.ConstructRef c | Var id -> GlobRef.VarRef id | Proj (p, _) -> GlobRef.ConstRef (Projection.constant p) | Cast (c, _, _) -> head_bound sigma c | Evar _ | Rel _ | Meta _ | Sort _ | Fix _ | Lambda _ | CoFix _ | Int _ | Float _ | Array _ -> raise Bound let head_constr sigma c = try head_bound sigma c with Bound -> user_err (Pp.str "Head identifier must be a constant, section variable, \ (co)inductive type, (co)inductive type constructor, or projection.") let decompose_app_bound sigma t = let t = strip_outer_cast sigma t in let _,ccl = decompose_prod_assum sigma t in let hd,args = decompose_app_vect sigma ccl in let open GlobRef in match EConstr.kind sigma hd with | Const (c,u) -> ConstRef c, args | Ind (i,u) -> IndRef i, args | Construct (c,u) -> ConstructRef c, args | Var id -> VarRef id, args | Proj (p, c) -> ConstRef (Projection.constant p), Array.cons c args | _ -> raise Bound (** Compute the set of section variables that remain in the named context. Starts from the top to the bottom of the context, stops at the first different declaration between the named hyps and the section context. *) let secvars_of_hyps hyps = let secctx = Global.named_context () in let open Context.Named.Declaration in let pred, all = List.fold_left (fun (pred,all) decl -> try let _ = Context.Named.lookup (get_id decl) hyps in (* Approximation, it might be an hypothesis reintroduced with same name and unconvertible types, we must allow it currently, as comparing the declarations for syntactic equality is too strong a check (e.g. an unfold in a section variable would make it unusable). *) (Id.Pred.add (get_id decl) pred, all) with Not_found -> (pred, false)) (Id.Pred.empty,true) secctx in if all then Id.Pred.full (* If the whole section context is available *) else pred let empty_hint_info = { hint_priority = None; hint_pattern = None } (************************************************************************) (* The Type of Constructions Autotactic Hints *) (************************************************************************) type 'a hint_ast = | Res_pf of 'a (* Hint Apply *) | ERes_pf of 'a (* Hint EApply *) | Give_exact of 'a | Res_pf_THEN_trivial_fail of 'a (* Hint Immediate *) | Unfold_nth of evaluable_global_reference (* Hint Unfold *) | Extern of Pattern.constr_pattern option * Genarg.glob_generic_argument (* Hint Extern *) type 'a hints_path_atom_gen = | PathHints of 'a list (* For forward hints, their names is the list of projections *) | PathAny type hints_path_atom = GlobRef.t hints_path_atom_gen type 'a hints_path_gen = | PathAtom of 'a hints_path_atom_gen | PathStar of 'a hints_path_gen | PathSeq of 'a hints_path_gen * 'a hints_path_gen | PathOr of 'a hints_path_gen * 'a hints_path_gen | PathEmpty | PathEpsilon type pre_hints_path = Libnames.qualid hints_path_gen type hints_path = GlobRef.t hints_path_gen type hint_term = | IsGlobRef of GlobRef.t | IsConstr of constr * Univ.ContextSet.t option (* None if monomorphic *) type 'a with_uid = { obj : 'a; uid : KerName.t; } type raw_hint = constr * types * Univ.ContextSet.t option type hint = { hint_term : constr; hint_type : types; hint_uctx : Univ.ContextSet.t option; (* None if monomorphic *) hint_clnv : clausenv; } type 'a with_metadata = { pri : int (** A number lower is higher priority *) ; pat : constr_pattern option (** A pattern for the concl of the Goal *) ; name : hints_path_atom (** A potential name to refer to the hint *) ; db : string option (** The database from which the hint comes *) ; secvars : Id.Pred.t (** The set of section variables the hint depends on *) ; code : 'a (** the tactic to apply when the concl matches pat *) } type full_hint = hint hint_ast with_uid with_metadata type hint_entry = GlobRef.t option * raw_hint hint_ast with_uid with_metadata type hint_mode = | ModeInput (* No evars *) | ModeNoHeadEvar (* No evar at the head *) | ModeOutput (* Anything *) type 'a hints_transparency_target = | HintsVariables | HintsConstants | HintsReferences of 'a list type import_level = HintLax | HintWarn | HintStrict let warn_hint_to_string = function | HintLax -> "Lax" | HintWarn -> "Warn" | HintStrict -> "Strict" let string_to_warn_hint = function | "Lax" -> HintLax | "Warn" -> HintWarn | "Strict" -> HintStrict | _ -> user_err Pp.(str "Only the following values are accepted: Lax, Warn, Strict.") let warn_hint = Goptions.declare_interpreted_string_option_and_ref ~depr:false ~key:["Loose"; "Hint"; "Behavior"] ~value:HintLax string_to_warn_hint warn_hint_to_string let fresh_key = let id = Summary.ref ~name:"HINT-COUNTER" 0 in fun () -> let cur = incr id; !id in let lbl = Id.of_string ("_" ^ string_of_int cur) in let kn = Lib.make_kn lbl in let (mp, _) = KerName.repr kn in (* We embed the full path of the kernel name in the label so that the identifier should be unique. This ensures that including two modules together won't confuse the corresponding labels. *) let lbl = Id.of_string_soft (Printf.sprintf "%s#%i" (ModPath.to_string mp) cur) in KerName.make mp (Label.of_id lbl) let pri_order_int (id1, {pri=pri1}) (id2, {pri=pri2}) = let d = pri1 - pri2 in if Int.equal d 0 then id2 - id1 else d let pri_order t1 t2 = pri_order_int t1 t2 <= 0 (* Nov 98 -- Papageno *) (* Les Hints sont ré-organisés en plusieurs databases. La table impérative "searchtable", de type "hint_db_table", associe une database (hint_db) à chaque nom. Une hint_db est une table d'association fonctionelle constr -> search_entry Le constr correspond à la constante de tête de la conclusion. Une search_entry est un triplet comprenant : - la liste des tactiques qui n'ont pas de pattern associé - la liste des tactiques qui ont un pattern - un discrimination net borné (Btermdn.t) constitué de tous les patterns de la seconde liste de tactiques *) type stored_data = int * full_hint (* First component is the index of insertion in the table, to keep most recent first semantics. *) module Bounded_net : sig type t val empty : t val add : TransparentState.t option -> t -> Pattern.constr_pattern -> stored_data -> t val lookup : Environ.env -> Evd.evar_map -> TransparentState.t option -> t -> EConstr.constr -> stored_data list end = struct module Data = struct type t = stored_data let compare = pri_order_int end module Bnet = Btermdn.Make(Data) type diff = Pattern.constr_pattern * stored_data type data = Bnet of Bnet.t | Diff of diff * data ref type t = data ref let empty = ref (Bnet Bnet.empty) let add _st net p v = ref (Diff ((p, v), net)) let rec force env st net = match !net with | Bnet dn -> dn | Diff ((p, v), rem) -> let dn = force env st rem in let p = Bnet.pattern env st p in let dn = Bnet.add dn p v in let () = net := (Bnet dn) in dn let lookup env sigma st net p = let dn = force env st net in Bnet.lookup env sigma st dn p end type search_entry = { sentry_nopat : stored_data list; sentry_pat : stored_data list; sentry_bnet : Bounded_net.t; sentry_mode : hint_mode array list; } let empty_se = { sentry_nopat = []; sentry_pat = []; sentry_bnet = Bounded_net.empty; sentry_mode = []; } let eq_pri_auto_tactic (_, x) (_, y) = KerName.equal x.code.uid y.code.uid let add_tac pat t se = match pat with | None -> if List.exists (eq_pri_auto_tactic t) se.sentry_nopat then se else { se with sentry_nopat = List.insert pri_order t se.sentry_nopat } | Some (st, pat) -> if List.exists (eq_pri_auto_tactic t) se.sentry_pat then se else { se with sentry_pat = List.insert pri_order t se.sentry_pat; sentry_bnet = Bounded_net.add st se.sentry_bnet pat t; } let rebuild_dn st se = let dn' = List.fold_left (fun dn (id, t) -> Bounded_net.add (Some st) dn (Option.get t.pat) (id, t)) Bounded_net.empty se.sentry_pat in { se with sentry_bnet = dn' } let lookup_tacs env sigma concl st se = let l' = Bounded_net.lookup env sigma st se.sentry_bnet concl in let sl' = List.stable_sort pri_order_int l' in List.merge pri_order_int se.sentry_nopat sl' let is_transparent_gr ts = let open GlobRef in function | VarRef id -> TransparentState.is_transparent_variable ts id | ConstRef cst -> TransparentState.is_transparent_constant ts cst | IndRef _ | ConstructRef _ -> false let strip_params env sigma c = match EConstr.kind sigma c with | App (f, args) -> (match EConstr.kind sigma f with | Const (cst,_) -> (match Recordops.find_primitive_projection cst with | Some p -> let p = Projection.make p false in let npars = Projection.npars p in if Array.length args > npars then mkApp (mkProj (p, args.(npars)), Array.sub args (npars+1) (Array.length args - (npars + 1))) else c | None -> c) | _ -> c) | _ -> c let merge_context_set_opt sigma ctx = match ctx with | None -> sigma | Some ctx -> Evd.merge_context_set Evd.univ_flexible sigma ctx let instantiate_hint env sigma p = let mk_clenv (c, cty, ctx) = let sigma = merge_context_set_opt sigma ctx in let cl = mk_clenv_from_env env sigma None (c,cty) in let cl = {cl with templval = { cl.templval with rebus = strip_params env sigma cl.templval.rebus }; env = empty_env} in { hint_term = c; hint_type = cty; hint_uctx = ctx; hint_clnv = cl; } in let code = match p.code.obj with | Res_pf c -> Res_pf (mk_clenv c) | ERes_pf c -> ERes_pf (mk_clenv c) | Res_pf_THEN_trivial_fail c -> Res_pf_THEN_trivial_fail (mk_clenv c) | Give_exact c -> Give_exact (mk_clenv c) | (Unfold_nth _ | Extern _) as h -> h in { p with code = { p.code with obj = code } } let hints_path_atom_eq h1 h2 = match h1, h2 with | PathHints l1, PathHints l2 -> List.equal GlobRef.equal l1 l2 | PathAny, PathAny -> true | _ -> false let rec hints_path_eq h1 h2 = match h1, h2 with | PathAtom h1, PathAtom h2 -> hints_path_atom_eq h1 h2 | PathStar h1, PathStar h2 -> hints_path_eq h1 h2 | PathSeq (l1, r1), PathSeq (l2, r2) -> hints_path_eq l1 l2 && hints_path_eq r1 r2 | PathOr (l1, r1), PathOr (l2, r2) -> hints_path_eq l1 l2 && hints_path_eq r1 r2 | PathEmpty, PathEmpty -> true | PathEpsilon, PathEpsilon -> true | _ -> false let path_matches hp hints = let rec aux hp hints k = match hp, hints with | PathAtom _, [] -> false | PathAtom PathAny, (_ :: hints') -> k hints' | PathAtom p, (h :: hints') -> if hints_path_atom_eq p h then k hints' else false | PathStar hp', hints -> k hints || aux hp' hints (fun hints' -> aux hp hints' k) | PathSeq (hp, hp'), hints -> aux hp hints (fun hints' -> aux hp' hints' k) | PathOr (hp, hp'), hints -> aux hp hints k || aux hp' hints k | PathEmpty, _ -> false | PathEpsilon, hints -> k hints in aux hp hints (fun hints' -> true) let rec matches_epsilon = function | PathAtom _ -> false | PathStar _ -> true | PathSeq (p, p') -> matches_epsilon p && matches_epsilon p' | PathOr (p, p') -> matches_epsilon p || matches_epsilon p' | PathEmpty -> false | PathEpsilon -> true let rec is_empty = function | PathAtom _ -> false | PathStar _ -> false | PathSeq (p, p') -> is_empty p || is_empty p' | PathOr (p, p') -> matches_epsilon p && matches_epsilon p' | PathEmpty -> true | PathEpsilon -> false let path_seq p p' = match p, p' with | PathEpsilon, p' -> p' | p, PathEpsilon -> p | p, p' -> PathSeq (p, p') let rec path_derivate hp hint = let rec derivate_atoms hints hints' = match hints, hints' with | gr :: grs, gr' :: grs' when GlobRef.equal gr gr' -> derivate_atoms grs grs' | [], [] -> PathEpsilon | [], hints -> PathEmpty | grs, [] -> PathAtom (PathHints grs) | _, _ -> PathEmpty in match hp with | PathAtom PathAny -> PathEpsilon | PathAtom (PathHints grs) -> (match grs, hint with | h :: _, PathAny -> PathEmpty | hints, PathHints hints' -> derivate_atoms hints hints' | _, _ -> assert false) | PathStar p -> if path_matches p [hint] then hp else PathEpsilon | PathSeq (hp, hp') -> let hpder = path_derivate hp hint in if matches_epsilon hp then PathOr (path_seq hpder hp', path_derivate hp' hint) else if is_empty hpder then PathEmpty else path_seq hpder hp' | PathOr (hp, hp') -> PathOr (path_derivate hp hint, path_derivate hp' hint) | PathEmpty -> PathEmpty | PathEpsilon -> PathEmpty let rec normalize_path h = match h with | PathStar PathEpsilon -> PathEpsilon | PathSeq (PathEmpty, _) | PathSeq (_, PathEmpty) -> PathEmpty | PathSeq (PathEpsilon, p) | PathSeq (p, PathEpsilon) -> normalize_path p | PathOr (PathEmpty, p) | PathOr (p, PathEmpty) -> normalize_path p | PathOr (p, q) -> let p', q' = normalize_path p, normalize_path q in if hints_path_eq p p' && hints_path_eq q q' then h else normalize_path (PathOr (p', q')) | PathSeq (p, q) -> let p', q' = normalize_path p, normalize_path q in if hints_path_eq p p' && hints_path_eq q q' then h else normalize_path (PathSeq (p', q')) | _ -> h let path_derivate hp hint = normalize_path (path_derivate hp hint) let pp_hints_path_atom prg a = match a with | PathAny -> str"_" | PathHints grs -> pr_sequence prg grs let pp_hints_path_gen prg = let rec aux = function | PathAtom pa -> pp_hints_path_atom prg pa | PathStar (PathAtom PathAny) -> str"_*" | PathStar p -> str "(" ++ aux p ++ str")*" | PathSeq (p, p') -> aux p ++ spc () ++ aux p' | PathOr (p, p') -> str "(" ++ aux p ++ spc () ++ str"|" ++ cut () ++ spc () ++ aux p' ++ str ")" | PathEmpty -> str"emp" | PathEpsilon -> str"eps" in aux let pp_hints_path = pp_hints_path_gen pr_global let glob_hints_path_atom p = match p with | PathHints g -> PathHints (List.map Nametab.global g) | PathAny -> PathAny let glob_hints_path = let rec aux = function | PathAtom pa -> PathAtom (glob_hints_path_atom pa) | PathStar p -> PathStar (aux p) | PathSeq (p, p') -> PathSeq (aux p, aux p') | PathOr (p, p') -> PathOr (aux p, aux p') | PathEmpty -> PathEmpty | PathEpsilon -> PathEpsilon in aux let subst_path_atom subst p = match p with | PathAny -> p | PathHints grs -> let gr' gr = fst (subst_global subst gr) in let grs' = List.Smart.map gr' grs in if grs' == grs then p else PathHints grs' let rec subst_hints_path subst hp = match hp with | PathAtom p -> let p' = subst_path_atom subst p in if p' == p then hp else PathAtom p' | PathStar p -> let p' = subst_hints_path subst p in if p' == p then hp else PathStar p' | PathSeq (p, q) -> let p' = subst_hints_path subst p in let q' = subst_hints_path subst q in if p' == p && q' == q then hp else PathSeq (p', q') | PathOr (p, q) -> let p' = subst_hints_path subst p in let q' = subst_hints_path subst q in if p' == p && q' == q then hp else PathOr (p', q') | _ -> hp type hint_db_name = string type 'a with_mode = | ModeMatch of 'a | ModeMismatch module Hint_db : sig type t val empty : ?name:hint_db_name -> TransparentState.t -> bool -> t val map_none : secvars:Id.Pred.t -> t -> full_hint list val map_all : secvars:Id.Pred.t -> GlobRef.t -> t -> full_hint list val map_existential : evar_map -> secvars:Id.Pred.t -> (GlobRef.t * constr array) -> constr -> t -> full_hint list with_mode val map_eauto : Environ.env -> evar_map -> secvars:Id.Pred.t -> (GlobRef.t * constr array) -> constr -> t -> full_hint list with_mode val map_auto : Environ.env -> evar_map -> secvars:Id.Pred.t -> (GlobRef.t * constr array) -> constr -> t -> full_hint list val add_one : env -> evar_map -> hint_entry -> t -> t val add_list : env -> evar_map -> hint_entry list -> t -> t val remove_one : Environ.env -> GlobRef.t -> t -> t val remove_list : Environ.env -> GlobRef.t list -> t -> t val iter : (GlobRef.t option -> hint_mode array list -> full_hint list -> unit) -> t -> unit val use_dn : t -> bool val transparent_state : t -> TransparentState.t val set_transparent_state : t -> TransparentState.t -> t val add_cut : hints_path -> t -> t val add_mode : GlobRef.t -> hint_mode array -> t -> t val cut : t -> hints_path val unfolds : t -> Id.Set.t * Cset.t val add_modes : hint_mode array list GlobRef.Map.t -> t -> t val modes : t -> hint_mode array list GlobRef.Map.t val fold : (GlobRef.t option -> hint_mode array list -> full_hint list -> 'a -> 'a) -> t -> 'a -> 'a end = struct type t = { hintdb_state : TransparentState.t; hintdb_cut : hints_path; hintdb_unfolds : Id.Set.t * Cset.t; hintdb_max_id : int; use_dn : bool; hintdb_map : search_entry GlobRef.Map.t; (* A list of unindexed entries starting with an unfoldable constant or with no associated pattern. *) hintdb_nopat : (GlobRef.t option * stored_data) list; hintdb_name : string option; } let next_hint_id db = let h = db.hintdb_max_id in { db with hintdb_max_id = succ db.hintdb_max_id }, h let empty ?name st use_dn = { hintdb_state = st; hintdb_cut = PathEmpty; hintdb_unfolds = (Id.Set.empty, Cset.empty); hintdb_max_id = 0; use_dn = use_dn; hintdb_map = GlobRef.Map.empty; hintdb_nopat = []; hintdb_name = name; } let find key db = try GlobRef.Map.find key db.hintdb_map with Not_found -> empty_se let realize_tac secvars (id,tac) = if Id.Pred.subset tac.secvars secvars then Some tac else (* Warn about no longer typable hint? *) None let head_evar sigma c = let rec hrec c = match EConstr.kind sigma c with | Evar (evk,_) -> evk | Case (_,_,_,c,_) -> hrec c | App (c,_) -> hrec c | Cast (c,_,_) -> hrec c | Proj (p, c) -> hrec c | _ -> raise Evarutil.NoHeadEvar in hrec c let match_mode sigma m arg = match m with | ModeInput -> not (occur_existential sigma arg) | ModeNoHeadEvar -> (try ignore(head_evar sigma arg); false with Evarutil.NoHeadEvar -> true) | ModeOutput -> true let matches_mode sigma args mode = Array.length mode == Array.length args && Array.for_all2 (match_mode sigma) mode args let matches_modes sigma args modes = if List.is_empty modes then true else List.exists (matches_mode sigma args) modes let merge_entry secvars db nopat pat = let h = List.sort pri_order_int (List.map snd db.hintdb_nopat) in let h = List.merge pri_order_int h nopat in let h = List.merge pri_order_int h pat in List.map_filter (realize_tac secvars) h let map_none ~secvars db = merge_entry secvars db [] [] let map_all ~secvars k db = let se = find k db in merge_entry secvars db se.sentry_nopat se.sentry_pat (* Precondition: concl has no existentials *) let map_auto env sigma ~secvars (k,args) concl db = let se = find k db in let st = if db.use_dn then (Some db.hintdb_state) else None in let pat = lookup_tacs env sigma concl st se in merge_entry secvars db [] pat let map_existential sigma ~secvars (k,args) concl db = let se = find k db in if matches_modes sigma args se.sentry_mode then ModeMatch (merge_entry secvars db se.sentry_nopat se.sentry_pat) else ModeMismatch (* [c] contains an existential *) let map_eauto env sigma ~secvars (k,args) concl db = let se = find k db in if matches_modes sigma args se.sentry_mode then let st = if db.use_dn then Some db.hintdb_state else None in let pat = lookup_tacs env sigma concl st se in ModeMatch (merge_entry secvars db [] pat) else ModeMismatch let is_exact = function | Give_exact _ -> true | _ -> false let is_unfold = function | Unfold_nth _ -> true | _ -> false let addkv gr id v db = let idv = id, { v with db = db.hintdb_name } in let k = match gr with | Some gr -> if db.use_dn && is_transparent_gr db.hintdb_state gr && is_unfold v.code.obj then None else Some gr | None -> None in match k with | None -> let is_present (_, (_, v')) = KerName.equal v.code.uid v'.code.uid in if not (List.exists is_present db.hintdb_nopat) then (* FIXME *) { db with hintdb_nopat = (gr,idv) :: db.hintdb_nopat } else db | Some gr -> let pat = if not db.use_dn && is_exact v.code.obj then None else let dnst = if db.use_dn then Some db.hintdb_state else None in Option.map (fun p -> (dnst, p)) v.pat in let oval = find gr db in { db with hintdb_map = GlobRef.Map.add gr (add_tac pat idv oval) db.hintdb_map } let rebuild_db st' db = let db' = { db with hintdb_map = GlobRef.Map.map (rebuild_dn st') db.hintdb_map; hintdb_state = st'; hintdb_nopat = [] } in List.fold_left (fun db (gr,(id,v)) -> addkv gr id v db) db' db.hintdb_nopat let add_one env sigma (k, v) db = let v = instantiate_hint env sigma v in let st',db,rebuild = match v.code.obj with | Unfold_nth egr -> let addunf ts (ids, csts) = let open TransparentState in match egr with | EvalVarRef id -> { ts with tr_var = Id.Pred.add id ts.tr_var }, (Id.Set.add id ids, csts) | EvalConstRef cst -> { ts with tr_cst = Cpred.add cst ts.tr_cst }, (ids, Cset.add cst csts) in let state, unfs = addunf db.hintdb_state db.hintdb_unfolds in state, { db with hintdb_unfolds = unfs }, true | _ -> db.hintdb_state, db, false in let db = if db.use_dn && rebuild then rebuild_db st' db else db in let db, id = next_hint_id db in addkv k id v db let add_list env sigma l db = List.fold_left (fun db k -> add_one env sigma k db) db l let remove_sdl p sdl = List.filter p sdl let remove_he st p se = let sl1' = remove_sdl p se.sentry_nopat in let sl2' = remove_sdl p se.sentry_pat in if sl1' == se.sentry_nopat && sl2' == se.sentry_pat then se else rebuild_dn st { se with sentry_nopat = sl1'; sentry_pat = sl2' } let remove_list env grs db = let filter (_, h) = match h.name with PathHints [gr] -> not (List.mem_f GlobRef.equal gr grs) | _ -> true in let hintmap = GlobRef.Map.map (remove_he db.hintdb_state filter) db.hintdb_map in let hintnopat = List.filter (fun (ge, sd) -> filter sd) db.hintdb_nopat in { db with hintdb_map = hintmap; hintdb_nopat = hintnopat } let remove_one env gr db = remove_list env [gr] db let get_entry se = let h = List.merge pri_order_int se.sentry_nopat se.sentry_pat in List.map snd h let iter f db = let iter_se k se = f (Some k) se.sentry_mode (get_entry se) in f None [] (List.map (fun x -> snd (snd x)) db.hintdb_nopat); GlobRef.Map.iter iter_se db.hintdb_map let fold f db accu = let accu = f None [] (List.map (fun x -> snd (snd x)) db.hintdb_nopat) accu in GlobRef.Map.fold (fun k se -> f (Some k) se.sentry_mode (get_entry se)) db.hintdb_map accu let transparent_state db = db.hintdb_state let set_transparent_state db st = if db.use_dn then rebuild_db st db else { db with hintdb_state = st } let add_cut path db = { db with hintdb_cut = normalize_path (PathOr (db.hintdb_cut, path)) } let add_mode gr m db = let se = find gr db in let se = { se with sentry_mode = m :: se.sentry_mode } in { db with hintdb_map = GlobRef.Map.add gr se db.hintdb_map } let cut db = db.hintdb_cut let unfolds db = db.hintdb_unfolds let add_modes modes db = let f gr e me = Some { e with sentry_mode = me.sentry_mode @ e.sentry_mode } in let mode_entries = GlobRef.Map.map (fun m -> { empty_se with sentry_mode = m }) modes in { db with hintdb_map = GlobRef.Map.union f db.hintdb_map mode_entries } let modes db = GlobRef.Map.map (fun se -> se.sentry_mode) db.hintdb_map let use_dn db = db.use_dn end module Hintdbmap = String.Map type hint_db = Hint_db.t let searchtable = Summary.ref ~name:"searchtable" Hintdbmap.empty let statustable = Summary.ref ~name:"statustable" KNmap.empty let searchtable_map name = Hintdbmap.find name !searchtable let searchtable_add (name,db) = searchtable := Hintdbmap.add name db !searchtable let current_db_names () = Hintdbmap.domain !searchtable let current_db () = Hintdbmap.bindings !searchtable let current_pure_db () = List.map snd (current_db ()) let error_no_such_hint_database x = user_err ~hdr:"Hints" (str "No such Hint database: " ++ str x ++ str ".") (**************************************************************************) (* Auxiliary functions to prepare AUTOHINT objects *) (**************************************************************************) let rec nb_hyp sigma c = match EConstr.kind sigma c with | Prod(_,_,c2) -> if noccurn sigma 1 c2 then 1+(nb_hyp sigma c2) else nb_hyp sigma c2 | _ -> 0 (* adding and removing tactics in the search table *) let with_uid c = { obj = c; uid = fresh_key () } let secvars_of_idset s = Id.Set.fold (fun id p -> if is_section_variable id then Id.Pred.add id p else p) s Id.Pred.empty let secvars_of_constr env sigma c = secvars_of_idset (Termops.global_vars_set env sigma c) let secvars_of_global env gr = secvars_of_idset (vars_of_global env gr) let make_exact_entry env sigma info ?(name=PathAny) (c, cty, ctx) = let secvars = secvars_of_constr env sigma c in let cty = strip_outer_cast sigma cty in match EConstr.kind sigma cty with | Prod _ -> failwith "make_exact_entry" | _ -> let hd = try head_bound sigma cty with Bound -> failwith "make_exact_entry" in let pri = match info.hint_priority with None -> 0 | Some p -> p in let pat = match info.hint_pattern with | Some pat -> snd pat | None -> Patternops.pattern_of_constr env sigma (EConstr.to_constr ~abort_on_undefined_evars:false sigma cty) in (Some hd, { pri; pat = Some pat; name; db = None; secvars; code = with_uid (Give_exact (c, cty, ctx)); }) let make_apply_entry env sigma hnf info ?(name=PathAny) (c, cty, ctx) = let cty = if hnf then hnf_constr env sigma cty else cty in match EConstr.kind sigma cty with | Prod _ -> let sigma' = merge_context_set_opt sigma ctx in let ce = mk_clenv_from_env env sigma' None (c,cty) in let c' = clenv_type (* ~reduce:false *) ce in let hd = try head_bound ce.evd c' with Bound -> failwith "make_apply_entry" in let miss = clenv_missing ce in let nmiss = List.length miss in let secvars = secvars_of_constr env sigma c in let pri = match info.hint_priority with None -> nb_hyp sigma' cty + nmiss | Some p -> p in let pat = match info.hint_pattern with | Some p -> snd p | None -> Patternops.pattern_of_constr env ce.evd (EConstr.to_constr ~abort_on_undefined_evars:false sigma c') in if Int.equal nmiss 0 then (Some hd, { pri; pat = Some pat; name; db = None; secvars; code = with_uid (Res_pf(c,cty,ctx)); }) else (Some hd, { pri; pat = Some pat; name; db = None; secvars; code = with_uid (ERes_pf(c,cty,ctx)); }) | _ -> failwith "make_apply_entry" (* flags is (e,h,v) with e=true if eapply and h=true if hnf and v=true if verbose c is a constr cty is the type of constr *) let fresh_global_or_constr env sigma cr = match cr with | IsGlobRef gr -> let (c, ctx) = UnivGen.fresh_global_instance env gr in let ctx = if Environ.is_polymorphic env gr then Some ctx else None in (EConstr.of_constr c, ctx) | IsConstr (c, ctx) -> (c, ctx) let make_resolves env sigma (eapply, hnf) info ~check ?name cr = let c, ctx = fresh_global_or_constr env sigma cr in let cty = Retyping.get_type_of env sigma c in let try_apply f = try let (_, hint) as ans = f (c, cty, ctx) in match hint.code.obj with | ERes_pf _ -> if not eapply then None else Some ans | _ -> Some ans with Failure _ -> None in let ents = List.map_filter try_apply [make_exact_entry env sigma info ?name; make_apply_entry env sigma hnf info ?name] in if check && List.is_empty ents then user_err ~hdr:"Hint" (pr_leconstr_env env sigma c ++ spc() ++ (if eapply then str"cannot be used as a hint." else str "can be used as a hint only for eauto.")); ents (* used to add an hypothesis to the local hint database *) let make_resolve_hyp env sigma decl = let hname = NamedDecl.get_id decl in let c = mkVar hname in try [make_apply_entry env sigma true empty_hint_info ~name:(PathHints [GlobRef.VarRef hname]) (c, NamedDecl.get_type decl, None)] with | Failure _ -> [] | e when noncritical e -> anomaly (Pp.str "make_resolve_hyp.") (* REM : in most cases hintname = id *) let make_unfold eref = let g = global_of_evaluable_reference eref in (Some g, { pri = 4; pat = None; name = PathHints [g]; db = None; secvars = secvars_of_global (Global.env ()) g; code = with_uid (Unfold_nth eref) }) let make_extern pri pat tacast = let hdconstr = match pat with | None -> None | Some c -> try Some (head_pattern_bound c) with BoundPattern -> user_err (Pp.str "Head pattern or sub-pattern must be a global constant, a section variable, \ an if, case, or let expression, an application, or a projection.") in (hdconstr, { pri = pri; pat = pat; name = PathAny; db = None; secvars = Id.Pred.empty; (* Approximation *) code = with_uid (Extern (pat, tacast)) }) let make_mode ref m = let open Term in let ty, _ = Typeops.type_of_global_in_context (Global.env ()) ref in let ctx, t = decompose_prod ty in let n = List.length ctx in let m' = Array.of_list m in if not (n == Array.length m') then user_err ~hdr:"Hint" (pr_global ref ++ str" has " ++ int n ++ str" arguments while the mode declares " ++ int (Array.length m')) else m' let make_trivial env sigma ?(name=PathAny) r = let c,ctx = fresh_global_or_constr env sigma r in let sigma = merge_context_set_opt sigma ctx in let t = hnf_constr env sigma (Retyping.get_type_of env sigma c) in let hd = head_constr sigma t in let ce = mk_clenv_from_env env sigma None (c,t) in (Some hd, { pri=1; pat = Some (Patternops.pattern_of_constr env ce.evd (EConstr.to_constr sigma (clenv_type ce))); name = name; db = None; secvars = secvars_of_constr env sigma c; code= with_uid (Res_pf_THEN_trivial_fail(c,t,ctx)) }) (**************************************************************************) (* declaration of the AUTOHINT library object *) (**************************************************************************) (* If the database does not exist, it is created *) (* TODO: should a warning be printed in this case ?? *) let get_db dbname = try searchtable_map dbname with Not_found -> Hint_db.empty ~name:dbname TransparentState.empty false let add_hint dbname hintlist = let check (_, h) = let () = if KNmap.mem h.code.uid !statustable then user_err Pp.(str "Conflicting hint keys. This can happen when including \ twice the same module.") in statustable := KNmap.add h.code.uid false !statustable in let () = List.iter check hintlist in let db = get_db dbname in let env = Global.env () in let sigma = Evd.from_env env in let db' = Hint_db.add_list env sigma hintlist db in searchtable_add (dbname,db') let add_transparency dbname target b = let open TransparentState in let db = get_db dbname in let st = Hint_db.transparent_state db in let st' = match target with | HintsVariables -> { st with tr_var = (if b then Id.Pred.full else Id.Pred.empty) } | HintsConstants -> { st with tr_cst = (if b then Cpred.full else Cpred.empty) } | HintsReferences grs -> List.fold_left (fun st gr -> match gr with | EvalConstRef c -> { st with tr_cst = (if b then Cpred.add else Cpred.remove) c st.tr_cst } | EvalVarRef v -> { st with tr_var = (if b then Id.Pred.add else Id.Pred.remove) v st.tr_var }) st grs in searchtable_add (dbname, Hint_db.set_transparent_state db st') let remove_hint dbname grs = let env = Global.env () in let db = get_db dbname in let db' = Hint_db.remove_list env grs db in searchtable_add (dbname, db') type hint_action = | CreateDB of bool * TransparentState.t | AddTransparency of { superglobal : bool; grefs : evaluable_global_reference hints_transparency_target; state : bool; } | AddHints of { superglobal : bool; hints : hint_entry list } | RemoveHints of { superglobal : bool; hints : GlobRef.t list } | AddCut of { superglobal : bool; paths : hints_path } | AddMode of { superglobal : bool; gref : GlobRef.t; mode : hint_mode array } let add_cut dbname path = let db = get_db dbname in let db' = Hint_db.add_cut path db in searchtable_add (dbname, db') let add_mode dbname l m = let db = get_db dbname in let db' = Hint_db.add_mode l m db in searchtable_add (dbname, db') type hint_obj = { hint_local : bool; hint_name : string; hint_action : hint_action; } let load_autohint _ (kn, h) = let name = h.hint_name in match h.hint_action with | CreateDB (b, st) -> searchtable_add (name, Hint_db.empty ~name st b) | AddTransparency { superglobal; grefs; state } -> if superglobal then add_transparency name grefs state | AddHints { superglobal; hints } -> if superglobal then add_hint name hints | RemoveHints { superglobal; hints } -> if superglobal then remove_hint name hints | AddCut { superglobal; paths } -> if superglobal then add_cut name paths | AddMode { superglobal; gref; mode } -> if superglobal then add_mode name gref mode let open_autohint i (kn, h) = if Int.equal i 1 then match h.hint_action with | AddHints { superglobal; hints } -> let () = if not superglobal then (* Import-bound hints must be declared when not imported yet *) let filter (_, h) = not @@ KNmap.mem h.code.uid !statustable in add_hint h.hint_name (List.filter filter hints) in let add (_, hint) = statustable := KNmap.add hint.code.uid true !statustable in List.iter add hints | AddCut { superglobal; paths } -> if not superglobal then add_cut h.hint_name paths | AddTransparency { superglobal; grefs; state } -> if not superglobal then add_transparency h.hint_name grefs state | RemoveHints { superglobal; hints } -> if not superglobal then remove_hint h.hint_name hints | AddMode { superglobal; gref; mode } -> if not superglobal then add_mode h.hint_name gref mode | CreateDB _ -> () let cache_autohint (kn, obj) = load_autohint 1 (kn, obj); open_autohint 1 (kn, obj) let subst_autohint (subst, obj) = let subst_key gr = let (gr', t) = subst_global subst gr in match t with | None -> gr' | Some t -> (try head_bound Evd.empty (EConstr.of_constr t.Univ.univ_abstracted_value) with Bound -> gr') in let subst_mps subst c = EConstr.of_constr (subst_mps subst (EConstr.Unsafe.to_constr c)) in let subst_aux ((c, t, ctx) as h) = let c' = subst_mps subst c in let t' = subst_mps subst t in if c==c' && t'==t then h else (c', t', ctx) in let subst_hint (k,data as hint) = let k' = Option.Smart.map subst_key k in let env = Global.env () in let sigma = Evd.from_env env in let pat' = Option.Smart.map (subst_pattern env sigma subst) data.pat in let code' = match data.code.obj with | Res_pf h -> let h' = subst_aux h in if h == h' then data.code.obj else Res_pf h' | ERes_pf h -> let h' = subst_aux h in if h == h' then data.code.obj else ERes_pf h' | Give_exact h -> let h' = subst_aux h in if h == h' then data.code.obj else Give_exact h' | Res_pf_THEN_trivial_fail h -> let h' = subst_aux h in if h == h' then data.code.obj else Res_pf_THEN_trivial_fail h' | Unfold_nth ref -> let ref' = subst_evaluable_reference subst ref in if ref==ref' then data.code.obj else Unfold_nth ref' | Extern (pat, tac) -> let pat' = Option.Smart.map (subst_pattern env sigma subst) data.pat in let tac' = Genintern.generic_substitute subst tac in if pat==pat' && tac==tac' then data.code.obj else Extern (pat', tac') in let name' = subst_path_atom subst data.name in let uid' = subst_kn subst data.code.uid in let data' = if data.code.uid == uid' && data.pat == pat' && data.name == name' && data.code.obj == code' then data else { data with pat = pat'; name = name'; code = { obj = code'; uid = uid' } } in if k' == k && data' == data then hint else (k',data') in let action = match obj.hint_action with | CreateDB _ -> obj.hint_action | AddTransparency { superglobal; grefs = target; state = b } -> let target' = match target with | HintsVariables -> target | HintsConstants -> target | HintsReferences grs -> let grs' = List.Smart.map (subst_evaluable_reference subst) grs in if grs == grs' then target else HintsReferences grs' in if target' == target then obj.hint_action else AddTransparency { superglobal; grefs = target'; state = b } | AddHints { superglobal; hints } -> let hints' = List.Smart.map subst_hint hints in if hints' == hints then obj.hint_action else AddHints { superglobal; hints = hints' } | RemoveHints { superglobal; hints = grs } -> let grs' = List.Smart.map (subst_global_reference subst) grs in if grs == grs' then obj.hint_action else RemoveHints { superglobal; hints = grs' } | AddCut { superglobal; paths = path } -> let path' = subst_hints_path subst path in if path' == path then obj.hint_action else AddCut { superglobal; paths = path' } | AddMode { superglobal; gref = l; mode = m } -> let l' = subst_global_reference subst l in if l' == l then obj.hint_action else AddMode { superglobal; gref = l'; mode = m } in if action == obj.hint_action then obj else { obj with hint_action = action } let classify_autohint obj = match obj.hint_action with | AddHints { hints = [] } -> Dispose | _ -> if obj.hint_local then Dispose else Substitute obj let inAutoHint : hint_obj -> obj = declare_object {(default_object "AUTOHINT") with cache_function = cache_autohint; load_function = load_autohint; open_function = simple_open open_autohint; subst_function = subst_autohint; classify_function = classify_autohint; } let make_hint ?(local = false) name action = { hint_local = local; hint_name = name; hint_action = action; } let create_hint_db l n st b = let hint = make_hint ~local:l n (CreateDB (b, st)) in Lib.add_anonymous_leaf (inAutoHint hint) let interp_locality = function | Goptions.OptDefault | Goptions.OptGlobal -> false, true | Goptions.OptExport -> false, false | Goptions.OptLocal -> true, false let remove_hints ~locality dbnames grs = let local, superglobal = interp_locality locality in let dbnames = if List.is_empty dbnames then ["core"] else dbnames in List.iter (fun dbname -> let hint = make_hint ~local dbname (RemoveHints { superglobal; hints = grs }) in Lib.add_anonymous_leaf (inAutoHint hint)) dbnames (**************************************************************************) (* The "Hint" vernacular command *) (**************************************************************************) let add_resolves env sigma clist ~local ~superglobal dbnames = List.iter (fun dbname -> let r = List.flatten (List.map (fun (pri, hnf, path, gr) -> make_resolves env sigma (true, hnf) pri ~check:true ~name:path gr) clist) in let check (_, hint) = match hint.code.obj with | ERes_pf (c, cty, ctx) -> let sigma' = merge_context_set_opt sigma ctx in let ce = mk_clenv_from_env env sigma' None (c,cty) in let miss = clenv_missing ce in let nmiss = List.length miss in let variables = str (CString.plural nmiss "variable") in Feedback.msg_info ( strbrk "The hint " ++ pr_leconstr_env env sigma' c ++ strbrk " will only be used by eauto, because applying " ++ pr_leconstr_env env sigma' c ++ strbrk " would leave " ++ variables ++ Pp.spc () ++ Pp.prlist_with_sep Pp.pr_comma Name.print (List.map (Evd.meta_name ce.evd) miss) ++ strbrk " as unresolved existential " ++ variables ++ str "." ) | _ -> () in let () = if not !Flags.quiet then List.iter check r in let hint = make_hint ~local dbname (AddHints { superglobal; hints = r }) in Lib.add_anonymous_leaf (inAutoHint hint)) dbnames let add_unfolds l ~local ~superglobal dbnames = List.iter (fun dbname -> let hint = make_hint ~local dbname (AddHints { superglobal; hints = List.map make_unfold l }) in Lib.add_anonymous_leaf (inAutoHint hint)) dbnames let add_cuts l ~local ~superglobal dbnames = List.iter (fun dbname -> let hint = make_hint ~local dbname (AddCut { superglobal; paths = l }) in Lib.add_anonymous_leaf (inAutoHint hint)) dbnames let add_mode l m ~local ~superglobal dbnames = List.iter (fun dbname -> let m' = make_mode l m in let hint = make_hint ~local dbname (AddMode { superglobal; gref = l; mode = m' }) in Lib.add_anonymous_leaf (inAutoHint hint)) dbnames let add_transparency l b ~local ~superglobal dbnames = List.iter (fun dbname -> let hint = make_hint ~local dbname (AddTransparency { superglobal; grefs = l; state = b }) in Lib.add_anonymous_leaf (inAutoHint hint)) dbnames let add_extern info tacast ~local ~superglobal dbname = let pat = match info.hint_pattern with | None -> None | Some (_, pat) -> Some pat in let hint = make_hint ~local dbname (AddHints { superglobal; hints = [make_extern (Option.get info.hint_priority) pat tacast] }) in Lib.add_anonymous_leaf (inAutoHint hint) let add_externs info tacast ~local ~superglobal dbnames = List.iter (add_extern info tacast ~local ~superglobal) dbnames let add_trivials env sigma l ~local ~superglobal dbnames = List.iter (fun dbname -> let l = List.map (fun (name, c) -> make_trivial env sigma ~name c) l in let hint = make_hint ~local dbname (AddHints { superglobal; hints = l }) in Lib.add_anonymous_leaf (inAutoHint hint)) dbnames type hnf = bool type nonrec hint_info = hint_info type hints_entry = | HintsResolveEntry of (hint_info * hnf * hints_path_atom * hint_term) list | HintsImmediateEntry of (hints_path_atom * hint_term) list | HintsCutEntry of hints_path | HintsUnfoldEntry of evaluable_global_reference list | HintsTransparencyEntry of evaluable_global_reference hints_transparency_target * bool | HintsModeEntry of GlobRef.t * hint_mode list | HintsExternEntry of hint_info * Genarg.glob_generic_argument let default_prepare_hint_ident = Id.of_string "H" exception Found of constr * types let prepare_hint check env init (sigma,c) = let sigma = Typeclasses.resolve_typeclasses ~fail:false env sigma in (* We re-abstract over uninstantiated evars and universes. It is actually a bit stupid to generalize over evars since the first thing make_resolves will do is to re-instantiate the products *) let sigma, _ = Evd.nf_univ_variables sigma in let c = Evarutil.nf_evar sigma c in let c = drop_extra_implicit_args sigma c in let vars = ref (collect_vars sigma c) in let subst = ref [] in let rec find_next_evar c = match EConstr.kind sigma c with | Evar (evk,args as ev) -> (* We skip the test whether args is the identity or not *) let t = Evarutil.nf_evar sigma (existential_type sigma ev) in let t = List.fold_right (fun (e,id) c -> replace_term sigma e id c) !subst t in if not (closed0 sigma c) then user_err Pp.(str "Hints with holes dependent on a bound variable not supported."); if occur_existential sigma t then (* Not clever enough to construct dependency graph of evars *) user_err Pp.(str "Not clever enough to deal with evars dependent in other evars."); raise (Found (c,t)) | _ -> EConstr.iter sigma find_next_evar c in let rec iter c = try find_next_evar c; c with Found (evar,t) -> let id = next_ident_away_from default_prepare_hint_ident (fun id -> Id.Set.mem id !vars) in vars := Id.Set.add id !vars; subst := (evar,mkVar id)::!subst; mkNamedLambda (make_annot id Sorts.Relevant) t (iter (replace_term sigma evar (mkVar id) c)) in let c' = iter c in let env = Global.env () in if check then Pretyping.check_evars env sigma c'; let diff = Univ.ContextSet.diff (Evd.universe_context_set sigma) (Evd.universe_context_set init) in (c', diff) let add_hints ~locality dbnames h = let local, superglobal = interp_locality locality in if String.List.mem "nocore" dbnames then user_err Pp.(str "The hint database \"nocore\" is meant to stay empty."); assert (not (List.is_empty dbnames)); let env = Global.env() in let sigma = Evd.from_env env in match h with | HintsResolveEntry lhints -> add_resolves env sigma lhints ~local ~superglobal dbnames | HintsImmediateEntry lhints -> add_trivials env sigma lhints ~local ~superglobal dbnames | HintsCutEntry lhints -> add_cuts lhints ~local ~superglobal dbnames | HintsModeEntry (l,m) -> add_mode l m ~local ~superglobal dbnames | HintsUnfoldEntry lhints -> add_unfolds lhints ~local ~superglobal dbnames | HintsTransparencyEntry (lhints, b) -> add_transparency lhints b ~local ~superglobal dbnames | HintsExternEntry (info, tacexp) -> add_externs info tacexp ~local ~superglobal dbnames let hint_globref gr = IsGlobRef gr let hint_constr (c, diff) = IsConstr (c, diff) let expand_constructor_hints env sigma lems = List.map_append (fun (evd,lem) -> match EConstr.kind sigma lem with | Ind (ind,u) -> List.init (nconstructors env ind) (fun i -> IsGlobRef (GlobRef.ConstructRef ((ind,i+1)))) | _ -> let (c, ctx) = prepare_hint false env sigma (evd,lem) in let ctx = if Univ.ContextSet.is_empty ctx then None else Some ctx in [IsConstr (c, ctx)]) lems (* builds a hint database from a constr signature *) (* typically used with (lid, ltyp) = pf_hyps_types *) let constructor_hints env sigma eapply lems = let lems = expand_constructor_hints env sigma lems in List.map_append (fun lem -> make_resolves env sigma (eapply, true) empty_hint_info ~check:true lem) lems let make_resolves env sigma info hint = let name = PathHints [hint] in make_resolves env sigma (true, false) info ~check:false ~name (IsGlobRef hint) let make_local_hint_db env sigma ts eapply lems = let map c = c env sigma in let lems = List.map map lems in let sign = EConstr.named_context env in let ts = match ts with | None -> Hint_db.transparent_state (searchtable_map "core") | Some ts -> ts in let hintlist = List.map_append (make_resolve_hyp env sigma) sign in Hint_db.empty ts false |> Hint_db.add_list env sigma hintlist |> Hint_db.add_list env sigma (constructor_hints env sigma eapply lems) let make_local_hint_db env sigma ?ts eapply lems = make_local_hint_db env sigma ts eapply lems let make_db_list dbnames = let use_core = not (List.mem "nocore" dbnames) in let dbnames = List.remove String.equal "nocore" dbnames in let dbnames = if use_core then "core"::dbnames else dbnames in let lookup db = try searchtable_map db with Not_found -> error_no_such_hint_database db in List.map lookup dbnames (**************************************************************************) (* Functions for printing the hints *) (**************************************************************************) let pr_hint_elt env sigma h = pr_econstr_env env sigma h.hint_term let pr_hint env sigma h = match h.obj with | Res_pf c -> (str"simple apply " ++ pr_hint_elt env sigma c) | ERes_pf c -> (str"simple eapply " ++ pr_hint_elt env sigma c) | Give_exact c -> (str"exact " ++ pr_hint_elt env sigma c) | Res_pf_THEN_trivial_fail c -> (str"simple apply " ++ pr_hint_elt env sigma c ++ str" ; trivial") | Unfold_nth c -> str"unfold " ++ pr_evaluable_reference c | Extern (_, tac) -> str "(*external*) " ++ Pputils.pr_glb_generic env sigma tac let pr_id_hint env sigma (id, v) = let pr_pat p = str", pattern " ++ pr_lconstr_pattern_env env sigma p in (pr_hint env sigma v.code ++ str"(level " ++ int v.pri ++ pr_opt_no_spc pr_pat v.pat ++ str", id " ++ int id ++ str ")" ++ spc ()) let pr_hint_list env sigma hintlist = (str " " ++ hov 0 (prlist (pr_id_hint env sigma) hintlist) ++ fnl ()) let pr_hints_db env sigma (name,db,hintlist) = (str "In the database " ++ str name ++ str ":" ++ if List.is_empty hintlist then (str " nothing" ++ fnl ()) else (fnl () ++ pr_hint_list env sigma hintlist)) (* Print all hints associated to head c in any database *) let pr_hint_list_for_head env sigma c = let dbs = current_db () in let validate (name, db) = let hints = List.map (fun v -> 0, v) (Hint_db.map_all ~secvars:Id.Pred.full c db) in (name, db, hints) in let valid_dbs = List.map validate dbs in if List.is_empty valid_dbs then (str "No hint declared for :" ++ pr_global c) else hov 0 (str"For " ++ pr_global c ++ str" -> " ++ fnl () ++ hov 0 (prlist (pr_hints_db env sigma) valid_dbs)) let pr_hint_ref ref = pr_hint_list_for_head ref (* Print all hints associated to head id in any database *) let pr_hint_term env sigma cl = try let dbs = current_db () in let valid_dbs = let fn = try let hdc = decompose_app_bound sigma cl in if occur_existential sigma cl then (fun db -> match Hint_db.map_existential sigma ~secvars:Id.Pred.full hdc cl db with | ModeMatch l -> l | ModeMismatch -> []) else Hint_db.map_auto env sigma ~secvars:Id.Pred.full hdc cl with Bound -> Hint_db.map_none ~secvars:Id.Pred.full in let fn db = List.map (fun x -> 0, x) (fn db) in List.map (fun (name, db) -> (name, db, fn db)) dbs in if List.is_empty valid_dbs then (str "No hint applicable for current goal") else (str "Applicable Hints :" ++ fnl () ++ hov 0 (prlist (pr_hints_db env sigma) valid_dbs)) with Match_failure _ | Failure _ -> (str "No hint applicable for current goal") (* print all hints that apply to the concl of the current goal *) let pr_applicable_hint pf = let env = Global.env () in let Proof.{goals;sigma} = Proof.data pf in match goals with | [] -> CErrors.user_err Pp.(str "No focused goal.") | g::_ -> pr_hint_term env sigma (Goal.V82.concl sigma g) let pp_hint_mode = function | ModeInput -> str"+" | ModeNoHeadEvar -> str"!" | ModeOutput -> str"-" (* displays the whole hint database db *) let pr_hint_db_env env sigma db = let pr_mode = prvect_with_sep spc pp_hint_mode in let pr_modes l = if List.is_empty l then mt () else str" (modes " ++ prlist_with_sep pr_comma pr_mode l ++ str")" in let content = let fold head modes hintlist accu = let goal_descr = match head with | None -> str "For any goal" | Some head -> str "For " ++ pr_global head ++ pr_modes modes in let hints = pr_hint_list env sigma (List.map (fun x -> (0, x)) hintlist) in let hint_descr = hov 0 (goal_descr ++ str " -> " ++ hints) in accu ++ hint_descr in Hint_db.fold fold db (mt ()) in let { TransparentState.tr_var = ids; tr_cst = csts } = Hint_db.transparent_state db in hov 0 ((if Hint_db.use_dn db then str"Discriminated database" else str"Non-discriminated database")) ++ fnl () ++ hov 2 (str"Unfoldable variable definitions: " ++ pr_idpred ids) ++ fnl () ++ hov 2 (str"Unfoldable constant definitions: " ++ pr_cpred csts) ++ fnl () ++ hov 2 (str"Cut: " ++ pp_hints_path (Hint_db.cut db)) ++ fnl () ++ content let pr_hint_db_by_name env sigma dbname = try let db = searchtable_map dbname in pr_hint_db_env env sigma db with Not_found -> error_no_such_hint_database dbname (* displays all the hints of all databases *) let pr_searchtable env sigma = let fold name db accu = accu ++ str "In the database " ++ str name ++ str ":" ++ fnl () ++ pr_hint_db_env env sigma db ++ fnl () in Hintdbmap.fold fold !searchtable (mt ()) let print_mp mp = try let qid = Nametab.shortest_qualid_of_module mp in str " from " ++ pr_qualid qid with Not_found -> mt () let is_imported h = try KNmap.find h.uid !statustable with Not_found -> true let hint_trace = Evd.Store.field () let log_hint h = let open Proofview.Notations in Proofview.tclEVARMAP >>= fun sigma -> let store = get_extra_data sigma in match Store.get store hint_trace with | None -> (* All calls to hint logging should be well-scoped *) assert false | Some trace -> let trace = KNmap.add h.uid h trace in let store = Store.set store hint_trace trace in Proofview.Unsafe.tclEVARS (set_extra_data store sigma) let warn_non_imported_hint = CWarnings.create ~name:"non-imported-hint" ~category:"automation" (fun (hint,mp) -> strbrk "Hint used but not imported: " ++ hint ++ print_mp mp) let warn env sigma h = let hint = pr_hint env sigma h in let mp = KerName.modpath h.uid in warn_non_imported_hint (hint,mp) let wrap_hint_warning t = let open Proofview.Notations in Proofview.tclEVARMAP >>= fun sigma -> let store = get_extra_data sigma in let old = Store.get store hint_trace in let store = Store.set store hint_trace KNmap.empty in Proofview.Unsafe.tclEVARS (set_extra_data store sigma) >>= fun () -> t >>= fun ans -> Proofview.tclENV >>= fun env -> Proofview.tclEVARMAP >>= fun sigma -> let store = get_extra_data sigma in let hints = match Store.get store hint_trace with | None -> assert false | Some hints -> hints in let () = KNmap.iter (fun _ h -> warn env sigma h) hints in let store = match old with | None -> Store.remove store hint_trace | Some v -> Store.set store hint_trace v in Proofview.Unsafe.tclEVARS (set_extra_data store sigma) >>= fun () -> Proofview.tclUNIT ans let wrap_hint_warning_fun env sigma t = let store = get_extra_data sigma in let old = Store.get store hint_trace in let store = Store.set store hint_trace KNmap.empty in let (ans, sigma) = t (set_extra_data store sigma) in let store = get_extra_data sigma in let hints = match Store.get store hint_trace with | None -> assert false | Some hints -> hints in let () = KNmap.iter (fun _ h -> warn env sigma h) hints in let store = match old with | None -> Store.remove store hint_trace | Some v -> Store.set store hint_trace v in (ans, set_extra_data store sigma) let run_hint tac k = match warn_hint () with | HintLax -> k tac.obj | HintWarn -> if is_imported tac then k tac.obj else Proofview.tclTHEN (log_hint tac) (k tac.obj) | HintStrict -> if is_imported tac then k tac.obj else let info = Exninfo.reify () in Proofview.tclZERO ~info (UserError (None, (str "Tactic failure."))) module FullHint = struct type t = full_hint let priority (h : t) = h.pri let pattern (h : t) = h.pat let database (h : t) = h.db let run (h : t) k = run_hint h.code k let print env sigma (h : t) = pr_hint env sigma h.code let name (h : t) = h.name let repr (h : t) = h.code.obj end let connect_hint_clenv h gl = let { hint_uctx = ctx; hint_clnv = clenv } = h in (* [clenv] has been generated by a hint-making function, so the only relevant data in its evarmap is the set of metas. The [evar_reset_evd] function below just replaces the metas of sigma by those coming from the clenv. *) let sigma = Tacmach.New.project gl in let evd = Evd.evars_reset_evd ~with_conv_pbs:true ~with_univs:false sigma clenv.evd in (* Still, we need to update the universes *) match h.hint_uctx with | Some ctx -> (* Refresh the instance of the hint *) let (subst, ctx) = UnivGen.fresh_universe_context_set_instance ctx in let emap c = Vars.subst_univs_level_constr subst c in let evd = Evd.merge_context_set Evd.univ_flexible evd ctx in (* Only metas are mentioning the old universes. *) { templval = Evd.map_fl emap clenv.templval; templtyp = Evd.map_fl emap clenv.templtyp; evd = Evd.map_metas emap evd; env = Proofview.Goal.env gl; } | None -> { clenv with evd = evd ; env = Proofview.Goal.env gl } let fresh_hint env sigma h = let { hint_term = c; hint_uctx = ctx } = h in match h.hint_uctx with | None -> sigma, c | Some ctx -> (* Refresh the instance of the hint *) let (subst, ctx) = UnivGen.fresh_universe_context_set_instance ctx in let c = Vars.subst_univs_level_constr subst c in let sigma = Evd.merge_context_set Evd.univ_flexible sigma ctx in sigma, c let hint_res_pf ?with_evars ?with_classes ?flags h = Proofview.Goal.enter begin fun gl -> let clenv = connect_hint_clenv h gl in Clenv.res_pf ?with_evars ?with_classes ?flags clenv end