(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* true | _ -> false in if List.for_all is_singleton possible_indexes then let indexes = Array.of_list (List.map List.hd possible_indexes) in let fix = ((indexes, 0),fixdefs) in (try check_fix env fix with reraise -> let (e, info) = Exninfo.capture reraise in let info = Option.cata (fun loc -> Loc.add_loc info loc) info loc in Exninfo.iraise (e, info)); indexes else (* we now search recursively among all combinations *) (try List.iter (fun l -> let indexes = Array.of_list l in let fix = ((indexes, 0),fixdefs) in (* spiwack: We search for a unspecified structural argument under the assumption that we need to check the guardedness condition (otherwise the first inductive argument will be chosen). A more robust solution may be to raise an error when totality is assumed but the strutural argument is not specified. *) try let flags = { (typing_flags env) with Declarations.check_guarded = true } in let env = Environ.set_typing_flags flags env in check_fix env fix; raise (Found indexes) with TypeError _ -> ()) (List.combinations possible_indexes); let errmsg = "Cannot guess decreasing argument of fix." in user_err ?loc ~hdr:"search_guard" (Pp.str errmsg) with Found indexes -> indexes) let esearch_guard ?loc env sigma indexes fix = let fix = nf_fix sigma fix in try search_guard ?loc env indexes fix with TypeError (env,err) -> raise (PretypeError (env,sigma,TypingError (map_ptype_error of_constr err))) (* To force universe name declaration before use *) let is_strict_universe_declarations = Goptions.declare_bool_option_and_ref ~depr:false ~key:["Strict";"Universe";"Declaration"] ~value:true (** Miscellaneous interpretation functions *) let interp_known_universe_level_name evd qid = try let open Libnames in if qualid_is_ident qid then Evd.universe_of_name evd @@ qualid_basename qid else raise Not_found with Not_found -> let qid = Nametab.locate_universe qid in Univ.Level.make qid let interp_universe_level_name evd qid = try evd, interp_known_universe_level_name evd qid with Not_found -> if Libnames.qualid_is_ident qid then (* Undeclared *) let id = Libnames.qualid_basename qid in if not (is_strict_universe_declarations ()) then new_univ_level_variable ?loc:qid.CAst.loc ~name:id univ_rigid evd else user_err ?loc:qid.CAst.loc ~hdr:"interp_universe_level_name" (Pp.(str "Undeclared universe: " ++ Id.print id)) else let dp, i = Libnames.repr_qualid qid in let num = try int_of_string (Id.to_string i) with Failure _ -> user_err ?loc:qid.CAst.loc ~hdr:"interp_universe_level_name" (Pp.(str "Undeclared global universe: " ++ Libnames.pr_qualid qid)) in let level = Univ.Level.(make (UGlobal.make dp num)) in let evd = try Evd.add_global_univ evd level with UGraph.AlreadyDeclared -> evd in evd, level let interp_sort_name sigma = function | GSProp -> sigma, Univ.Level.sprop | GProp -> sigma, Univ.Level.prop | GSet -> sigma, Univ.Level.set | GType l -> interp_universe_level_name sigma l let interp_sort_info ?loc evd l = List.fold_left (fun (evd, u) (l,n) -> let evd', u' = interp_sort_name evd l in let u' = Univ.Universe.make u' in let u' = match n with | 0 -> u' | 1 -> Univ.Universe.super u' | n -> user_err ?loc ~hdr:"interp_universe" (Pp.(str "Cannot interpret universe increment +" ++ int n)) in (evd', Univ.sup u u')) (evd, Univ.Universe.type0m) l type inference_hook = env -> evar_map -> Evar.t -> (evar_map * constr) option type use_typeclasses = NoUseTC | UseTCForConv | UseTC type inference_flags = { use_typeclasses : use_typeclasses; solve_unification_constraints : bool; fail_evar : bool; expand_evars : bool; program_mode : bool; polymorphic : bool; } (* Compute the set of still-undefined initial evars up to restriction (e.g. clearing) and the set of yet-unsolved evars freshly created in the extension [sigma'] of [sigma] (excluding the restrictions of the undefined evars of [sigma] to be freshly created evars of [sigma']). Otherwise said, we partition the undefined evars of [sigma'] into those already in [sigma] or deriving from an evar in [sigma] by restriction, and the evars properly created in [sigma'] *) type frozen = | FrozenId of evar_info Evar.Map.t (** No pending evars. We do not put a set here not to reallocate like crazy, but the actual data of the map is not used, only keys matter. All functions operating on this type must have the same behaviour on [FrozenId map] and [FrozenProgress (Evar.Map.domain map, Evar.Set.empty)] *) | FrozenProgress of (Evar.Set.t * Evar.Set.t) Lazy.t (** Proper partition of the evar map as described above. *) let frozen_and_pending_holes (sigma, sigma') = let undefined0 = Option.cata Evd.undefined_map Evar.Map.empty sigma in (* Fast path when the undefined evars where not modified *) if undefined0 == Evd.undefined_map sigma' then FrozenId undefined0 else let data = lazy begin let add_derivative_of evk evi acc = match advance sigma' evk with None -> acc | Some evk' -> Evar.Set.add evk' acc in let frozen = Evar.Map.fold add_derivative_of undefined0 Evar.Set.empty in let fold evk _ accu = if not (Evar.Set.mem evk frozen) then Evar.Set.add evk accu else accu in let pending = Evd.fold_undefined fold sigma' Evar.Set.empty in (frozen, pending) end in FrozenProgress data let apply_typeclasses ~program_mode ~fail_evar env sigma frozen = let filter_frozen = match frozen with | FrozenId map -> fun evk -> Evar.Map.mem evk map | FrozenProgress (lazy (frozen, _)) -> fun evk -> Evar.Set.mem evk frozen in let sigma = Typeclasses.resolve_typeclasses ~filter:(if program_mode then (fun evk evi -> Typeclasses.no_goals_or_obligations evk evi && not (filter_frozen evk)) else (fun evk evi -> Typeclasses.no_goals evk evi && not (filter_frozen evk))) ~split:true ~fail:fail_evar env sigma in let sigma = if program_mode then (* Try optionally solving the obligations *) Typeclasses.resolve_typeclasses ~filter:(fun evk evi -> Typeclasses.all_evars evk evi && not (filter_frozen evk)) ~split:true ~fail:false env sigma else sigma in sigma let apply_inference_hook (hook : inference_hook) env sigma frozen = match frozen with | FrozenId _ -> sigma | FrozenProgress (lazy (_, pending)) -> Evar.Set.fold (fun evk sigma -> if Evd.is_undefined sigma evk (* in particular not defined by side-effect *) then match hook env sigma evk with | Some (sigma, c) -> Evd.define evk c sigma | None -> sigma else sigma) pending sigma let apply_heuristics env sigma fail_evar = (* Resolve eagerly, potentially making wrong choices *) let flags = default_flags_of (Typeclasses.classes_transparent_state ()) in try solve_unif_constraints_with_heuristics ~flags env sigma with e when CErrors.noncritical e -> let e = Exninfo.capture e in if fail_evar then Exninfo.iraise e else sigma let check_typeclasses_instances_are_solved ~program_mode env current_sigma frozen = (* Naive way, call resolution again with failure flag *) apply_typeclasses ~program_mode ~fail_evar:true env current_sigma frozen let check_extra_evars_are_solved env current_sigma frozen = match frozen with | FrozenId _ -> () | FrozenProgress (lazy (_, pending)) -> Evar.Set.iter (fun evk -> if not (Evd.is_defined current_sigma evk) then let (loc,k) = evar_source evk current_sigma in match k with | Evar_kinds.ImplicitArg (gr, (i, id), false) -> () | _ -> error_unsolvable_implicit ?loc env current_sigma evk None) pending (* [check_evars] fails if some unresolved evar remains *) let check_evars env ?initial sigma c = let rec proc_rec c = match EConstr.kind sigma c with | Evar (evk, _) -> (match initial with | Some initial when Evd.mem initial evk -> () | _ -> let (loc,k) = evar_source evk sigma in begin match k with | Evar_kinds.ImplicitArg (gr, (i, id), false) -> () | _ -> Pretype_errors.error_unsolvable_implicit ?loc env sigma evk None end) | _ -> EConstr.iter sigma proc_rec c in proc_rec c let check_evars_are_solved ~program_mode env sigma frozen = let sigma = check_typeclasses_instances_are_solved ~program_mode env sigma frozen in check_problems_are_solved env sigma; check_extra_evars_are_solved env sigma frozen (* Try typeclasses, hooks, unification heuristics ... *) let solve_remaining_evars ?hook flags env ?initial sigma = let program_mode = flags.program_mode in let frozen = frozen_and_pending_holes (initial, sigma) in let sigma = match flags.use_typeclasses with | UseTC -> apply_typeclasses ~program_mode ~fail_evar:false env sigma frozen | NoUseTC | UseTCForConv -> sigma in let sigma = match hook with | None -> sigma | Some hook -> apply_inference_hook hook env sigma frozen in let sigma = if flags.solve_unification_constraints then apply_heuristics env sigma false else sigma in if flags.fail_evar then check_evars_are_solved ~program_mode env sigma frozen; sigma let check_evars_are_solved ~program_mode env ?initial current_sigma = let frozen = frozen_and_pending_holes (initial, current_sigma) in check_evars_are_solved ~program_mode env current_sigma frozen let process_inference_flags flags env initial (sigma,c,cty) = let sigma = solve_remaining_evars flags env ~initial sigma in let c = if flags.expand_evars then nf_evar sigma c else c in sigma,c,cty let adjust_evar_source sigma na c = match na, kind sigma c with | Name id, Evar (evk,args) -> let evi = Evd.find sigma evk in begin match evi.evar_source with | loc, Evar_kinds.QuestionMark { Evar_kinds.qm_obligation=b; Evar_kinds.qm_name=Anonymous; Evar_kinds.qm_record_field=recfieldname; } -> let src = (loc,Evar_kinds.QuestionMark { Evar_kinds.qm_obligation=b; Evar_kinds.qm_name=na; Evar_kinds.qm_record_field=recfieldname; }) in let (sigma, evk') = restrict_evar sigma evk (evar_filter evi) ~src None in sigma, mkEvar (evk',args) | _ -> sigma, c end | _, _ -> sigma, c (* coerce to tycon if any *) let inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma j = function | None -> sigma, j, Some Coercion.empty_coercion_trace | Some t -> Coercion.inh_conv_coerce_to ?loc ~program_mode resolve_tc !!env sigma j t let check_instance subst = function | [] -> () | (CAst.{loc;v=id},_) :: _ -> if List.mem_assoc id subst then user_err ?loc (Id.print id ++ str "appears more than once.") else user_err ?loc (str "No such variable in the signature of the existential variable: " ++ Id.print id ++ str ".") (* used to enforce a name in Lambda when the type constraints itself is named, hence possibly dependent *) let orelse_name name name' = match name with | Anonymous -> name' | _ -> name let pretype_id pretype loc env sigma id = (* Look for the binder of [id] *) try let (n,_,typ) = lookup_rel_id id (rel_context !!env) in sigma, { uj_val = mkRel n; uj_type = lift n typ } with Not_found -> try GlobEnv.interp_ltac_variable ?loc (fun env -> pretype env sigma) env sigma id with Not_found -> (* Check if [id] is a section or goal variable *) try sigma, { uj_val = mkVar id; uj_type = NamedDecl.get_type (lookup_named id !!env) } with Not_found -> (* [id] not found, standard error message *) error_var_not_found ?loc !!env sigma id (*************************************************************************) (* Main pretyping function *) let interp_known_glob_level ?loc evd = function | GSProp -> Univ.Level.sprop | GProp -> Univ.Level.prop | GSet -> Univ.Level.set | GType qid -> try interp_known_universe_level_name evd qid with Not_found -> user_err ?loc ~hdr:"interp_known_level_info" (str "Undeclared universe " ++ Libnames.pr_qualid qid) let interp_glob_level ?loc evd : glob_level -> _ = function | UAnonymous {rigid} -> new_univ_level_variable ?loc (if rigid then univ_rigid else univ_flexible) evd | UNamed s -> interp_sort_name evd s let interp_instance ?loc evd l = let evd, l' = List.fold_left (fun (evd, univs) l -> let evd, l = interp_glob_level ?loc evd l in (evd, l :: univs)) (evd, []) l in if List.exists (fun l -> Univ.Level.is_prop l) l' then user_err ?loc ~hdr:"pretype" (str "Universe instances cannot contain Prop, polymorphic" ++ str " universe instances must be greater or equal to Set."); evd, Some (Univ.Instance.of_array (Array.of_list (List.rev l'))) let pretype_global ?loc rigid env evd gr us = let evd, instance = match us with | None -> evd, None | Some l -> interp_instance ?loc evd l in Evd.fresh_global ?loc ~rigid ?names:instance !!env evd gr let pretype_ref ?loc sigma env ref us = match ref with | GlobRef.VarRef id -> (* Section variable *) (try let ty = NamedDecl.get_type (lookup_named id !!env) in (match us with | None | Some [] -> () | Some (_ :: _) -> CErrors.user_err ?loc Pp.(str "Section variables are not polymorphic:" ++ spc () ++ str "universe instance should have length 0.")); sigma, make_judge (mkVar id) ty with Not_found -> (* This may happen if env is a goal env and section variables have been cleared - section variables should be different from goal variables *) Pretype_errors.error_var_not_found ?loc !!env sigma id) | ref -> let sigma, c = pretype_global ?loc univ_flexible env sigma ref us in let sigma, ty = type_of !!env sigma c in sigma, make_judge c ty let interp_sort ?loc evd : glob_sort -> _ = function | UAnonymous {rigid} -> let evd, l = new_univ_level_variable ?loc (if rigid then univ_rigid else univ_flexible) evd in evd, Univ.Universe.make l | UNamed l -> interp_sort_info ?loc evd l let judge_of_sort ?loc evd s = let judge = { uj_val = mkType s; uj_type = mkType (Univ.super s) } in evd, judge let pretype_sort ?loc sigma s = match s with | UNamed [GSProp,0] -> sigma, judge_of_sprop | UNamed [GProp,0] -> sigma, judge_of_prop | UNamed [GSet,0] -> sigma, judge_of_set | _ -> let sigma, s = interp_sort ?loc sigma s in judge_of_sort ?loc sigma s let new_type_evar env sigma loc = new_type_evar env sigma ~src:(Loc.tag ?loc Evar_kinds.InternalHole) let mark_obligation_evar sigma k evc = match k with | Evar_kinds.QuestionMark _ | Evar_kinds.ImplicitArg (_, _, false) -> Evd.set_obligation_evar sigma (fst (destEvar sigma evc)) | _ -> sigma type 'a pretype_fun = ?loc:Loc.t -> program_mode:bool -> poly:bool -> bool -> type_constraint -> GlobEnv.t -> evar_map -> evar_map * 'a type pretyper = { pretype_ref : pretyper -> GlobRef.t * glob_level list option -> unsafe_judgment pretype_fun; pretype_var : pretyper -> Id.t -> unsafe_judgment pretype_fun; pretype_evar : pretyper -> existential_name CAst.t * (lident * glob_constr) list -> unsafe_judgment pretype_fun; pretype_patvar : pretyper -> Evar_kinds.matching_var_kind -> unsafe_judgment pretype_fun; pretype_app : pretyper -> glob_constr * glob_constr list -> unsafe_judgment pretype_fun; pretype_lambda : pretyper -> Name.t * binding_kind * glob_constr * glob_constr -> unsafe_judgment pretype_fun; pretype_prod : pretyper -> Name.t * binding_kind * glob_constr * glob_constr -> unsafe_judgment pretype_fun; pretype_letin : pretyper -> Name.t * glob_constr * glob_constr option * glob_constr -> unsafe_judgment pretype_fun; pretype_cases : pretyper -> Constr.case_style * glob_constr option * tomatch_tuples * cases_clauses -> unsafe_judgment pretype_fun; pretype_lettuple : pretyper -> Name.t list * (Name.t * glob_constr option) * glob_constr * glob_constr -> unsafe_judgment pretype_fun; pretype_if : pretyper -> glob_constr * (Name.t * glob_constr option) * glob_constr * glob_constr -> unsafe_judgment pretype_fun; pretype_rec : pretyper -> glob_fix_kind * Id.t array * glob_decl list array * glob_constr array * glob_constr array -> unsafe_judgment pretype_fun; pretype_sort : pretyper -> glob_sort -> unsafe_judgment pretype_fun; pretype_hole : pretyper -> Evar_kinds.t * Namegen.intro_pattern_naming_expr * Genarg.glob_generic_argument option -> unsafe_judgment pretype_fun; pretype_cast : pretyper -> glob_constr * glob_constr cast_type -> unsafe_judgment pretype_fun; pretype_int : pretyper -> Uint63.t -> unsafe_judgment pretype_fun; pretype_float : pretyper -> Float64.t -> unsafe_judgment pretype_fun; pretype_array : pretyper -> glob_level list option * glob_constr array * glob_constr * glob_constr -> unsafe_judgment pretype_fun; pretype_type : pretyper -> glob_constr -> unsafe_type_judgment pretype_fun; } (** Tie the loop *) let eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma t = let loc = t.CAst.loc in match DAst.get t with | GRef (ref,u) -> self.pretype_ref self (ref, u) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GVar id -> self.pretype_var self id ?loc ~program_mode ~poly resolve_tc tycon env sigma | GEvar (evk, args) -> self.pretype_evar self (evk, args) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GPatVar knd -> self.pretype_patvar self knd ?loc ~program_mode ~poly resolve_tc tycon env sigma | GApp (c, args) -> self.pretype_app self (c, args) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GLambda (na, bk, t, c) -> self.pretype_lambda self (na, bk, t, c) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GProd (na, bk, t, c) -> self.pretype_prod self (na, bk, t, c) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GLetIn (na, b, t, c) -> self.pretype_letin self (na, b, t, c) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GCases (st, c, tm, cl) -> self.pretype_cases self (st, c, tm, cl) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GLetTuple (na, b, t, c) -> self.pretype_lettuple self (na, b, t, c) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GIf (c, r, t1, t2) -> self.pretype_if self (c, r, t1, t2) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GRec (knd, nas, decl, c, t) -> self.pretype_rec self (knd, nas, decl, c, t) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GSort s -> self.pretype_sort self s ?loc ~program_mode ~poly resolve_tc tycon env sigma | GHole (knd, nam, arg) -> self.pretype_hole self (knd, nam, arg) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GCast (c, t) -> self.pretype_cast self (c, t) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GInt n -> self.pretype_int self n ?loc ~program_mode ~poly resolve_tc tycon env sigma | GFloat f -> self.pretype_float self f ?loc ~program_mode ~poly resolve_tc tycon env sigma | GArray (u,t,def,ty) -> self.pretype_array self (u,t,def,ty) ?loc ~program_mode ~poly resolve_tc tycon env sigma let eval_type_pretyper self ~program_mode ~poly resolve_tc tycon env sigma t = self.pretype_type self t ~program_mode ~poly resolve_tc tycon env sigma let pretype_instance self ~program_mode ~poly resolve_tc env sigma loc hyps evk update = let f decl (subst,update,sigma) = let id = NamedDecl.get_id decl in let b = Option.map (replace_vars subst) (NamedDecl.get_value decl) in let t = replace_vars subst (NamedDecl.get_type decl) in let check_body sigma id c = match b, c with | Some b, Some c -> if not (is_conv !!env sigma b c) then user_err ?loc (str "Cannot interpret " ++ pr_existential_key sigma evk ++ strbrk " in current context: binding for " ++ Id.print id ++ strbrk " is not convertible to its expected definition (cannot unify " ++ quote (Termops.Internal.print_constr_env !!env sigma b) ++ strbrk " and " ++ quote (Termops.Internal.print_constr_env !!env sigma c) ++ str ").") | Some b, None -> user_err ?loc (str "Cannot interpret " ++ pr_existential_key sigma evk ++ strbrk " in current context: " ++ Id.print id ++ strbrk " should be bound to a local definition.") | None, _ -> () in let check_type sigma id t' = if not (is_conv !!env sigma t t') then user_err ?loc (str "Cannot interpret " ++ pr_existential_key sigma evk ++ strbrk " in current context: binding for " ++ Id.print id ++ strbrk " is not well-typed.") in let sigma, c, update = try let c = snd (List.find (fun (CAst.{v=id'},c) -> Id.equal id id') update) in let sigma, c = eval_pretyper self ~program_mode ~poly resolve_tc (mk_tycon t) env sigma c in check_body sigma id (Some c.uj_val); sigma, c.uj_val, List.remove_first (fun (CAst.{v=id'},_) -> Id.equal id id') update with Not_found -> try let (n,b',t') = lookup_rel_id id (rel_context !!env) in check_type sigma id (lift n t'); check_body sigma id (Option.map (lift n) b'); sigma, mkRel n, update with Not_found -> try let decl = lookup_named id !!env in check_type sigma id (NamedDecl.get_type decl); check_body sigma id (NamedDecl.get_value decl); sigma, mkVar id, update with Not_found -> user_err ?loc (str "Cannot interpret " ++ pr_existential_key sigma evk ++ str " in current context: no binding for " ++ Id.print id ++ str ".") in ((id,c)::subst, update, sigma) in let subst,inst,sigma = List.fold_right f hyps ([],update,sigma) in check_instance subst inst; sigma, List.map snd subst module Default = struct let discard_trace (sigma,t,otrace) = sigma, t let pretype_ref self (ref, u) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let sigma, t_ref = pretype_ref ?loc sigma env ref u in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma t_ref tycon let pretype_var self id = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let pretype tycon env sigma t = eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma t in let sigma, t_id = pretype_id (fun e r t -> pretype tycon e r t) loc env sigma id in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma t_id tycon let pretype_evar self (CAst.{v=id;loc=locid}, inst) ?loc ~program_mode ~poly resolve_tc tycon env sigma = (* Ne faudrait-il pas s'assurer que hyps est bien un sous-contexte du contexte courant, et qu'il n'y a pas de Rel "caché" *) let id = interp_ltac_id env id in let evk = try Evd.evar_key id sigma with Not_found -> error_evar_not_found ?loc:locid !!env sigma id in let hyps = evar_filtered_context (Evd.find sigma evk) in let sigma, args = pretype_instance self ~program_mode ~poly resolve_tc env sigma loc hyps evk inst in let c = mkEvar (evk, args) in let j = Retyping.get_judgment_of !!env sigma c in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma j tycon let pretype_patvar self kind ?loc ~program_mode ~poly resolve_tc tycon env sigma = let sigma, ty = match tycon with | Some ty -> sigma, ty | None -> new_type_evar env sigma loc in let k = Evar_kinds.MatchingVar kind in let sigma, uj_val = new_evar env sigma ~src:(loc,k) ty in sigma, { uj_val; uj_type = ty } let pretype_hole self (k, naming, ext) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> match ext with | None -> let open Namegen in let naming = match naming with | IntroIdentifier id -> IntroIdentifier (interp_ltac_id env id) | IntroAnonymous -> IntroAnonymous | IntroFresh id -> IntroFresh (interp_ltac_id env id) in let sigma, ty = match tycon with | Some ty -> sigma, ty | None -> new_type_evar env sigma loc in let sigma, uj_val = new_evar env sigma ~src:(loc,k) ~naming ty in let sigma = if program_mode then mark_obligation_evar sigma k uj_val else sigma in sigma, { uj_val; uj_type = ty } | Some arg -> let sigma, ty = match tycon with | Some ty -> sigma, ty | None -> new_type_evar env sigma loc in let c, sigma = GlobEnv.interp_glob_genarg env poly sigma ty arg in sigma, { uj_val = c; uj_type = ty } let pretype_rec self (fixkind, names, bl, lar, vdef) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let open Context.Rel.Declaration in let pretype tycon env sigma c = eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let pretype_type tycon env sigma c = eval_type_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let rec type_bl env sigma ctxt = function | [] -> sigma, ctxt | (na,bk,None,ty)::bl -> let sigma, ty' = pretype_type empty_valcon env sigma ty in let rty' = Sorts.relevance_of_sort ty'.utj_type in let dcl = LocalAssum (make_annot na rty', ty'.utj_val) in let dcl', env = push_rel ~hypnaming sigma dcl env in type_bl env sigma (Context.Rel.add dcl' ctxt) bl | (na,bk,Some bd,ty)::bl -> let sigma, ty' = pretype_type empty_valcon env sigma ty in let rty' = Sorts.relevance_of_sort ty'.utj_type in let sigma, bd' = pretype (mk_tycon ty'.utj_val) env sigma bd in let dcl = LocalDef (make_annot na rty', bd'.uj_val, ty'.utj_val) in let dcl', env = push_rel ~hypnaming sigma dcl env in type_bl env sigma (Context.Rel.add dcl' ctxt) bl in let sigma, ctxtv = Array.fold_left_map (fun sigma -> type_bl env sigma Context.Rel.empty) sigma bl in let sigma, larj = Array.fold_left2_map (fun sigma e ar -> pretype_type empty_valcon (snd (push_rel_context ~hypnaming sigma e env)) sigma ar) sigma ctxtv lar in let lara = Array.map (fun a -> a.utj_val) larj in let ftys = Array.map2 (fun e a -> it_mkProd_or_LetIn a e) ctxtv lara in let nbfix = Array.length lar in let names = Array.map (fun id -> Name id) names in let sigma = match tycon with | Some t -> let fixi = match fixkind with | GFix (vn,i) -> i | GCoFix i -> i in begin match Evarconv.unify_delay !!env sigma ftys.(fixi) t with | exception Evarconv.UnableToUnify _ -> sigma | sigma -> sigma end | None -> sigma in let names = Array.map2 (fun na t -> make_annot na (Retyping.relevance_of_type !!(env) sigma t)) names ftys in (* Note: bodies are not used by push_rec_types, so [||] is safe *) let names,newenv = push_rec_types ~hypnaming sigma (names,ftys) env in let sigma, vdefj = Array.fold_left2_map_i (fun i sigma ctxt def -> (* we lift nbfix times the type in tycon, because of * the nbfix variables pushed to newenv *) let (ctxt,ty) = decompose_prod_n_assum sigma (Context.Rel.length ctxt) (lift nbfix ftys.(i)) in let ctxt,nenv = push_rel_context ~hypnaming sigma ctxt newenv in let sigma, j = pretype (mk_tycon ty) nenv sigma def in sigma, { uj_val = it_mkLambda_or_LetIn j.uj_val ctxt; uj_type = it_mkProd_or_LetIn j.uj_type ctxt }) sigma ctxtv vdef in let sigma = Typing.check_type_fixpoint ?loc !!env sigma names ftys vdefj in let nf c = nf_evar sigma c in let ftys = Array.map nf ftys in (* FIXME *) let fdefs = Array.map (fun x -> nf (j_val x)) vdefj in let fixj = match fixkind with | GFix (vn,i) -> (* First, let's find the guard indexes. *) (* If recursive argument was not given by user, we try all args. An earlier approach was to look only for inductive arguments, but doing it properly involves delta-reduction, and it finally doesn't seem worth the effort (except for huge mutual fixpoints ?) *) let possible_indexes = Array.to_list (Array.mapi (fun i annot -> match annot with | Some n -> [n] | None -> List.map_i (fun i _ -> i) 0 ctxtv.(i)) vn) in let fixdecls = (names,ftys,fdefs) in let indexes = esearch_guard ?loc !!env sigma possible_indexes fixdecls in make_judge (mkFix ((indexes,i),fixdecls)) ftys.(i) | GCoFix i -> let fixdecls = (names,ftys,fdefs) in let cofix = (i, fixdecls) in (try check_cofix !!env (i, nf_fix sigma fixdecls) with reraise -> let (e, info) = Exninfo.capture reraise in let info = Option.cata (Loc.add_loc info) info loc in Exninfo.iraise (e, info)); make_judge (mkCoFix cofix) ftys.(i) in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma fixj tycon let pretype_sort self s = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let sigma, j = pretype_sort ?loc sigma s in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma j tycon let pretype_app self (f, args) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let pretype tycon env sigma c = eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let sigma, fj = pretype empty_tycon env sigma f in let floc = loc_of_glob_constr f in let length = List.length args in let nargs_before_bidi = if Option.is_empty tycon then length (* We apply bidirectionality hints only if an expected type is specified *) else (* if `f` is a global, we retrieve bidirectionality hints *) try let (gr,_) = destRef sigma fj.uj_val in Option.default length @@ GlobRef.Map.find_opt gr !bidi_hints with DestKO -> length in let candargs = (* Bidirectional typechecking hint: parameters of a constructor are completely determined by a typing constraint *) (* This bidirectionality machinery is the one of `Program` for constructors and is orthogonal to bidirectionality hints. However, we could probably factorize both by providing default bidirectionality hints for constructors corresponding to their number of parameters. *) if program_mode && length > 0 && isConstruct sigma fj.uj_val then match tycon with | None -> [] | Some ty -> let ((ind, i), u) = destConstruct sigma fj.uj_val in let npars = inductive_nparams !!env ind in if Int.equal npars 0 then [] else try let IndType (indf, args) = find_rectype !!env sigma ty in let ((ind',u'),pars) = dest_ind_family indf in if Ind.CanOrd.equal ind ind' then List.map EConstr.of_constr pars else (* Let the usual code throw an error *) [] with Not_found -> [] else [] in let app_f = match EConstr.kind sigma fj.uj_val with | Const (p, u) when Recordops.is_primitive_projection p -> let p = Option.get @@ Recordops.find_primitive_projection p in let p = Projection.make p false in let npars = Projection.npars p in fun n -> if Int.equal n npars then fun _ v -> mkProj (p, v) else fun f v -> applist (f, [v]) | _ -> fun _ f v -> applist (f, [v]) in let refresh_template env sigma resj = (* Special case for inductive type applications that must be refreshed right away. *) match EConstr.kind sigma resj.uj_val with | App (f,args) -> if Termops.is_template_polymorphic_ind !!env sigma f then let c = mkApp (f, args) in let sigma, c = Evarsolve.refresh_universes (Some true) !!env sigma c in let t = Retyping.get_type_of !!env sigma c in sigma, make_judge c (* use this for keeping evars: resj.uj_val *) t else sigma, resj | _ -> sigma, resj in let rec apply_rec env sigma n resj resj_before_bidi candargs bidiargs = function | [] -> sigma, resj, resj_before_bidi, List.rev bidiargs | c::rest -> let bidi = n >= nargs_before_bidi in let argloc = loc_of_glob_constr c in let sigma, resj, trace = Coercion.inh_app_fun ~program_mode resolve_tc !!env sigma resj in let resty = whd_all !!env sigma resj.uj_type in match EConstr.kind sigma resty with | Prod (na,c1,c2) -> let (sigma, hj), bidiargs = if bidi then (* We want to get some typing information from the context before typing the argument, so we replace it by an existential variable *) let sigma, c_hole = new_evar env sigma ~src:(loc,Evar_kinds.InternalHole) c1 in (sigma, make_judge c_hole c1), (c_hole, c1, c, trace) :: bidiargs else let tycon = Some c1 in pretype tycon env sigma c, bidiargs in let sigma, candargs, ujval = match candargs with | [] -> sigma, [], j_val hj | arg :: args -> begin match Evarconv.unify_delay !!env sigma (j_val hj) arg with | exception Evarconv.UnableToUnify _ -> sigma, [], j_val hj | sigma -> sigma, args, nf_evar sigma (j_val hj) end in let sigma, ujval = adjust_evar_source sigma na.binder_name ujval in let value, typ = app_f n (j_val resj) ujval, subst1 ujval c2 in let resj = { uj_val = value; uj_type = typ } in let resj_before_bidi = if bidi then resj_before_bidi else resj in apply_rec env sigma (n+1) resj resj_before_bidi candargs bidiargs rest | _ -> let sigma, hj = pretype empty_tycon env sigma c in error_cant_apply_not_functional ?loc:(Loc.merge_opt floc argloc) !!env sigma resj [|hj|] in let sigma, resj, resj_before_bidi, bidiargs = apply_rec env sigma 0 fj fj candargs [] args in let sigma, resj = refresh_template env sigma resj in let sigma, resj, otrace = inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma resj tycon in let refine_arg n (sigma,t) (newarg,ty,origarg,trace) = (* Refine an argument (originally `origarg`) represented by an evar (`newarg`) to use typing information from the context *) (* Type the argument using the expected type *) let sigma, j = pretype (Some ty) env sigma origarg in (* Unify the (possibly refined) existential variable with the (typechecked) original value *) let sigma = Evarconv.unify_delay !!env sigma newarg (j_val j) in sigma, app_f n (Coercion.reapply_coercions sigma trace t) (j_val j) in (* We now refine any arguments whose typing was delayed for bidirectionality *) let t = resj_before_bidi.uj_val in let sigma, t = List.fold_left_i refine_arg nargs_before_bidi (sigma,t) bidiargs in (* If we did not get a coercion trace (e.g. with `Program` coercions, we replaced user-provided arguments with inferred ones. Otherwise, we apply the coercion trace to the user-provided arguments. *) let resj = match otrace with | None -> resj | Some trace -> let resj = { resj with uj_val = t } in let sigma, resj = refresh_template env sigma resj in { resj with uj_val = Coercion.reapply_coercions sigma trace t } in (sigma, resj) let pretype_lambda self (name, bk, c1, c2) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let open Context.Rel.Declaration in let sigma, tycon' = match tycon with | None -> sigma, tycon | Some ty -> let sigma, ty' = Coercion.inh_coerce_to_prod ?loc ~program_mode !!env sigma ty in sigma, Some ty' in let sigma,name',dom,rng = match tycon' with | None -> sigma,Anonymous, None, None | Some ty -> let sigma, ty = Evardefine.presplit !!env sigma ty in match EConstr.kind sigma ty with | Prod (na,dom,rng) -> sigma, na.binder_name, Some dom, Some rng | Evar ev -> (* define_evar_as_product works badly when impredicativity is possible but not known (#12623). OTOH if we know we are impredicative (typically Prop) we want to keep the information when typing the body. *) let s = Retyping.get_sort_of !!env sigma ty in if Environ.is_impredicative_sort !!env s || Evd.check_leq sigma (Univ.Universe.type1) (Sorts.univ_of_sort s) then let sigma, prod = define_evar_as_product !!env sigma ev in let na,dom,rng = destProd sigma prod in sigma, na.binder_name, Some dom, Some rng else sigma, Anonymous, None, None | _ -> (* XXX no error to allow later coercion? Not sure if possible with funclass *) error_not_product ?loc !!env sigma ty in let dom_valcon = valcon_of_tycon dom in let sigma, j = eval_type_pretyper self ~program_mode ~poly resolve_tc dom_valcon env sigma c1 in let name = {binder_name=name; binder_relevance=Sorts.relevance_of_sort j.utj_type} in let var = LocalAssum (name, j.utj_val) in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let var',env' = push_rel ~hypnaming sigma var env in let sigma, j' = eval_pretyper self ~program_mode ~poly resolve_tc rng env' sigma c2 in let name = get_name var' in let resj = judge_of_abstraction !!env (orelse_name name name') j j' in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma resj tycon let pretype_prod self (name, bk, c1, c2) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let open Context.Rel.Declaration in let pretype_type tycon env sigma c = eval_type_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let sigma, j = pretype_type empty_valcon env sigma c1 in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let sigma, name, j' = match name with | Anonymous -> let sigma, j = pretype_type empty_valcon env sigma c2 in sigma, name, { j with utj_val = lift 1 j.utj_val } | Name _ -> let r = Sorts.relevance_of_sort j.utj_type in let var = LocalAssum (make_annot name r, j.utj_val) in let var, env' = push_rel ~hypnaming sigma var env in let sigma, c2_j = pretype_type empty_valcon env' sigma c2 in sigma, get_name var, c2_j in let resj = try judge_of_product !!env name j j' with TypeError _ as e -> let (e, info) = Exninfo.capture e in let info = Option.cata (Loc.add_loc info) info loc in Exninfo.iraise (e, info) in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma resj tycon let pretype_letin self (name, c1, t, c2) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let open Context.Rel.Declaration in let pretype tycon env sigma c = eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let pretype_type tycon env sigma c = eval_type_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let sigma, tycon1 = match t with | Some t -> let sigma, t_j = pretype_type empty_valcon env sigma t in sigma, mk_tycon t_j.utj_val | None -> sigma, empty_tycon in let sigma, j = pretype tycon1 env sigma c1 in let sigma, t = Evarsolve.refresh_universes ~onlyalg:true ~status:Evd.univ_flexible (Some false) !!env sigma j.uj_type in let r = Retyping.relevance_of_term !!env sigma j.uj_val in let var = LocalDef (make_annot name r, j.uj_val, t) in let tycon = lift_tycon 1 tycon in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let var, env = push_rel ~hypnaming sigma var env in let sigma, j' = pretype tycon env sigma c2 in let name = get_name var in sigma, { uj_val = mkLetIn (make_annot name r, j.uj_val, t, j'.uj_val) ; uj_type = subst1 j.uj_val j'.uj_type } let pretype_lettuple self (nal, (na, po), c, d) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let open Context.Rel.Declaration in let pretype tycon env sigma c = eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let pretype_type tycon env sigma c = eval_type_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let sigma, cj = pretype empty_tycon env sigma c in let (IndType (indf,realargs)) as indty = try find_rectype !!env sigma cj.uj_type with Not_found -> let cloc = loc_of_glob_constr c in error_case_not_inductive ?loc:cloc !!env sigma cj in let ind = fst (fst (dest_ind_family indf)) in let cstrs = get_constructors !!env indf in if not (Int.equal (Array.length cstrs) 1) then user_err ?loc (str "Destructing let is only for inductive types" ++ str " with one constructor."); let cs = cstrs.(0) in if not (Int.equal (List.length nal) cs.cs_nargs) then user_err ?loc:loc (str "Destructing let on this type expects " ++ int cs.cs_nargs ++ str " variables."); let fsign, record = let set_name na d = set_name na (map_rel_decl EConstr.of_constr d) in match Environ.get_projections !!env ind with | None -> List.map2 set_name (List.rev nal) cs.cs_args, false | Some ps -> let rec aux n k names l = match names, l with | na :: names, (LocalAssum (na', t) :: l) -> let t = EConstr.of_constr t in let proj = Projection.make ps.(cs.cs_nargs - k) true in LocalDef ({na' with binder_name = na}, lift (cs.cs_nargs - n) (mkProj (proj, cj.uj_val)), t) :: aux (n+1) (k + 1) names l | na :: names, (decl :: l) -> set_name na decl :: aux (n+1) k names l | [], [] -> [] | _ -> assert false in aux 1 1 (List.rev nal) cs.cs_args, true in let fsign = Context.Rel.map (whd_betaiota !!env sigma) fsign in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let fsign,env_f = push_rel_context ~hypnaming sigma fsign env in let obj indt rci p v f = if not record then let f = it_mkLambda_or_LetIn f fsign in let ci = make_case_info !!env (ind_of_ind_type indt) rci LetStyle in mkCase (ci, p, make_case_invert !!env indt ci, cj.uj_val,[|f|]) else it_mkLambda_or_LetIn f fsign in (* Make dependencies from arity signature impossible *) let arsgn, indr = let arsgn,s = get_arity !!env indf in List.map (set_name Anonymous) arsgn, Sorts.relevance_of_sort_family s in let indt = build_dependent_inductive !!env indf in let psign = LocalAssum (make_annot na indr, indt) :: arsgn in (* For locating names in [po] *) let psign = List.map (fun d -> map_rel_decl EConstr.of_constr d) psign in let predenv = Cases.make_return_predicate_ltac_lvar env sigma na c cj.uj_val in let nar = List.length arsgn in let psign',env_p = push_rel_context ~hypnaming ~force_names:true sigma psign predenv in (match po with | Some p -> let sigma, pj = pretype_type empty_valcon env_p sigma p in let ccl = nf_evar sigma pj.utj_val in let p = it_mkLambda_or_LetIn ccl psign' in let inst = (Array.map_to_list EConstr.of_constr cs.cs_concl_realargs) @[EConstr.of_constr (build_dependent_constructor cs)] in let lp = lift cs.cs_nargs p in let fty = hnf_lam_applist !!env sigma lp inst in let sigma, fj = pretype (mk_tycon fty) env_f sigma d in let v = let ind,_ = dest_ind_family indf in let rci = Typing.check_allowed_sort !!env sigma ind cj.uj_val p in obj indty rci p cj.uj_val fj.uj_val in sigma, { uj_val = v; uj_type = (substl (realargs@[cj.uj_val]) ccl) } | None -> let tycon = lift_tycon cs.cs_nargs tycon in let sigma, fj = pretype tycon env_f sigma d in let ccl = nf_evar sigma fj.uj_type in let ccl = if noccur_between sigma 1 cs.cs_nargs ccl then lift (- cs.cs_nargs) ccl else error_cant_find_case_type ?loc !!env sigma cj.uj_val in (* let ccl = refresh_universes ccl in *) let p = it_mkLambda_or_LetIn (lift (nar+1) ccl) psign' in let v = let ind,_ = dest_ind_family indf in let rci = Typing.check_allowed_sort !!env sigma ind cj.uj_val p in obj indty rci p cj.uj_val fj.uj_val in sigma, { uj_val = v; uj_type = ccl }) let pretype_cases self (sty, po, tml, eqns) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let pretype tycon env sigma c = eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in Cases.compile_cases ?loc ~program_mode sty (pretype, sigma) tycon env (po,tml,eqns) let pretype_if self (c, (na, po), b1, b2) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let open Context.Rel.Declaration in let pretype tycon env sigma c = eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let sigma, cj = pretype empty_tycon env sigma c in let (IndType (indf,realargs)) as indty = try find_rectype !!env sigma cj.uj_type with Not_found -> let cloc = loc_of_glob_constr c in error_case_not_inductive ?loc:cloc !!env sigma cj in let cstrs = get_constructors !!env indf in if not (Int.equal (Array.length cstrs) 2) then user_err ?loc (str "If is only for inductive types with two constructors."); let arsgn, indr = let arsgn,s = get_arity !!env indf in (* Make dependencies from arity signature impossible *) List.map (set_name Anonymous) arsgn, Sorts.relevance_of_sort_family s in let nar = List.length arsgn in let indt = build_dependent_inductive !!env indf in let psign = LocalAssum (make_annot na indr, indt) :: arsgn in (* For locating names in [po] *) let psign = List.map (fun d -> map_rel_decl EConstr.of_constr d) psign in let predenv = Cases.make_return_predicate_ltac_lvar env sigma na c cj.uj_val in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let psign,env_p = push_rel_context ~hypnaming sigma psign predenv in let sigma, pred, p = match po with | Some p -> let sigma, pj = eval_type_pretyper self ~program_mode ~poly resolve_tc empty_valcon env_p sigma p in let ccl = nf_evar sigma pj.utj_val in let pred = it_mkLambda_or_LetIn ccl psign in let typ = lift (- nar) (beta_applist sigma (pred,[cj.uj_val])) in sigma, pred, typ | None -> let sigma, p = match tycon with | Some ty -> sigma, ty | None -> new_type_evar env sigma loc in sigma, it_mkLambda_or_LetIn (lift (nar+1) p) psign, p in let pred = nf_evar sigma pred in let p = nf_evar sigma p in let f sigma cs b = let n = Context.Rel.length cs.cs_args in let pi = lift n pred in (* liftn n 2 pred ? *) let pi = beta_applist sigma (pi, [EConstr.of_constr (build_dependent_constructor cs)]) in let cs_args = List.map (fun d -> map_rel_decl EConstr.of_constr d) cs.cs_args in let cs_args = Context.Rel.map (whd_betaiota !!env sigma) cs_args in let csgn = List.map (set_name Anonymous) cs_args in let _,env_c = push_rel_context ~hypnaming sigma csgn env in let sigma, bj = pretype (mk_tycon pi) env_c sigma b in sigma, it_mkLambda_or_LetIn bj.uj_val cs_args in let sigma, b1 = f sigma cstrs.(0) b1 in let sigma, b2 = f sigma cstrs.(1) b2 in let v = let ind,_ = dest_ind_family indf in let pred = nf_evar sigma pred in let rci = Typing.check_allowed_sort !!env sigma ind cj.uj_val pred in let ci = make_case_info !!env (fst ind) rci IfStyle in mkCase (ci, pred, make_case_invert !!env indty ci, cj.uj_val, [|b1;b2|]) in let cj = { uj_val = v; uj_type = p } in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma cj tycon let pretype_cast self (c, k) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let pretype tycon env sigma c = eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let sigma, cj = match k with | CastCoerce -> let sigma, cj = pretype empty_tycon env sigma c in Coercion.inh_coerce_to_base ?loc ~program_mode !!env sigma cj | CastConv t | CastVM t | CastNative t -> let k = (match k with CastVM _ -> VMcast | CastNative _ -> NATIVEcast | _ -> DEFAULTcast) in let sigma, tj = eval_type_pretyper self ~program_mode ~poly resolve_tc empty_valcon env sigma t in let sigma, tval = Evarsolve.refresh_universes ~onlyalg:true ~status:Evd.univ_flexible (Some false) !!env sigma tj.utj_val in let tval = nf_evar sigma tval in let (sigma, cj), tval = match k with | VMcast -> let sigma, cj = pretype empty_tycon env sigma c in let cty = nf_evar sigma cj.uj_type and tval = nf_evar sigma tval in if not (occur_existential sigma cty || occur_existential sigma tval) then match Reductionops.vm_infer_conv !!env sigma cty tval with | Some sigma -> (sigma, cj), tval | None -> error_actual_type ?loc !!env sigma cj tval (ConversionFailed (!!env,cty,tval)) else user_err ?loc (str "Cannot check cast with vm: " ++ str "unresolved arguments remain.") | NATIVEcast -> let sigma, cj = pretype empty_tycon env sigma c in let cty = nf_evar sigma cj.uj_type and tval = nf_evar sigma tval in begin match Nativenorm.native_infer_conv !!env sigma cty tval with | Some sigma -> (sigma, cj), tval | None -> error_actual_type ?loc !!env sigma cj tval (ConversionFailed (!!env,cty,tval)) end | _ -> pretype (mk_tycon tval) env sigma c, tval in let v = mkCast (cj.uj_val, k, tval) in sigma, { uj_val = v; uj_type = tval } in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma cj tycon (* [pretype_type valcon env sigma c] coerces [c] into a type *) let pretype_type self c ?loc ~program_mode ~poly resolve_tc valcon (env : GlobEnv.t) sigma = match DAst.get c with | GHole (knd, naming, None) -> let loc = loc_of_glob_constr c in (match valcon with | Some v -> let sigma, s = let t = Retyping.get_type_of !!env sigma v in match EConstr.kind sigma (whd_all !!env sigma t) with | Sort s -> sigma, ESorts.kind sigma s | Evar ev when is_Type sigma (existential_type sigma ev) -> define_evar_as_sort !!env sigma ev | _ -> anomaly (Pp.str "Found a type constraint which is not a type.") in (* Correction of bug #5315 : we need to define an evar for *all* holes *) let sigma, evkt = new_evar env sigma ~src:(loc, knd) ~naming (mkSort s) in let ev,_ = destEvar sigma evkt in let sigma = Evd.define ev (nf_evar sigma v) sigma in (* End of correction of bug #5315 *) sigma, { utj_val = v; utj_type = s } | None -> let sigma, s = new_sort_variable univ_flexible_alg sigma in let sigma, utj_val = new_evar env sigma ~src:(loc, knd) ~naming (mkSort s) in let sigma = if program_mode then mark_obligation_evar sigma knd utj_val else sigma in sigma, { utj_val; utj_type = s}) | _ -> let sigma, j = eval_pretyper self ~program_mode ~poly resolve_tc empty_tycon env sigma c in let loc = loc_of_glob_constr c in let sigma, tj = Coercion.inh_coerce_to_sort ?loc !!env sigma j in match valcon with | None -> sigma, tj | Some v -> begin match Evarconv.unify_leq_delay !!env sigma v tj.utj_val with | sigma -> sigma, tj | exception Evarconv.UnableToUnify _ -> error_unexpected_type ?loc:(loc_of_glob_constr c) !!env sigma tj.utj_val v end let pretype_int self i = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let resj = try Typing.judge_of_int !!env i with Invalid_argument _ -> user_err ?loc ~hdr:"pretype" (str "Type of int63 should be registered first.") in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma resj tycon let pretype_float self f = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let resj = try Typing.judge_of_float !!env f with Invalid_argument _ -> user_err ?loc ~hdr:"pretype" (str "Type of float should be registered first.") in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma resj tycon let pretype_array self (u,t,def,ty) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let sigma, tycon' = split_as_array !!env sigma tycon in let sigma, jty = eval_type_pretyper self ~program_mode ~poly resolve_tc tycon' env sigma ty in (* XXX not sure if we need to be this complex, I wrote this while being confused by broken universe substitutions *) let sigma, u = match Univ.Universe.level (Sorts.univ_of_sort jty.utj_type) with | Some u -> let sigma = Evd.make_nonalgebraic_variable sigma u in sigma, u | None -> let sigma, u = Evd.new_univ_level_variable UState.univ_flexible sigma in let sigma = Evd.set_leq_sort !!env sigma jty.utj_type (Sorts.sort_of_univ (Univ.Universe.make u)) in sigma, u in let sigma, jdef = eval_pretyper self ~program_mode ~poly resolve_tc (mk_tycon jty.utj_val) env sigma def in let pretype_elem = eval_pretyper self ~program_mode ~poly resolve_tc (mk_tycon jty.utj_val) env in let sigma, jt = Array.fold_left_map pretype_elem sigma t in let u = Univ.Instance.of_array [| u |] in let ta = EConstr.of_constr @@ Typeops.type_of_array !!env u in let j = { uj_val = EConstr.mkArray(EInstance.make u, Array.map (fun j -> j.uj_val) jt, jdef.uj_val, jty.utj_val); uj_type = EConstr.mkApp(ta,[|jdef.uj_type|]) } in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma j tycon end (* [pretype tycon env sigma lvar lmeta cstr] attempts to type [cstr] *) (* in environment [env], with existential variables [sigma] and *) (* the type constraint tycon *) let default_pretyper = let open Default in { pretype_ref = pretype_ref; pretype_var = pretype_var; pretype_evar = pretype_evar; pretype_patvar = pretype_patvar; pretype_app = pretype_app; pretype_lambda = pretype_lambda; pretype_prod = pretype_prod; pretype_letin = pretype_letin; pretype_cases = pretype_cases; pretype_lettuple = pretype_lettuple; pretype_if = pretype_if; pretype_rec = pretype_rec; pretype_sort = pretype_sort; pretype_hole = pretype_hole; pretype_cast = pretype_cast; pretype_int = pretype_int; pretype_float = pretype_float; pretype_array = pretype_array; pretype_type = pretype_type; } let pretype ~program_mode ~poly resolve_tc tycon env sigma c = eval_pretyper default_pretyper ~program_mode ~poly resolve_tc tycon env sigma c let pretype_type ~program_mode ~poly resolve_tc tycon env sigma c = eval_type_pretyper default_pretyper ~program_mode ~poly resolve_tc tycon env sigma c let ise_pretype_gen flags env sigma lvar kind c = let program_mode = flags.program_mode in let poly = flags.polymorphic in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let env = GlobEnv.make ~hypnaming env sigma lvar in let use_tc = match flags.use_typeclasses with | NoUseTC -> false | UseTC | UseTCForConv -> true in let sigma', c', c'_ty = match kind with | WithoutTypeConstraint | UnknownIfTermOrType -> let sigma, j = pretype ~program_mode ~poly use_tc empty_tycon env sigma c in sigma, j.uj_val, j.uj_type | OfType exptyp -> let sigma, j = pretype ~program_mode ~poly use_tc (mk_tycon exptyp) env sigma c in sigma, j.uj_val, j.uj_type | IsType -> let sigma, tj = pretype_type ~program_mode ~poly use_tc empty_valcon env sigma c in sigma, tj.utj_val, mkSort tj.utj_type in process_inference_flags flags !!env sigma (sigma',c',c'_ty) let default_inference_flags fail = { use_typeclasses = UseTC; solve_unification_constraints = true; fail_evar = fail; expand_evars = true; program_mode = false; polymorphic = false; } let no_classes_no_fail_inference_flags = { use_typeclasses = NoUseTC; solve_unification_constraints = true; fail_evar = false; expand_evars = true; program_mode = false; polymorphic = false; } let all_and_fail_flags = default_inference_flags true let all_no_fail_flags = default_inference_flags false let ise_pretype_gen_ctx flags env sigma lvar kind c = let sigma, c, _ = ise_pretype_gen flags env sigma lvar kind c in c, Evd.evar_universe_context sigma (** Entry points of the high-level type synthesis algorithm *) let understand ?(flags=all_and_fail_flags) ?(expected_type=WithoutTypeConstraint) env sigma c = ise_pretype_gen_ctx flags env sigma empty_lvar expected_type c let understand_tcc_ty ?(flags=all_no_fail_flags) env sigma ?(expected_type=WithoutTypeConstraint) c = ise_pretype_gen flags env sigma empty_lvar expected_type c let understand_tcc ?flags env sigma ?expected_type c = let sigma, c, _ = understand_tcc_ty ?flags env sigma ?expected_type c in sigma, c let understand_ltac flags env sigma lvar kind c = let (sigma, c, _) = ise_pretype_gen flags env sigma lvar kind c in (sigma, c) let path_convertible env sigma i p q = let open Coercionops in let mkGRef ref = DAst.make @@ Glob_term.GRef(ref,None) in let mkGVar id = DAst.make @@ Glob_term.GVar(id) in let mkGApp(rt,rtl) = DAst.make @@ Glob_term.GApp(rt,rtl) in let mkGLambda(n,t,b) = DAst.make @@ Glob_term.GLambda(n,Explicit,t,b) in let mkGSort u = DAst.make @@ Glob_term.GSort u in let mkGHole () = DAst.make @@ Glob_term.GHole(Evar_kinds.BinderType Anonymous,Namegen.IntroAnonymous,None) in let path_to_gterm p = match p with | ic :: p' -> let names = List.init (ic.coe_param + 1) (fun n -> Id.of_string ("x" ^ string_of_int n)) in List.fold_right (fun id t -> mkGLambda (Name id, mkGHole (), t)) names @@ List.fold_left (fun t ic -> mkGApp (mkGRef ic.coe_value, List.make ic.coe_param (mkGHole ()) @ [t])) (mkGApp (mkGRef ic.coe_value, List.map mkGVar names)) p' | [] -> (* identity function for the class [i]. *) let cl,params = class_info_from_index i in let clty = match cl with | CL_SORT -> mkGSort (Glob_term.UAnonymous {rigid=false}) | CL_FUN -> anomaly (str "A source class must not be Funclass.") | CL_SECVAR v -> mkGRef (GlobRef.VarRef v) | CL_CONST c -> mkGRef (GlobRef.ConstRef c) | CL_IND i -> mkGRef (GlobRef.IndRef i) | CL_PROJ p -> mkGRef (GlobRef.ConstRef (Projection.Repr.constant p)) in let names = List.init params.cl_param (fun n -> Id.of_string ("x" ^ string_of_int n)) in List.fold_right (fun id t -> mkGLambda (Name id, mkGHole (), t)) names @@ mkGLambda (Name (Id.of_string "x"), mkGApp (clty, List.map mkGVar names), mkGVar (Id.of_string "x")) in try let sigma,tp = understand_tcc env sigma (path_to_gterm p) in let sigma,tq = understand_tcc env sigma (path_to_gterm q) in if Evd.has_undefined sigma then false else let _ = Evarconv.unify_delay env sigma tp tq in true with Evarconv.UnableToUnify _ | PretypeError _ -> false let _ = Coercionops.install_path_comparator path_convertible