(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (f x, g y) | _ -> assert false let to_name c = match Value.to_option Value.to_ident c with | None -> Anonymous | Some id -> Name id let to_qhyp = function | ValBlk (0, [| i |]) -> AnonHyp (Value.to_int i) | ValBlk (1, [| id |]) -> NamedHyp (Value.to_ident id) | _ -> assert false let to_bindings = function | ValInt 0 -> NoBindings | ValBlk (0, [| vl |]) -> ImplicitBindings (Value.to_list Value.to_constr vl) | ValBlk (1, [| vl |]) -> ExplicitBindings ((Value.to_list (fun p -> None, to_pair to_qhyp Value.to_constr p) vl)) | _ -> assert false let to_constr_with_bindings = function | ValBlk (0, [| c; bnd |]) -> (Value.to_constr c, to_bindings bnd) | _ -> assert false let to_int_or_var i = ArgArg (Value.to_int i) let to_occurrences f = function | ValInt 0 -> AllOccurrences | ValBlk (0, [| vl |]) -> AllOccurrencesBut (Value.to_list f vl) | ValInt 1 -> NoOccurrences | ValBlk (1, [| vl |]) -> OnlyOccurrences (Value.to_list f vl) | _ -> assert false let to_hyp_location_flag = function | ValInt 0 -> InHyp | ValInt 1 -> InHypTypeOnly | ValInt 2 -> InHypValueOnly | _ -> assert false let to_clause = function | ValBlk (0, [| hyps; concl |]) -> let cast = function | ValBlk (0, [| hyp; occ; flag |]) -> ((to_occurrences to_int_or_var occ, Value.to_ident hyp), to_hyp_location_flag flag) | _ -> assert false in let hyps = Value.to_option (fun h -> Value.to_list cast h) hyps in { onhyps = hyps; concl_occs = to_occurrences to_int_or_var concl; } | _ -> assert false let to_evaluable_ref = function | ValBlk (0, [| id |]) -> EvalVarRef (Value.to_ident id) | ValBlk (1, [| cst |]) -> EvalConstRef (Value.to_constant cst) | _ -> assert false let to_red_flag = function | ValBlk (0, [| beta; iota; fix; cofix; zeta; delta; const |]) -> { rBeta = Value.to_bool beta; rMatch = Value.to_bool iota; rFix = Value.to_bool fix; rCofix = Value.to_bool cofix; rZeta = Value.to_bool zeta; rDelta = Value.to_bool delta; rConst = Value.to_list to_evaluable_ref const; } | _ -> assert false let rec to_intro_pattern = function | ValBlk (0, [| b |]) -> IntroForthcoming (Value.to_bool b) | ValBlk (1, [| pat |]) -> IntroNaming (to_intro_pattern_naming pat) | ValBlk (2, [| act |]) -> IntroAction (to_intro_pattern_action act) | _ -> assert false and to_intro_pattern_naming = function | ValBlk (0, [| id |]) -> IntroIdentifier (Value.to_ident id) | ValBlk (1, [| id |]) -> IntroFresh (Value.to_ident id) | ValInt 0 -> IntroAnonymous | _ -> assert false and to_intro_pattern_action = function | ValInt 0 -> IntroWildcard | ValBlk (0, [| op |]) -> IntroOrAndPattern (to_or_and_intro_pattern op) | ValBlk (1, [| inj |]) -> let map ipat = Loc.tag (to_intro_pattern ipat) in IntroInjection (Value.to_list map inj) | ValBlk (2, [| _ |]) -> IntroApplyOn (assert false, assert false) (** TODO *) | ValBlk (3, [| b |]) -> IntroRewrite (Value.to_bool b) | _ -> assert false and to_or_and_intro_pattern = function | ValBlk (0, [| ill |]) -> IntroOrPattern (Value.to_list to_intro_patterns ill) | ValBlk (1, [| il |]) -> IntroAndPattern (to_intro_patterns il) | _ -> assert false and to_intro_patterns il = let map ipat = Loc.tag (to_intro_pattern ipat) in Value.to_list map il let to_destruction_arg = function | ValBlk (0, [| c |]) -> let c = thaw c >>= fun c -> return (to_constr_with_bindings c) in ElimOnConstr c | ValBlk (1, [| id |]) -> ElimOnIdent (Loc.tag (Value.to_ident id)) | ValBlk (2, [| n |]) -> ElimOnAnonHyp (Value.to_int n) | _ -> assert false let to_induction_clause = function | ValBlk (0, [| arg; eqn; as_; in_ |]) -> let arg = to_destruction_arg arg in let eqn = Value.to_option (fun p -> Loc.tag (to_intro_pattern_naming p)) eqn in let as_ = Value.to_option (fun p -> Loc.tag (to_or_and_intro_pattern p)) as_ in let in_ = Value.to_option to_clause in_ in ((None, arg), eqn, as_, in_) | _ -> assert false (** Standard tactics sharing their implementation with Ltac1 *) let pname s = { mltac_plugin = "ltac2"; mltac_tactic = s } let lift tac = tac <*> return v_unit let wrap f = return () >>= fun () -> return (f ()) let wrap_unit f = return () >>= fun () -> f (); return v_unit let define_prim0 name tac = let tac = function | [_] -> lift tac | _ -> assert false in Tac2env.define_primitive (pname name) tac let define_prim1 name tac = let tac = function | [x] -> lift (tac x) | _ -> assert false in Tac2env.define_primitive (pname name) tac let define_prim2 name tac = let tac = function | [x; y] -> lift (tac x y) | _ -> assert false in Tac2env.define_primitive (pname name) tac let define_prim3 name tac = let tac = function | [x; y; z] -> lift (tac x y z) | _ -> assert false in Tac2env.define_primitive (pname name) tac let define_prim4 name tac = let tac = function | [x; y; z; u] -> lift (tac x y z u) | _ -> assert false in Tac2env.define_primitive (pname name) tac (** Tactics from Tacexpr *) let () = define_prim2 "tac_intros" begin fun ev ipat -> let ev = Value.to_bool ev in let ipat = to_intro_patterns ipat in Tactics.intros_patterns ev ipat end let () = define_prim4 "tac_apply" begin fun adv ev cb ipat -> let adv = Value.to_bool adv in let ev = Value.to_bool ev in let map_cb c = thaw c >>= fun c -> return (to_constr_with_bindings c) in let cb = Value.to_list map_cb cb in let map p = Value.to_option (fun p -> Loc.tag (to_intro_pattern p)) p in let map_ipat p = to_pair Value.to_ident map p in let ipat = Value.to_option map_ipat ipat in Tac2tactics.apply adv ev cb ipat end let () = define_prim3 "tac_elim" begin fun ev c copt -> let ev = Value.to_bool ev in let c = to_constr_with_bindings c in let copt = Value.to_option to_constr_with_bindings copt in Tactics.elim ev None c copt end let () = define_prim2 "tac_case" begin fun ev c -> let ev = Value.to_bool ev in let c = to_constr_with_bindings c in Tactics.general_case_analysis ev None c end let () = define_prim1 "tac_generalize" begin fun cl -> let cast = function | ValBlk (0, [| c; occs; na |]) -> ((to_occurrences Value.to_int occs, Value.to_constr c), to_name na) | _ -> assert false in let cl = Value.to_list cast cl in Tactics.new_generalize_gen cl end let () = define_prim3 "tac_assert" begin fun c tac ipat -> let c = Value.to_constr c in let of_tac t = Proofview.tclIGNORE (thaw t) in let tac = Value.to_option (fun t -> Value.to_option of_tac t) tac in let ipat = Value.to_option (fun ipat -> Loc.tag (to_intro_pattern ipat)) ipat in Tactics.forward true tac ipat c end let () = define_prim3 "tac_enough" begin fun c tac ipat -> let c = Value.to_constr c in let of_tac t = Proofview.tclIGNORE (thaw t) in let tac = Value.to_option (fun t -> Value.to_option of_tac t) tac in let ipat = Value.to_option (fun ipat -> Loc.tag (to_intro_pattern ipat)) ipat in Tactics.forward false tac ipat c end let () = define_prim2 "tac_pose" begin fun idopt c -> let na = to_name idopt in let c = Value.to_constr c in Tactics.letin_tac None na c None Locusops.nowhere end let () = define_prim4 "tac_set" begin fun ev idopt c cl -> let ev = Value.to_bool ev in let na = to_name idopt in let cl = to_clause cl in Proofview.tclEVARMAP >>= fun sigma -> thaw c >>= fun c -> let c = Value.to_constr c in Tactics.letin_pat_tac ev None na (sigma, c) cl end let () = define_prim3 "tac_destruct" begin fun ev ic using -> let ev = Value.to_bool ev in let ic = Value.to_list to_induction_clause ic in let using = Value.to_option to_constr_with_bindings using in Tac2tactics.induction_destruct false ev ic using end let () = define_prim3 "tac_induction" begin fun ev ic using -> let ev = Value.to_bool ev in let ic = Value.to_list to_induction_clause ic in let using = Value.to_option to_constr_with_bindings using in Tac2tactics.induction_destruct true ev ic using end let () = define_prim1 "tac_red" begin fun cl -> let cl = to_clause cl in Tactics.reduce (Red false) cl end let () = define_prim1 "tac_hnf" begin fun cl -> let cl = to_clause cl in Tactics.reduce Hnf cl end let () = define_prim2 "tac_cbv" begin fun flags cl -> let flags = to_red_flag flags in let cl = to_clause cl in Tactics.reduce (Cbv flags) cl end let () = define_prim2 "tac_cbn" begin fun flags cl -> let flags = to_red_flag flags in let cl = to_clause cl in Tactics.reduce (Cbn flags) cl end let () = define_prim2 "tac_lazy" begin fun flags cl -> let flags = to_red_flag flags in let cl = to_clause cl in Tactics.reduce (Lazy flags) cl end (** Tactics from coretactics *) let () = define_prim0 "tac_reflexivity" Tactics.intros_reflexivity (* TACTIC EXTEND exact [ "exact" casted_constr(c) ] -> [ Tactics.exact_no_check c ] END *) let () = define_prim0 "tac_assumption" Tactics.assumption let () = define_prim1 "tac_transitivity" begin fun c -> let c = Value.to_constr c in Tactics.intros_transitivity (Some c) end let () = define_prim0 "tac_etransitivity" (Tactics.intros_transitivity None) let () = define_prim1 "tac_cut" begin fun c -> let c = Value.to_constr c in Tactics.cut c end let () = define_prim2 "tac_left" begin fun ev bnd -> let ev = Value.to_bool ev in let bnd = to_bindings bnd in Tactics.left_with_bindings ev bnd end let () = define_prim2 "tac_right" begin fun ev bnd -> let ev = Value.to_bool ev in let bnd = to_bindings bnd in Tactics.right_with_bindings ev bnd end let () = define_prim1 "tac_introsuntil" begin fun h -> Tactics.intros_until (to_qhyp h) end let () = define_prim1 "tac_exactnocheck" begin fun c -> Tactics.exact_no_check (Value.to_constr c) end let () = define_prim1 "tac_vmcastnocheck" begin fun c -> Tactics.vm_cast_no_check (Value.to_constr c) end let () = define_prim1 "tac_nativecastnocheck" begin fun c -> Tactics.native_cast_no_check (Value.to_constr c) end let () = define_prim1 "tac_constructor" begin fun ev -> let ev = Value.to_bool ev in Tactics.any_constructor ev None end let () = define_prim3 "tac_constructorn" begin fun ev n bnd -> let ev = Value.to_bool ev in let n = Value.to_int n in let bnd = to_bindings bnd in Tactics.constructor_tac ev None n bnd end let () = define_prim1 "tac_symmetry" begin fun cl -> let cl = to_clause cl in Tactics.intros_symmetry cl end let () = define_prim2 "tac_split" begin fun ev bnd -> let ev = Value.to_bool ev in let bnd = to_bindings bnd in Tactics.split_with_bindings ev [bnd] end let () = define_prim1 "tac_rename" begin fun ids -> let map c = match Value.to_tuple c with | [|x; y|] -> (Value.to_ident x, Value.to_ident y) | _ -> assert false in let ids = Value.to_list map ids in Tactics.rename_hyp ids end let () = define_prim1 "tac_revert" begin fun ids -> let ids = Value.to_list Value.to_ident ids in Tactics.revert ids end let () = define_prim0 "tac_admit" Proofview.give_up let () = define_prim2 "tac_fix" begin fun idopt n -> let idopt = Value.to_option Value.to_ident idopt in let n = Value.to_int n in Tactics.fix idopt n end let () = define_prim1 "tac_cofix" begin fun idopt -> let idopt = Value.to_option Value.to_ident idopt in Tactics.cofix idopt end let () = define_prim1 "tac_clear" begin fun ids -> let ids = Value.to_list Value.to_ident ids in Tactics.clear ids end let () = define_prim1 "tac_keep" begin fun ids -> let ids = Value.to_list Value.to_ident ids in Tactics.keep ids end let () = define_prim1 "tac_clearbody" begin fun ids -> let ids = Value.to_list Value.to_ident ids in Tactics.clear_body ids end (** Tactics from extratactics *) let () = define_prim1 "tac_absurd" begin fun c -> Contradiction.absurd (Value.to_constr c) end let () = define_prim1 "tac_subst" begin fun ids -> let ids = Value.to_list Value.to_ident ids in Equality.subst ids end let () = define_prim0 "tac_substall" (return () >>= fun () -> Equality.subst_all ())