(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* env -> evar_map -> conv_pb -> EConstr.constr -> EConstr.constr -> Evarsolve.unification_result let default_transparent_state env = TransparentState.full (* Conv_oracle.get_transp_state (Environ.oracle env) *) let default_flags_of ?(subterm_ts=TransparentState.empty) ts = { modulo_betaiota = true; open_ts = ts; closed_ts = ts; subterm_ts; frozen_evars = Evar.Set.empty; with_cs = true; allow_K_at_toplevel = true } let default_flags env = let ts = default_transparent_state env in default_flags_of ts let debug_unification = ref (false) let () = Goptions.(declare_bool_option { optdepr = false; optname = "Print states sent to Evarconv unification"; optkey = ["Debug";"Unification"]; optread = (fun () -> !debug_unification); optwrite = (fun a -> debug_unification:=a); }) let debug_ho_unification = ref (false) let () = Goptions.(declare_bool_option { optdepr = false; optname = "Print higher-order unification debug information"; optkey = ["Debug";"HO";"Unification"]; optread = (fun () -> !debug_ho_unification); optwrite = (fun a -> debug_ho_unification:=a); }) (*******************************************) (* Functions to deal with impossible cases *) (*******************************************) let impossible_default_case env = let type_of_id = Coqlib.lib_ref "core.IDProp.type" in let c, ctx = UnivGen.fresh_global_instance env (Coqlib.(lib_ref "core.IDProp.idProp")) in let (_, u) = Constr.destRef c in Some (c, Constr.mkRef (type_of_id, u), ctx) let coq_unit_judge = let open Environ in let make_judge c t = make_judge (EConstr.of_constr c) (EConstr.of_constr t) in let na1 = make_annot (Name (Id.of_string "A")) Sorts.Relevant in let na2 = make_annot (Name (Id.of_string "H")) Sorts.Relevant in fun env -> match impossible_default_case env with | Some (id, type_of_id, ctx) -> make_judge id type_of_id, ctx | None -> (* In case the constants id/ID are not defined *) Environ.make_judge (mkLambda (na1,mkProp,mkLambda(na2,mkRel 1,mkRel 1))) (mkProd (na1,mkProp,mkArrow (mkRel 1) Sorts.Relevant (mkRel 2))), Univ.ContextSet.empty let unfold_projection env evd ts p c = let cst = Projection.constant p in if TransparentState.is_transparent_constant ts cst then Some (mkProj (Projection.unfold p, c)) else None let eval_flexible_term ts env evd c = match EConstr.kind evd c with | Const (c, u) -> if TransparentState.is_transparent_constant ts c then Option.map EConstr.of_constr (constant_opt_value_in env (c, EInstance.kind evd u)) else None | Rel n -> (try match lookup_rel n env with | RelDecl.LocalAssum _ -> None | RelDecl.LocalDef (_,v,_) -> Some (lift n v) with Not_found -> None) | Var id -> (try if TransparentState.is_transparent_variable ts id then env |> lookup_named id |> NamedDecl.get_value else None with Not_found -> None) | LetIn (_,b,_,c) -> Some (subst1 b c) | Lambda _ -> Some c | Proj (p, c) -> if Projection.unfolded p then assert false else unfold_projection env evd ts p c | _ -> assert false type flex_kind_of_term = | Rigid | MaybeFlexible of EConstr.t (* reducible but not necessarily reduced *) | Flexible of EConstr.existential let is_frozen flags (evk, _) = Evar.Set.mem evk flags.frozen_evars let flex_kind_of_term flags env evd c sk = match EConstr.kind evd c with | LetIn _ | Rel _ | Const _ | Var _ | Proj _ -> Option.cata (fun x -> MaybeFlexible x) Rigid (eval_flexible_term flags.open_ts env evd c) | Lambda _ when not (Option.is_empty (Stack.decomp sk)) -> if flags.modulo_betaiota then MaybeFlexible c else Rigid | Evar ev -> if is_frozen flags ev then Rigid else Flexible ev | Lambda _ | Prod _ | Sort _ | Ind _ | Construct _ | CoFix _ | Int _ -> Rigid | Meta _ -> Rigid | Fix _ -> Rigid (* happens when the fixpoint is partially applied *) | Cast _ | App _ | Case _ -> assert false let apprec_nohdbeta flags env evd c = let (t,sk as appr) = Reductionops.whd_nored_state evd (c, []) in if flags.modulo_betaiota && Stack.not_purely_applicative sk then Stack.zip evd (whd_betaiota_deltazeta_for_iota_state flags.open_ts env evd appr) else c let position_problem l2r = function | CONV -> None | CUMUL -> Some l2r (* [occur_rigidly ev evd t] tests if the evar ev occurs in a rigid context in t. Precondition: t has a rigid head and is not reducible. That function is an under approximation of occur-check, it can return false even if the occur-check would succeed on the normal form. This means we might postpone unsolvable constraints which will ultimately result in an occur-check after reductions. If it returns true, we know that the occur-check would also return true on the normal form. [t] is assumed to have a rigid head, which can appear under a elimination context (e.g. application, match or projection). In the inner recursive function, the result indicates if the term is rigid (irreducible), normal (succession of constructors) or potentially reducible. For applications, this means than an occurrence of the evar in arguments should be looked at to find an occur-check if the head is rigid or normal. For inductive eliminations, only an occurrence in a rigid context of the discriminee counts as a rigid occurrence overall, not a normal occurrence which might disappear after reduction. *) type result = Rigid of bool | Normal of bool | Reducible let rigid_normal_occ = function Rigid b -> b | Normal b -> b | _ -> false let occur_rigidly flags env evd (evk,_) t = let rec aux t = match EConstr.kind evd t with | App (f, c) -> (match aux f with | Rigid b -> Rigid (b || Array.exists (fun x -> rigid_normal_occ (aux x)) c) | Normal b -> Normal (b || Array.exists (fun x -> rigid_normal_occ (aux x)) c) | Reducible -> Reducible) | Construct _ -> Normal false | Ind _ | Sort _ -> Rigid false | Proj (p, c) -> let cst = Projection.constant p in let rigid = not (TransparentState.is_transparent_constant flags.open_ts cst) in if rigid then aux c else (* if the evar appears rigidly in c then this elimination cannot reduce and we have a rigid occurrence, otherwise we don't know. *) (match aux c with | Rigid _ as res -> res | Normal b -> Reducible | Reducible -> Reducible) | Evar (evk',l as ev) -> if Evar.equal evk evk' then Rigid true else if is_frozen flags ev then Rigid (Array.exists (fun x -> rigid_normal_occ (aux x)) l) else Reducible | Cast (p, _, _) -> aux p | Lambda (na, t, b) -> aux b | LetIn (na, _, _, b) -> aux b | Const (c,_) -> if TransparentState.is_transparent_constant flags.open_ts c then Reducible else Rigid false | Prod (_, b, t) -> let b' = aux b and t' = aux t in if rigid_normal_occ b' || rigid_normal_occ t' then Rigid true else Reducible | Rel _ | Var _ -> Reducible | Case (_,_,c,_) -> (match aux c with | Rigid b -> Rigid b | _ -> Reducible) | Meta _ | Fix _ | CoFix _ | Int _ -> Reducible in match aux t with | Rigid b -> b | Normal b -> b | Reducible -> false (* [check_conv_record env sigma (t1,stack1) (t2,stack2)] tries to decompose the problem (t1 stack1) = (t2 stack2) into a problem stack1 = params1@[c1]@extra_args1 stack2 = us2@extra_args2 t1 params1 c1 = proji params (c xs) t2 us2 = head us extra_args1 = extra_args2 by finding a record R and an object c := [xs:bs](Build_R params v1..vn) with vi = (head us), for which we know that the i-th projection proji satisfies proji params (c xs) = head us Rem: such objects, usable for conversion, are defined in the objdef table; practically, it amounts to "canonically" equip t2 into a object c in structure R (since, if c1 were not an evar, the projection would have been reduced) *) let check_conv_record env sigma (t1,sk1) (t2,sk2) = let (proji, u), arg = Termops.global_app_of_constr sigma t1 in let canon_s,sk2_effective = try match EConstr.kind sigma t2 with Prod (_,a,b) -> (* assert (l2=[]); *) let _, a, b = destProd sigma t2 in if noccurn sigma 1 b then lookup_canonical_conversion (proji, Prod_cs), (Stack.append_app [|a;pop b|] Stack.empty) else raise Not_found | Sort s -> let s = ESorts.kind sigma s in lookup_canonical_conversion (proji, Sort_cs (Sorts.family s)),[] | Proj (p, c) -> let c2 = Globnames.ConstRef (Projection.constant p) in let c = Retyping.expand_projection env sigma p c [] in let _, args = destApp sigma c in let sk2 = Stack.append_app args sk2 in lookup_canonical_conversion (proji, Const_cs c2), sk2 | _ -> let (c2, _) = Termops.global_of_constr sigma t2 in lookup_canonical_conversion (proji, Const_cs c2),sk2 with Not_found -> let (c, cs) = lookup_canonical_conversion (proji,Default_cs) in (c,cs),[] in let t', { o_DEF = c; o_CTX = ctx; o_INJ=n; o_TABS = bs; o_TPARAMS = params; o_NPARAMS = nparams; o_TCOMPS = us } = canon_s in let us = List.map EConstr.of_constr us in let params = List.map EConstr.of_constr params in let params1, c1, extra_args1 = match arg with | Some c -> (* A primitive projection applied to c *) let ty = Retyping.get_type_of ~lax:true env sigma c in let (i,u), ind_args = try Inductiveops.find_mrectype env sigma ty with _ -> raise Not_found in Stack.append_app_list ind_args Stack.empty, c, sk1 | None -> match Stack.strip_n_app nparams sk1 with | Some (params1, c1, extra_args1) -> params1, c1, extra_args1 | _ -> raise Not_found in let us2,extra_args2 = let l_us = List.length us in if Int.equal l_us 0 then Stack.empty,sk2_effective else match (Stack.strip_n_app (l_us-1) sk2_effective) with | None -> raise Not_found | Some (l',el,s') -> (l'@Stack.append_app [|el|] Stack.empty,s') in let u, ctx' = UnivGen.fresh_instance_from ctx None in let subst = Univ.make_inverse_instance_subst u in let c = EConstr.of_constr c in let c' = subst_univs_level_constr subst c in let t' = EConstr.of_constr t' in let t' = subst_univs_level_constr subst t' in let bs' = List.map (EConstr.of_constr %> subst_univs_level_constr subst) bs in let params = List.map (fun c -> subst_univs_level_constr subst c) params in let us = List.map (fun c -> subst_univs_level_constr subst c) us in let h, _ = decompose_app_vect sigma t' in ctx',(h, t2),c',bs',(Stack.append_app_list params Stack.empty,params1), (Stack.append_app_list us Stack.empty,us2),(extra_args1,extra_args2),c1, (n, Stack.zip sigma (t2,sk2)) (* Precondition: one of the terms of the pb is an uninstantiated evar, * possibly applied to arguments. *) let join_failures evd1 evd2 e1 e2 = match e1, e2 with | _, CannotSolveConstraint (_,ProblemBeyondCapabilities) -> (evd1,e1) | _ -> (evd2,e2) let rec ise_try evd = function [] -> assert false | [f] -> f evd | f1::l -> match f1 evd with | Success _ as x -> x | UnifFailure (evd1,e1) -> match ise_try evd l with | Success _ as x -> x | UnifFailure (evd2,e2) -> let evd,e = join_failures evd1 evd2 e1 e2 in UnifFailure (evd,e) let ise_and evd l = let rec ise_and i = function [] -> assert false | [f] -> f i | f1::l -> match f1 i with | Success i' -> ise_and i' l | UnifFailure _ as x -> x in ise_and evd l let ise_exact ise x1 x2 = match ise x1 x2 with | None, out -> out | _, (UnifFailure _ as out) -> out | Some _, Success i -> UnifFailure (i,NotSameArgSize) let ise_array2 evd f v1 v2 = let rec allrec i = function | -1 -> Success i | n -> match f i v1.(n) v2.(n) with | Success i' -> allrec i' (n-1) | UnifFailure _ as x -> x in let lv1 = Array.length v1 in if Int.equal lv1 (Array.length v2) then allrec evd (pred lv1) else UnifFailure (evd,NotSameArgSize) (* Applicative node of stack are read from the outermost to the innermost but are unified the other way. *) let rec ise_app_stack2 env f evd sk1 sk2 = match sk1,sk2 with | Stack.App node1 :: q1, Stack.App node2 :: q2 -> let (t1,l1) = Stack.decomp_node_last node1 q1 in let (t2,l2) = Stack.decomp_node_last node2 q2 in begin match ise_app_stack2 env f evd l1 l2 with |(_,UnifFailure _) as x -> x |x,Success i' -> x,f env i' CONV t1 t2 end | _, _ -> (sk1,sk2), Success evd (* This function tries to unify 2 stacks element by element. It works from the end to the beginning. If it unifies a non empty suffix of stacks but not the entire stacks, the first part of the answer is Some(the remaining prefixes to tackle)) *) let ise_stack2 no_app env evd f sk1 sk2 = let rec ise_stack2 deep i sk1 sk2 = let fail x = if deep then Some (List.rev sk1, List.rev sk2), Success i else None, x in match sk1, sk2 with | [], [] -> None, Success i | Stack.Case (_,t1,c1,_)::q1, Stack.Case (_,t2,c2,_)::q2 -> (match f env i CONV t1 t2 with | Success i' -> (match ise_array2 i' (fun ii -> f env ii CONV) c1 c2 with | Success i'' -> ise_stack2 true i'' q1 q2 | UnifFailure _ as x -> fail x) | UnifFailure _ as x -> fail x) | Stack.Proj (p1,_)::q1, Stack.Proj (p2,_)::q2 -> if Projection.Repr.equal (Projection.repr p1) (Projection.repr p2) then ise_stack2 true i q1 q2 else fail (UnifFailure (i, NotSameHead)) | Stack.Fix (((li1, i1),(_,tys1,bds1 as recdef1)),a1,_)::q1, Stack.Fix (((li2, i2),(_,tys2,bds2)),a2,_)::q2 -> if Int.equal i1 i2 && Array.equal Int.equal li1 li2 then match ise_and i [ (fun i -> ise_array2 i (fun ii -> f env ii CONV) tys1 tys2); (fun i -> ise_array2 i (fun ii -> f (push_rec_types recdef1 env) ii CONV) bds1 bds2); (fun i -> ise_exact (ise_stack2 false i) a1 a2)] with | Success i' -> ise_stack2 true i' q1 q2 | UnifFailure _ as x -> fail x else fail (UnifFailure (i,NotSameHead)) | Stack.App _ :: _, Stack.App _ :: _ -> if no_app && deep then fail ((*dummy*)UnifFailure(i,NotSameHead)) else begin match ise_app_stack2 env f i sk1 sk2 with |_,(UnifFailure _ as x) -> fail x |(l1, l2), Success i' -> ise_stack2 true i' l1 l2 end |_, _ -> fail (UnifFailure (i,(* Maybe improve: *) NotSameHead)) in ise_stack2 false evd (List.rev sk1) (List.rev sk2) (* Make sure that the matching suffix is the all stack *) let exact_ise_stack2 env evd f sk1 sk2 = let rec ise_stack2 i sk1 sk2 = match sk1, sk2 with | [], [] -> Success i | Stack.Case (_,t1,c1,_)::q1, Stack.Case (_,t2,c2,_)::q2 -> ise_and i [ (fun i -> ise_stack2 i q1 q2); (fun i -> ise_array2 i (fun ii -> f env ii CONV) c1 c2); (fun i -> f env i CONV t1 t2)] | Stack.Fix (((li1, i1),(_,tys1,bds1 as recdef1)),a1,_)::q1, Stack.Fix (((li2, i2),(_,tys2,bds2)),a2,_)::q2 -> if Int.equal i1 i2 && Array.equal Int.equal li1 li2 then ise_and i [ (fun i -> ise_stack2 i q1 q2); (fun i -> ise_array2 i (fun ii -> f env ii CONV) tys1 tys2); (fun i -> ise_array2 i (fun ii -> f (push_rec_types recdef1 env) ii CONV) bds1 bds2); (fun i -> ise_stack2 i a1 a2)] else UnifFailure (i,NotSameHead) | Stack.Proj (p1,_)::q1, Stack.Proj (p2,_)::q2 -> if Projection.Repr.equal (Projection.repr p1) (Projection.repr p2) then ise_stack2 i q1 q2 else (UnifFailure (i, NotSameHead)) | Stack.App _ :: _, Stack.App _ :: _ -> begin match ise_app_stack2 env f i sk1 sk2 with |_,(UnifFailure _ as x) -> x |(l1, l2), Success i' -> ise_stack2 i' l1 l2 end |_, _ -> UnifFailure (i,(* Maybe improve: *) NotSameHead) in if Reductionops.Stack.compare_shape sk1 sk2 then ise_stack2 evd (List.rev sk1) (List.rev sk2) else UnifFailure (evd, (* Dummy *) NotSameHead) (* Add equality constraints for covariant/invariant positions. For irrelevant positions, unify universes when flexible. *) let compare_cumulative_instances evd variances u u' = match Evarutil.compare_cumulative_instances CONV variances u u' evd with | Inl evd -> Success evd | Inr p -> UnifFailure (evd, UnifUnivInconsistency p) let conv_fun f flags on_types = let typefn env evd pbty term1 term2 = let flags = { (default_flags env) with with_cs = flags.with_cs; frozen_evars = flags.frozen_evars } in f flags env evd pbty term1 term2 in let termfn env evd pbty term1 term2 = f flags env evd pbty term1 term2 in match on_types with | TypeUnification -> typefn | TermUnification -> termfn let rec evar_conv_x flags env evd pbty term1 term2 = let term1 = whd_head_evar evd term1 in let term2 = whd_head_evar evd term2 in (* Maybe convertible but since reducing can erase evars which [evar_apprec] could have found, we do it only if the terms are free of evar. Note: incomplete heuristic... *) let ground_test = if is_ground_term evd term1 && is_ground_term evd term2 then ( let e = match infer_conv ~catch_incon:false ~pb:pbty ~ts:flags.closed_ts env evd term1 term2 with | Some evd -> Success evd | None -> UnifFailure (evd, ConversionFailed (env,term1,term2)) | exception Univ.UniverseInconsistency e -> UnifFailure (evd, UnifUnivInconsistency e) in match e with | UnifFailure (evd, e) when not (is_ground_env evd env) -> None | _ -> Some e) else None in match ground_test with | Some result -> result | None -> (* Until pattern-unification is used consistently, use nohdbeta to not destroy beta-redexes that can be used for 1st-order unification *) let term1 = apprec_nohdbeta flags env evd term1 in let term2 = apprec_nohdbeta flags env evd term2 in let default () = evar_eqappr_x flags env evd pbty (whd_nored_state evd (term1,Stack.empty)) (whd_nored_state evd (term2,Stack.empty)) in begin match EConstr.kind evd term1, EConstr.kind evd term2 with | Evar ev, _ when Evd.is_undefined evd (fst ev) && not (is_frozen flags ev) -> (match solve_simple_eqn (conv_fun evar_conv_x) flags env evd (position_problem true pbty,ev,term2) with | UnifFailure (_,(OccurCheck _ | NotClean _)) -> (* Eta-expansion might apply *) (* OccurCheck: eta-expansion could solve ?X = {| foo := ?X.(foo) |} NotClean: pruning in solve_simple_eqn is incomplete wrt Miller patterns *) default () | x -> x) | _, Evar ev when Evd.is_undefined evd (fst ev) && not (is_frozen flags ev) -> (match solve_simple_eqn (conv_fun evar_conv_x) flags env evd (position_problem false pbty,ev,term1) with | UnifFailure (_, (OccurCheck _ | NotClean _)) -> (* OccurCheck: eta-expansion could solve ?X = {| foo := ?X.(foo) |} NotClean: pruning in solve_simple_eqn is incomplete wrt Miller patterns *) default () | x -> x) | _ -> default () end and evar_eqappr_x ?(rhs_is_already_stuck = false) flags env evd pbty (term1, sk1 as appr1) (term2, sk2 as appr2) = let quick_fail i = (* not costly, loses info *) UnifFailure (i, NotSameHead) in let miller_pfenning on_left fallback ev lF tM evd = match is_unification_pattern_evar env evd ev lF tM with | None -> fallback () | Some l1' -> (* Miller-Pfenning's patterns unification *) let t2 = tM in let t2 = solve_pattern_eqn env evd l1' t2 in solve_simple_eqn (conv_fun evar_conv_x) flags env evd (position_problem on_left pbty,ev,t2) in let consume_stack on_left (termF,skF) (termO,skO) evd = let switch f a b = if on_left then f a b else f b a in let not_only_app = Stack.not_purely_applicative skO in match switch (ise_stack2 not_only_app env evd (evar_conv_x flags)) skF skO with |Some (l,r), Success i' when on_left && (not_only_app || List.is_empty l) -> switch (evar_conv_x flags env i' pbty) (Stack.zip evd (termF,l)) (Stack.zip evd (termO,r)) |Some (r,l), Success i' when not on_left && (not_only_app || List.is_empty l) -> switch (evar_conv_x flags env i' pbty) (Stack.zip evd (termF,l)) (Stack.zip evd (termO,r)) |None, Success i' -> switch (evar_conv_x flags env i' pbty) termF termO |_, (UnifFailure _ as x) -> x |Some _, _ -> UnifFailure (evd,NotSameArgSize) in let eta env evd onleft sk term sk' term' = assert (match sk with [] -> true | _ -> false); let (na,c1,c'1) = destLambda evd term in let c = nf_evar evd c1 in let env' = push_rel (RelDecl.LocalAssum (na,c)) env in let out1 = whd_betaiota_deltazeta_for_iota_state flags.open_ts env' evd (c'1, Stack.empty) in let out2, _ = whd_nored_state evd (lift 1 (Stack.zip evd (term', sk')), Stack.append_app [|EConstr.mkRel 1|] Stack.empty), Cst_stack.empty in if onleft then evar_eqappr_x flags env' evd CONV out1 out2 else evar_eqappr_x flags env' evd CONV out2 out1 in let rigids env evd sk term sk' term' = let check_strict evd u u' = let cstrs = Univ.enforce_eq_instances u u' Univ.Constraint.empty in try Success (Evd.add_constraints evd cstrs) with Univ.UniverseInconsistency p -> UnifFailure (evd, UnifUnivInconsistency p) in let compare_heads evd = match EConstr.kind evd term, EConstr.kind evd term' with | Const (c, u), Const (c', u') when Constant.equal c c' -> let u = EInstance.kind evd u and u' = EInstance.kind evd u' in check_strict evd u u' | Const _, Const _ -> UnifFailure (evd, NotSameHead) | Ind ((mi,i) as ind , u), Ind (ind', u') when Names.eq_ind ind ind' -> if EInstance.is_empty u && EInstance.is_empty u' then Success evd else let u = EInstance.kind evd u and u' = EInstance.kind evd u' in let mind = Environ.lookup_mind mi env in let open Declarations in begin match mind.mind_variance with | None -> check_strict evd u u' | Some variances -> let nparamsaplied = Stack.args_size sk in let nparamsaplied' = Stack.args_size sk' in let needed = Reduction.inductive_cumulativity_arguments (mind,i) in if not (Int.equal nparamsaplied needed && Int.equal nparamsaplied' needed) then check_strict evd u u' else compare_cumulative_instances evd variances u u' end | Ind _, Ind _ -> UnifFailure (evd, NotSameHead) | Construct (((mi,ind),ctor as cons), u), Construct (cons', u') when Names.eq_constructor cons cons' -> if EInstance.is_empty u && EInstance.is_empty u' then Success evd else let u = EInstance.kind evd u and u' = EInstance.kind evd u' in let mind = Environ.lookup_mind mi env in let open Declarations in begin match mind.mind_variance with | None -> check_strict evd u u' | Some variances -> let nparamsaplied = Stack.args_size sk in let nparamsaplied' = Stack.args_size sk' in let needed = Reduction.constructor_cumulativity_arguments (mind,ind,ctor) in if not (Int.equal nparamsaplied needed && Int.equal nparamsaplied' needed) then check_strict evd u u' else Success (compare_constructor_instances evd u u') end | Construct _, Construct _ -> UnifFailure (evd, NotSameHead) | _, _ -> anomaly (Pp.str "") in ise_and evd [(fun i -> try compare_heads i with Univ.UniverseInconsistency p -> UnifFailure (i, UnifUnivInconsistency p)); (fun i -> exact_ise_stack2 env i (evar_conv_x flags) sk sk')] in let consume on_left (_, skF as apprF) (_,skM as apprM) i = if not (Stack.is_empty skF && Stack.is_empty skM) then consume_stack on_left apprF apprM i else quick_fail i in let miller on_left ev (termF,skF as apprF) (termM, skM as apprM) i = let switch f a b = if on_left then f a b else f b a in let not_only_app = Stack.not_purely_applicative skM in match Stack.list_of_app_stack skF with | None -> quick_fail evd | Some lF -> let tM = Stack.zip evd apprM in miller_pfenning on_left (fun () -> if not_only_app then (* Postpone the use of an heuristic *) switch (fun x y -> Success (Evarutil.add_unification_pb (pbty,env,x,y) i)) (Stack.zip evd apprF) tM else quick_fail i) ev lF tM i in let flex_maybeflex on_left ev (termF,skF as apprF) (termM, skM as apprM) vM = let switch f a b = if on_left then f a b else f b a in let delta i = switch (evar_eqappr_x flags env i pbty) apprF (whd_betaiota_deltazeta_for_iota_state flags.open_ts env i (vM,skM)) in let default i = ise_try i [miller on_left ev apprF apprM; consume on_left apprF apprM; delta] in match EConstr.kind evd termM with | Proj (p, c) when not (Stack.is_empty skF) -> (* Might be ?X args = p.c args', and we have to eta-expand the primitive projection if |args| >= |args'|+1. *) let nargsF = Stack.args_size skF and nargsM = Stack.args_size skM in begin (* ?X argsF' ~= (p.c ..) argsM' -> ?X ~= (p.c ..), no need to expand *) if nargsF <= nargsM then default evd else let f = try let termM' = Retyping.expand_projection env evd p c [] in let apprM' = whd_betaiota_deltazeta_for_iota_state flags.open_ts env evd (termM',skM) in let delta' i = switch (evar_eqappr_x flags env i pbty) apprF apprM' in fun i -> ise_try i [miller on_left ev apprF apprM'; consume on_left apprF apprM'; delta'] with Retyping.RetypeError _ -> (* Happens thanks to w_unify building ill-typed terms *) default in f evd end | _ -> default evd in let flex_rigid on_left ev (termF, skF as apprF) (termR, skR as apprR) = let switch f a b = if on_left then f a b else f b a in let eta evd = match EConstr.kind evd termR with | Lambda _ when (* if ever problem is ill-typed: *) List.is_empty skR -> eta env evd false skR termR skF termF | Construct u -> eta_constructor flags env evd skR u skF termF | _ -> UnifFailure (evd,NotSameHead) in match Stack.list_of_app_stack skF with | None -> ise_try evd [consume_stack on_left apprF apprR; eta] | Some lF -> let tR = Stack.zip evd apprR in miller_pfenning on_left (fun () -> ise_try evd [eta;(* Postpone the use of an heuristic *) (fun i -> if not (occur_rigidly flags env i ev tR) then let i,tF = if isRel i tR || isVar i tR then (* Optimization so as to generate candidates *) let i,ev = evar_absorb_arguments env i ev lF in i,mkEvar ev else i,Stack.zip evd apprF in switch (fun x y -> Success (Evarutil.add_unification_pb (pbty,env,x,y) i)) tF tR else UnifFailure (evd,OccurCheck (fst ev,tR)))]) ev lF tR evd in let first_order env i t1 t2 sk1 sk2 = (* Try first-order unification *) match ise_stack2 false env i (evar_conv_x flags) sk1 sk2 with | None, Success i' -> (* We do have sk1[] = sk2[]: we now unify ?ev1 and ?ev2 *) (* Note that ?ev1 and ?ev2, may have been instantiated in the meantime *) let ev1' = whd_evar i' t1 in if isEvar i' ev1' then solve_simple_eqn (conv_fun evar_conv_x) flags env i' (position_problem true pbty,destEvar i' ev1',term2) else evar_eqappr_x flags env evd pbty (ev1', sk1) (term2, sk2) | Some (r,[]), Success i' -> (* We have sk1'[] = sk2[] for some sk1' s.t. sk1[]=sk1'[r[]] *) (* we now unify r[?ev1] and ?ev2 *) let ev2' = whd_evar i' t2 in if isEvar i' ev2' then solve_simple_eqn (conv_fun evar_conv_x) flags env i' (position_problem false pbty,destEvar i' ev2',Stack.zip i' (term1,r)) else evar_eqappr_x flags env evd pbty (ev2', sk1) (term2, sk2) | Some ([],r), Success i' -> (* Symmetrically *) (* We have sk1[] = sk2'[] for some sk2' s.t. sk2[]=sk2'[r[]] *) (* we now unify ?ev1 and r[?ev2] *) let ev1' = whd_evar i' t1 in if isEvar i' ev1' then solve_simple_eqn (conv_fun evar_conv_x) flags env i' (position_problem true pbty,destEvar i' ev1',Stack.zip i' (term2,r)) else evar_eqappr_x flags env evd pbty (ev1', sk1) (term2, sk2) | None, (UnifFailure _ as x) -> (* sk1 and sk2 have no common outer part *) if Stack.not_purely_applicative sk2 then (* Ad hoc compatibility with 8.4 which treated non-app as rigid *) flex_rigid true (destEvar evd t1) appr1 appr2 else if Stack.not_purely_applicative sk1 then (* Ad hoc compatibility with 8.4 which treated non-app as rigid *) flex_rigid false (destEvar evd t2) appr2 appr1 else (* We could instead try Miller unification, then postpone to see if other equations help, as in: [Check fun a b : unit => (eqᵣefl : _ a = _ a b)] *) x | Some _, Success _ -> (* sk1 and sk2 have a common outer part *) if Stack.not_purely_applicative sk2 then (* Ad hoc compatibility with 8.4 which treated non-app as rigid *) flex_rigid true (destEvar evd t1) appr1 appr2 else if Stack.not_purely_applicative sk1 then (* Ad hoc compatibility with 8.4 which treated non-app as rigid *) flex_rigid false (destEvar evd t2) appr2 appr1 else (* We could instead try Miller unification, then postpone to see if other equations help, as in: [Check fun a b c : unit => (eqᵣefl : _ a b = _ c a b)] *) UnifFailure (i,NotSameArgSize) | _, _ -> anomaly (Pp.str "Unexpected result from ise_stack2.") in let app_empty = match sk1, sk2 with [], [] -> true | _ -> false in (* Evar must be undefined since we have flushed evars *) let () = if !debug_unification then let open Pp in Feedback.msg_notice (v 0 (pr_state env evd appr1 ++ cut () ++ pr_state env evd appr2 ++ cut ())) in match (flex_kind_of_term flags env evd term1 sk1, flex_kind_of_term flags env evd term2 sk2) with | Flexible (sp1,al1), Flexible (sp2,al2) -> (* sk1[?ev1] =? sk2[?ev2] *) let f1 i = first_order env i term1 term2 sk1 sk2 and f2 i = if Evar.equal sp1 sp2 then match ise_stack2 false env i (evar_conv_x flags) sk1 sk2 with |None, Success i' -> Success (solve_refl (fun flags p env i pbty a1 a2 -> let flags = match p with | TypeUnification -> default_flags env | TermUnification -> flags in is_success (evar_conv_x flags env i pbty a1 a2)) flags env i' (position_problem true pbty) sp1 al1 al2) |_, (UnifFailure _ as x) -> x |Some _, _ -> UnifFailure (i,NotSameArgSize) else UnifFailure (i,NotSameHead) and f3 i = miller true (sp1,al1) appr1 appr2 i and f4 i = miller false (sp2,al2) appr2 appr1 i and f5 i = (* We ensure failure of consuming the stacks does not propagate an error about unification of the stacks while the heads themselves cannot be unified, so we return NotSameHead. *) match consume true appr1 appr2 i with | Success _ as x -> x | UnifFailure _ -> quick_fail i in ise_try evd [f1; f2; f3; f4; f5] | Flexible ev1, MaybeFlexible v2 -> flex_maybeflex true ev1 appr1 appr2 v2 | MaybeFlexible v1, Flexible ev2 -> flex_maybeflex false ev2 appr2 appr1 v1 | MaybeFlexible v1, MaybeFlexible v2 -> begin match EConstr.kind evd term1, EConstr.kind evd term2 with | LetIn (na1,b1,t1,c'1), LetIn (na2,b2,t2,c'2) -> let f1 i = (* FO *) ise_and i [(fun i -> ise_try i [(fun i -> evar_conv_x flags env i CUMUL t1 t2); (fun i -> evar_conv_x flags env i CUMUL t2 t1)]); (fun i -> evar_conv_x flags env i CONV b1 b2); (fun i -> let b = nf_evar i b1 in let t = nf_evar i t1 in let na = Nameops.Name.pick_annot na1 na2 in evar_conv_x flags (push_rel (RelDecl.LocalDef (na,b,t)) env) i pbty c'1 c'2); (fun i -> exact_ise_stack2 env i (evar_conv_x flags) sk1 sk2)] and f2 i = let out1 = whd_betaiota_deltazeta_for_iota_state flags.open_ts env i (v1,sk1) and out2 = whd_betaiota_deltazeta_for_iota_state flags.open_ts env i (v2,sk2) in evar_eqappr_x flags env i pbty out1 out2 in ise_try evd [f1; f2] | Proj (p, c), Proj (p', c') when Projection.repr_equal p p' -> let f1 i = ise_and i [(fun i -> evar_conv_x flags env i CONV c c'); (fun i -> exact_ise_stack2 env i (evar_conv_x flags) sk1 sk2)] and f2 i = let out1 = whd_betaiota_deltazeta_for_iota_state flags.open_ts env i (v1,sk1) and out2 = whd_betaiota_deltazeta_for_iota_state flags.open_ts env i (v2,sk2) in evar_eqappr_x flags env i pbty out1 out2 in ise_try evd [f1; f2] (* Catch the p.c ~= p c' cases *) | Proj (p,c), Const (p',u) when Constant.equal (Projection.constant p) p' -> let res = try Some (destApp evd (Retyping.expand_projection env evd p c [])) with Retyping.RetypeError _ -> None in (match res with | Some (f1,args1) -> evar_eqappr_x flags env evd pbty (f1,Stack.append_app args1 sk1) appr2 | None -> UnifFailure (evd,NotSameHead)) | Const (p,u), Proj (p',c') when Constant.equal p (Projection.constant p') -> let res = try Some (destApp evd (Retyping.expand_projection env evd p' c' [])) with Retyping.RetypeError _ -> None in (match res with | Some (f2,args2) -> evar_eqappr_x flags env evd pbty appr1 (f2,Stack.append_app args2 sk2) | None -> UnifFailure (evd,NotSameHead)) | _, _ -> let f1 i = (* Gather the universe constraints that would make term1 and term2 equal. If these only involve unifications of flexible universes to other universes, allow this identification (first-order unification of universes). Otherwise fallback to unfolding. *) let univs = EConstr.eq_constr_universes env evd term1 term2 in match univs with | Some univs -> ise_and i [(fun i -> try Success (Evd.add_universe_constraints i univs) with UniversesDiffer -> UnifFailure (i,NotSameHead) | Univ.UniverseInconsistency p -> UnifFailure (i, UnifUnivInconsistency p)); (fun i -> exact_ise_stack2 env i (evar_conv_x flags) sk1 sk2)] | None -> UnifFailure (i,NotSameHead) and f2 i = (try if not flags.with_cs then raise Not_found else conv_record flags env i (try check_conv_record env i appr1 appr2 with Not_found -> check_conv_record env i appr2 appr1) with Not_found -> UnifFailure (i,NoCanonicalStructure)) and f3 i = (* heuristic: unfold second argument first, exception made if the first argument is a beta-redex (expand a constant only if necessary) or the second argument is potentially usable as a canonical projection or canonical value *) let rec is_unnamed (hd, args) = match EConstr.kind i hd with | (Var _|Construct _|Ind _|Const _|Prod _|Sort _|Int _) -> Stack.not_purely_applicative args | (CoFix _|Meta _|Rel _)-> true | Evar _ -> Stack.not_purely_applicative args (* false (* immediate solution without Canon Struct *)*) | Lambda _ -> assert (match args with [] -> true | _ -> false); true | LetIn (_,b,_,c) -> is_unnamed (whd_betaiota_deltazeta_for_iota_state flags.open_ts env i (subst1 b c, args)) | Fix _ -> true (* Partially applied fix can be the result of a whd call *) | Proj (p, _) -> Projection.unfolded p || Stack.not_purely_applicative args | Case _ | App _| Cast _ -> assert false in let rhs_is_stuck_and_unnamed () = let applicative_stack = fst (Stack.strip_app sk2) in is_unnamed (whd_betaiota_deltazeta_for_iota_state flags.open_ts env i (v2, applicative_stack)) in let rhs_is_already_stuck = rhs_is_already_stuck || rhs_is_stuck_and_unnamed () in if (EConstr.isLambda i term1 || rhs_is_already_stuck) && (not (Stack.not_purely_applicative sk1)) then evar_eqappr_x ~rhs_is_already_stuck flags env i pbty (whd_betaiota_deltazeta_for_iota_state flags.open_ts env i(v1,sk1)) appr2 else evar_eqappr_x flags env i pbty appr1 (whd_betaiota_deltazeta_for_iota_state flags.open_ts env i (v2,sk2)) in ise_try evd [f1; f2; f3] end | Rigid, Rigid when EConstr.isLambda evd term1 && EConstr.isLambda evd term2 -> let (na1,c1,c'1) = EConstr.destLambda evd term1 in let (na2,c2,c'2) = EConstr.destLambda evd term2 in ise_and evd [(fun i -> evar_conv_x flags env i CONV c1 c2); (fun i -> let c = nf_evar i c1 in let na = Nameops.Name.pick_annot na1 na2 in evar_conv_x flags (push_rel (RelDecl.LocalAssum (na,c)) env) i CONV c'1 c'2); (* When in modulo_betaiota = false case, lambda's are not reduced *) (fun i -> exact_ise_stack2 env i (evar_conv_x flags) sk1 sk2)] | Flexible ev1, Rigid -> flex_rigid true ev1 appr1 appr2 | Rigid, Flexible ev2 -> flex_rigid false ev2 appr2 appr1 | MaybeFlexible v1, Rigid -> let f3 i = (try if not flags.with_cs then raise Not_found else conv_record flags env i (check_conv_record env i appr1 appr2) with Not_found -> UnifFailure (i,NoCanonicalStructure)) and f4 i = evar_eqappr_x flags env i pbty (whd_betaiota_deltazeta_for_iota_state flags.open_ts env i (v1,sk1)) appr2 in ise_try evd [f3; f4] | Rigid, MaybeFlexible v2 -> let f3 i = (try if not flags.with_cs then raise Not_found else conv_record flags env i (check_conv_record env i appr2 appr1) with Not_found -> UnifFailure (i,NoCanonicalStructure)) and f4 i = evar_eqappr_x flags env i pbty appr1 (whd_betaiota_deltazeta_for_iota_state flags.open_ts env i (v2,sk2)) in ise_try evd [f3; f4] (* Eta-expansion *) | Rigid, _ when isLambda evd term1 && (* if ever ill-typed: *) List.is_empty sk1 -> eta env evd true sk1 term1 sk2 term2 | _, Rigid when isLambda evd term2 && (* if ever ill-typed: *) List.is_empty sk2 -> eta env evd false sk2 term2 sk1 term1 | Rigid, Rigid -> begin match EConstr.kind evd term1, EConstr.kind evd term2 with | Sort s1, Sort s2 when app_empty -> (try let s1 = ESorts.kind evd s1 in let s2 = ESorts.kind evd s2 in let evd' = if pbty == CONV then Evd.set_eq_sort env evd s1 s2 else Evd.set_leq_sort env evd s1 s2 in Success evd' with Univ.UniverseInconsistency p -> UnifFailure (evd,UnifUnivInconsistency p) | e when CErrors.noncritical e -> UnifFailure (evd,NotSameHead)) | Prod (n1,c1,c'1), Prod (n2,c2,c'2) when app_empty -> ise_and evd [(fun i -> evar_conv_x flags env i CONV c1 c2); (fun i -> let c = nf_evar i c1 in let na = Nameops.Name.pick_annot n1 n2 in evar_conv_x flags (push_rel (RelDecl.LocalAssum (na,c)) env) i pbty c'1 c'2)] | Rel x1, Rel x2 -> if Int.equal x1 x2 then exact_ise_stack2 env evd (evar_conv_x flags) sk1 sk2 else UnifFailure (evd,NotSameHead) | Var var1, Var var2 -> if Id.equal var1 var2 then exact_ise_stack2 env evd (evar_conv_x flags) sk1 sk2 else UnifFailure (evd,NotSameHead) | Const _, Const _ | Ind _, Ind _ | Construct _, Construct _ | Int _, Int _ -> rigids env evd sk1 term1 sk2 term2 | Evar (sp1,al1), Evar (sp2,al2) -> (* Frozen evars *) if Evar.equal sp1 sp2 then match ise_stack2 false env evd (evar_conv_x flags) sk1 sk2 with |None, Success i' -> ise_array2 i' (fun i' -> evar_conv_x flags env i' CONV) al1 al2 |_, (UnifFailure _ as x) -> x |Some _, _ -> UnifFailure (evd,NotSameArgSize) else UnifFailure (evd,NotSameHead) | Construct u, _ -> eta_constructor flags env evd sk1 u sk2 term2 | _, Construct u -> eta_constructor flags env evd sk2 u sk1 term1 | Fix ((li1, i1),(_,tys1,bds1 as recdef1)), Fix ((li2, i2),(_,tys2,bds2)) -> (* Partially applied fixs *) if Int.equal i1 i2 && Array.equal Int.equal li1 li2 then ise_and evd [ (fun i -> ise_array2 i (fun i' -> evar_conv_x flags env i' CONV) tys1 tys2); (fun i -> ise_array2 i (fun i' -> evar_conv_x flags (push_rec_types recdef1 env) i' CONV) bds1 bds2); (fun i -> exact_ise_stack2 env i (evar_conv_x flags) sk1 sk2)] else UnifFailure (evd, NotSameHead) | CoFix (i1,(_,tys1,bds1 as recdef1)), CoFix (i2,(_,tys2,bds2)) -> if Int.equal i1 i2 then ise_and evd [(fun i -> ise_array2 i (fun i -> evar_conv_x flags env i CONV) tys1 tys2); (fun i -> ise_array2 i (fun i -> evar_conv_x flags (push_rec_types recdef1 env) i CONV) bds1 bds2); (fun i -> exact_ise_stack2 env i (evar_conv_x flags) sk1 sk2)] else UnifFailure (evd,NotSameHead) | (Meta _, _) | (_, Meta _) -> begin match ise_stack2 true env evd (evar_conv_x flags) sk1 sk2 with |_, (UnifFailure _ as x) -> x |None, Success i' -> evar_conv_x flags env i' CONV term1 term2 |Some (sk1',sk2'), Success i' -> evar_conv_x flags env i' CONV (Stack.zip i' (term1,sk1')) (Stack.zip i' (term2,sk2')) end | (Ind _ | Sort _ | Prod _ | CoFix _ | Fix _ | Rel _ | Var _ | Const _ | Int _ | Evar _ | Lambda _), _ -> UnifFailure (evd,NotSameHead) | _, (Ind _ | Sort _ | Prod _ | CoFix _ | Fix _ | Rel _ | Var _ | Const _ | Int _ | Evar _ | Lambda _) -> UnifFailure (evd,NotSameHead) | Case _, _ -> UnifFailure (evd,NotSameHead) | Proj _, _ -> UnifFailure (evd,NotSameHead) | (App _ | Cast _), _ -> assert false | LetIn _, _ -> assert false end and conv_record flags env evd (ctx,(h,h2),c,bs,(params,params1),(us,us2),(sk1,sk2),c1,(n,t2)) = (* Tries to unify the states (proji params1 c1 | sk1) = (proji params2 (c (?xs:bs)) | sk2) and the terms h us = h2 us2 where c = the constant for the canonical structure (i.e. some term of the form fun (xs:bs) => Build_R params v1 .. vi-1 (h us) vi+1 .. vn) bs = the types of the parameters of the canonical structure c1 = the main argument of the canonical projection sk1, sk2 = the surrounding stacks of the conversion problem params1, params2 = the params of the projection (empty if a primitive proj) knowing that (proji params1 c1 | sk1) = (h2 us2 | sk2) had to be initially resolved *) let evd = Evd.merge_context_set Evd.univ_flexible evd ctx in if Reductionops.Stack.compare_shape sk1 sk2 then let (evd',ks,_,test) = List.fold_left (fun (i,ks,m,test) b -> if match n with Some n -> Int.equal m n | None -> false then let ty = Retyping.get_type_of env i t2 in let test i = evar_conv_x flags env i CUMUL ty (substl ks b) in (i,t2::ks, m-1, test) else let dloc = Loc.tag Evar_kinds.InternalHole in let (i', ev) = Evarutil.new_evar env i ~src:dloc (substl ks b) in (i', ev :: ks, m - 1,test)) (evd,[],List.length bs,fun i -> Success i) bs in let app = mkApp (c, Array.rev_of_list ks) in ise_and evd' [(fun i -> exact_ise_stack2 env i (fun env' i' cpb x1 x -> evar_conv_x flags env' i' cpb x1 (substl ks x)) params1 params); (fun i -> exact_ise_stack2 env i (fun env' i' cpb u1 u -> evar_conv_x flags env' i' cpb u1 (substl ks u)) us2 us); (fun i -> evar_conv_x flags env i CONV c1 app); (fun i -> exact_ise_stack2 env i (evar_conv_x flags) sk1 sk2); test; (fun i -> evar_conv_x flags env i CONV h2 (fst (decompose_app_vect i (substl ks h))))] else UnifFailure(evd,(*dummy*)NotSameHead) and eta_constructor flags env evd sk1 ((ind, i), u) sk2 term2 = let open Declarations in let mib = lookup_mind (fst ind) env in match get_projections env ind with | Some projs when mib.mind_finite == BiFinite -> let pars = mib.mind_nparams in (try let l1' = Stack.tail pars sk1 in let l2' = let term = Stack.zip evd (term2,sk2) in List.map (fun p -> EConstr.mkProj (Projection.make p false, term)) (Array.to_list projs) in exact_ise_stack2 env evd (evar_conv_x { flags with with_cs = false}) l1' (Stack.append_app_list l2' Stack.empty) with | Invalid_argument _ -> (* Stack.tail: partially applied constructor *) UnifFailure(evd,NotSameHead)) | _ -> UnifFailure (evd,NotSameHead) let evar_conv_x flags = evar_conv_x flags let evar_unify = conv_fun evar_conv_x (* Profiling *) let evar_conv_x = if Flags.profile then let evar_conv_xkey = CProfile.declare_profile "evar_conv_x" in CProfile.profile6 evar_conv_xkey evar_conv_x else evar_conv_x let evar_conv_hook_get, evar_conv_hook_set = Hook.make ~default:evar_conv_x () let evar_conv_x flags = Hook.get evar_conv_hook_get flags let set_evar_conv f = Hook.set evar_conv_hook_set f (* We assume here |l1| <= |l2| *) let first_order_unification flags env evd (ev1,l1) (term2,l2) = let (deb2,rest2) = Array.chop (Array.length l2-Array.length l1) l2 in ise_and evd (* First compare extra args for better failure message *) [(fun i -> ise_array2 i (fun i -> evar_conv_x flags env i CONV) rest2 l1); (fun i -> (* Then instantiate evar unless already done by unifying args *) let t2 = mkApp(term2,deb2) in if is_defined i (fst ev1) then evar_conv_x flags env i CONV t2 (mkEvar ev1) else solve_simple_eqn ~choose:true ~imitate_defs:false evar_unify flags env i (None,ev1,t2))] let choose_less_dependent_instance evk evd term args = let evi = Evd.find_undefined evd evk in let subst = make_pure_subst evi args in let subst' = List.filter (fun (id,c) -> EConstr.eq_constr evd c term) subst in match subst' with | [] -> None | (id, _) :: _ -> Some (Evd.define evk (mkVar id) evd) type occurrence_match_test = env -> evar_map -> constr -> env -> evar_map -> int -> constr -> constr -> bool * evar_map type occurrence_selection = | AtOccurrences of Locus.occurrences | Unspecified of Abstraction.abstraction type occurrences_selection = occurrence_match_test * occurrence_selection list let default_occurrence_selection = Unspecified Abstraction.Imitate let default_occurrence_test ~frozen_evars ts _ origsigma _ env sigma _ c pat = let flags = { (default_flags_of ~subterm_ts:ts ts) with frozen_evars } in match evar_conv_x flags env sigma CONV c pat with | Success sigma -> true, sigma | UnifFailure _ -> false, sigma let default_occurrences_selection ?(frozen_evars=Evar.Set.empty) ts n = (default_occurrence_test ~frozen_evars ts, List.init n (fun _ -> default_occurrence_selection)) let apply_on_subterm env evd fixedref f test c t = let test = test env evd c in let prc env evd = Termops.Internal.print_constr_env env evd in let evdref = ref evd in let rec applyrec (env,(k,c) as acc) t = if Evar.Set.exists (fun fixed -> occur_evar !evdref fixed t) !fixedref then match EConstr.kind !evdref t with | Evar (ev, args) when Evar.Set.mem ev !fixedref -> t | _ -> map_constr_with_binders_left_to_right !evdref (fun d (env,(k,c)) -> (push_rel d env, (k+1,lift 1 c))) applyrec acc t else (if !debug_ho_unification then Feedback.msg_debug Pp.(str"Testing " ++ prc env !evdref c ++ str" against " ++ prc env !evdref t); let b, evd = try test env !evdref k c t with e when CErrors.noncritical e -> assert false in if b then (if !debug_ho_unification then Feedback.msg_debug (Pp.str "succeeded"); let evd', t' = f !evdref k t in evdref := evd'; t') else ( if !debug_ho_unification then Feedback.msg_debug (Pp.str "failed"); map_constr_with_binders_left_to_right !evdref (fun d (env,(k,c)) -> (push_rel d env, (k+1,lift 1 c))) applyrec acc t)) in let t' = applyrec (env,(0,c)) t in !evdref, t' let filter_possible_projections evd c ty ctxt args = (* Since args in the types will be replaced by holes, we count the fv of args to have a well-typed filter; don't know how necessary it is however to have a well-typed filter here *) let fv1 = free_rels evd (mkApp (c,args)) (* Hack: locally untyped *) in let fv2 = collect_vars evd (mkApp (c,args)) in let len = Array.length args in let tyvars = collect_vars evd ty in List.map_i (fun i decl -> let () = assert (i < len) in let a = Array.unsafe_get args i in (match decl with | NamedDecl.LocalAssum _ -> false | NamedDecl.LocalDef (_,c,_) -> not (isRel evd c || isVar evd c)) || a == c || (* Here we make an approximation, for instance, we could also be *) (* interested in finding a term u convertible to c such that a occurs *) (* in u *) isRel evd a && Int.Set.mem (destRel evd a) fv1 || isVar evd a && Id.Set.mem (destVar evd a) fv2 || Id.Set.mem (NamedDecl.get_id decl) tyvars) 0 ctxt let solve_evars = ref (fun _ -> failwith "solve_evars not installed") let set_solve_evars f = solve_evars := f (* We solve the problem env_rhs |- ?e[u1..un] = rhs knowing * x1:T1 .. xn:Tn |- ev : ty * by looking for a maximal well-typed abtraction over u1..un in rhs * * We first build C[e11..e1p1,..,en1..enpn] obtained from rhs by replacing * all occurrences of u1..un by evars eij of type Ti' where itself Ti' has * been obtained from the type of ui by also replacing all occurrences of * u1..ui-1 by evars. * * Then, we use typing to infer the relations between the different * occurrences. If some occurrence is still unconstrained after typing, * we instantiate successively the unresolved occurrences of un by xn, * of un-1 by xn-1, etc [the idea comes from Chung-Kil Hur, that he * used for his Heq plugin; extensions to several arguments based on a * proposition from Dan Grayson] *) let check_selected_occs env sigma c occ occs = let notfound = match occs with | AtOccurrences occs -> (match occs with | Locus.AtLeastOneOccurrence -> occ == 1 | Locus.AllOccurrences -> false | Locus.AllOccurrencesBut l -> List.last l > occ | Locus.OnlyOccurrences l -> List.last l > occ | Locus.NoOccurrences -> false) | Unspecified abstract -> false in if notfound then raise (PretypeError (env,sigma,NoOccurrenceFound (c,None))) else () exception TypingFailed of evar_map let set_of_evctx l = List.fold_left (fun s decl -> Id.Set.add (NamedDecl.get_id decl) s) Id.Set.empty l (** Weaken the existentials so that they can be typed in sign and raise an error if the term otherwise mentions variables not bound in sign. *) let thin_evars env sigma sign c = let evdref = ref sigma in let ctx = set_of_evctx sign in let rec applyrec (env,acc) t = match kind sigma t with | Evar (ev, args) -> let evi = Evd.find_undefined sigma ev in let filter = Array.map (fun c -> Id.Set.subset (collect_vars sigma c) ctx) args in let filter = Filter.make (Array.to_list filter) in let candidates = Option.map (List.map EConstr.of_constr) (evar_candidates evi) in let evd, ev = restrict_evar !evdref ev filter candidates in evdref := evd; whd_evar !evdref t | Var id -> if not (Id.Set.mem id ctx) then raise (TypingFailed sigma) else t | _ -> map_constr_with_binders_left_to_right !evdref (fun d (env,acc) -> (push_rel d env, acc+1)) applyrec (env,acc) t in let c' = applyrec (env,0) c in (!evdref, c') let second_order_matching flags env_rhs evd (evk,args) (test,argoccs) rhs = try let evi = Evd.find_undefined evd evk in let evi = nf_evar_info evd evi in let env_evar_unf = evar_env evi in let env_evar = evar_filtered_env evi in let sign = named_context_val env_evar in let ctxt = evar_filtered_context evi in if !debug_ho_unification then (Feedback.msg_debug Pp.(str"env rhs: " ++ Termops.Internal.print_env env_rhs); Feedback.msg_debug Pp.(str"env evars: " ++ Termops.Internal.print_env env_evar)); let args = Array.map (nf_evar evd) args in let vars = List.map NamedDecl.get_id ctxt in let argsubst = List.map2 (fun id c -> (id, c)) vars (Array.to_list args) in let instance = List.map mkVar vars in let rhs = nf_evar evd rhs in if not (noccur_evar env_rhs evd evk rhs) then raise (TypingFailed evd); (* Ensure that any progress made by Typing.e_solve_evars will not contradict the solution we are trying to build here by adding the problem as a constraint. *) let evd = Evarutil.add_unification_pb (CONV,env_rhs,mkEvar (evk,args),rhs) evd in let prc env evd c = Termops.Internal.print_constr_env env evd c in let rec make_subst = function | decl'::ctxt', c::l, occs::occsl when isVarId evd (NamedDecl.get_id decl') c -> begin match occs with | AtOccurrences loc when not (Locusops.is_all_occurrences loc) -> user_err Pp.(str "Cannot force abstraction on identity instance.") | _ -> make_subst (ctxt',l,occsl) end | decl'::ctxt', c::l, occs::occsl -> let id = NamedDecl.get_annot decl' in let t = NamedDecl.get_type decl' in let evs = ref [] in let c = nf_evar evd c in (* ty is in env_rhs now *) let ty = replace_vars argsubst t in let filter' = filter_possible_projections evd c (nf_evar evd ty) ctxt args in (id,t,c,ty,evs,Filter.make filter',occs) :: make_subst (ctxt',l,occsl) | _, _, [] -> [] | _ -> anomaly (Pp.str "Signature or instance are shorter than the occurrences list.") in let fixed = ref Evar.Set.empty in let rec set_holes env_rhs evd rhs = function | (id,idty,c,cty,evsref,filter,occs)::subst -> let c = nf_evar evd c in if !debug_ho_unification then Feedback.msg_debug Pp.(str"set holes for: " ++ prc env_rhs evd (mkVar id.binder_name) ++ spc () ++ prc env_rhs evd c ++ str" in " ++ prc env_rhs evd rhs); let occ = ref 1 in let set_var evd k inst = let oc = !occ in if !debug_ho_unification then (Feedback.msg_debug Pp.(str"Found one occurrence"); Feedback.msg_debug Pp.(str"cty: " ++ prc env_rhs evd c)); incr occ; match occs with | AtOccurrences occs -> if Locusops.is_selected oc occs then evd, mkVar id.binder_name else evd, inst | Unspecified prefer_abstraction -> let evd, evty = set_holes env_rhs evd cty subst in let evty = nf_evar evd evty in if !debug_ho_unification then Feedback.msg_debug Pp.(str"abstracting one occurrence " ++ prc env_rhs evd inst ++ str" of type: " ++ prc env_evar evd evty ++ str " for " ++ prc env_rhs evd c); let instance = Filter.filter_list filter instance in (* Allow any type lower than the variable's type as the abstracted subterm might have a smaller type, which could be crucial to make the surrounding context typecheck. *) let evd, evty = if isArity evd evty then refresh_universes ~status:Evd.univ_flexible (Some true) env_evar_unf evd evty else evd, evty in let (evd, ev) = new_evar_instance sign evd evty ~filter instance in let evk = fst (destEvar evd ev) in evsref := (evk,evty,inst,prefer_abstraction)::!evsref; fixed := Evar.Set.add evk !fixed; evd, ev in let evd, rhs' = apply_on_subterm env_rhs evd fixed set_var test c rhs in if !debug_ho_unification then Feedback.msg_debug Pp.(str"abstracted: " ++ prc env_rhs evd rhs'); let () = check_selected_occs env_rhs evd c !occ occs in let env_rhs' = push_named (NamedDecl.LocalAssum (id,idty)) env_rhs in set_holes env_rhs' evd rhs' subst | [] -> evd, rhs in let subst = make_subst (ctxt,Array.to_list args,argoccs) in let evd, rhs' = set_holes env_rhs evd rhs subst in let rhs' = nf_evar evd rhs' in (* Thin evars making the term typable in env_evar *) let evd, rhs' = thin_evars env_evar evd ctxt rhs' in (* We instantiate the evars of which the value is forced by typing *) if !debug_ho_unification then (Feedback.msg_debug Pp.(str"solve_evars on: " ++ prc env_evar evd rhs'); Feedback.msg_debug Pp.(str"evars: " ++ pr_evar_map (Some 0) env_evar evd)); let evd,rhs' = try !solve_evars env_evar evd rhs' with e when Pretype_errors.precatchable_exception e -> (* Could not revert all subterms *) raise (TypingFailed evd) in let rhs' = nf_evar evd rhs' in (* We instantiate the evars of which the value is forced by typing *) if !debug_ho_unification then (Feedback.msg_debug Pp.(str"after solve_evars: " ++ prc env_evar evd rhs'); Feedback.msg_debug Pp.(str"evars: " ++ pr_evar_map (Some 0) env_evar evd)); let rec abstract_free_holes evd = function | (id,idty,c,cty,evsref,_,_)::l -> let id = id.binder_name in let c = nf_evar evd c in if !debug_ho_unification then Feedback.msg_debug Pp.(str"abstracting: " ++ prc env_rhs evd (mkVar id) ++ spc () ++ prc env_rhs evd c); let rec force_instantiation evd = function | (evk,evty,inst,abstract)::evs -> let evk = Option.default evk (Evarutil.advance evd evk) in let evd = if is_undefined evd evk then (* We try abstraction or concretisation for *) (* this unconstrained occurrence *) (* and we use typing to propagate this instantiation *) (* We avoid making an arbitrary choice by leaving candidates *) (* if both can work *) let evi = Evd.find_undefined evd evk in let vid = mkVar id in let candidates = [inst; vid] in try let evd, ev = Evarutil.restrict_evar evd evk (Evd.evar_filter evi) (Some candidates) in let evi = Evd.find evd ev in (match evar_candidates evi with | Some [t] -> if not (noccur_evar env_rhs evd ev (EConstr.of_constr t)) then raise (TypingFailed evd); instantiate_evar evar_unify flags evd ev (EConstr.of_constr t) | Some l when abstract = Abstraction.Abstract && List.exists (fun c -> isVarId evd id (EConstr.of_constr c)) l -> instantiate_evar evar_unify flags evd ev vid | _ -> evd) with e -> user_err (Pp.str "Cannot find an instance") else ((if !debug_ho_unification then let evi = Evd.find evd evk in let env = Evd.evar_env evi in Feedback.msg_debug Pp.(str"evar is defined: " ++ int (Evar.repr evk) ++ spc () ++ prc env evd (match evar_body evi with Evar_defined c -> c | Evar_empty -> assert false))); evd) in force_instantiation evd evs | [] -> abstract_free_holes evd l in force_instantiation evd !evsref | [] -> if Evd.is_defined evd evk then (* Can happen due to dependencies: instantiating evars in the arguments of evk might instantiate evk itself. *) (if !debug_ho_unification then begin let evi = Evd.find evd evk in let evenv = evar_env evi in let body = match evar_body evi with Evar_empty -> assert false | Evar_defined c -> c in Feedback.msg_debug Pp.(str"evar was defined already as: " ++ prc evenv evd body) end; evd) else try let evi = Evd.find_undefined evd evk in let evenv = evar_env evi in let rhs' = nf_evar evd rhs' in if !debug_ho_unification then Feedback.msg_debug Pp.(str"abstracted type before second solve_evars: " ++ prc evenv evd rhs'); (* solve_evars is not commuting with nf_evar, because restricting an evar might provide a more specific type. *) let evd, _ = !solve_evars evenv evd rhs' in if !debug_ho_unification then Feedback.msg_debug Pp.(str"abstracted type: " ++ prc evenv evd (nf_evar evd rhs')); let flags = default_flags_of TransparentState.full in Evarsolve.instantiate_evar evar_unify flags evd evk rhs' with IllTypedInstance _ -> raise (TypingFailed evd) in let evd = abstract_free_holes evd subst in evd, true with TypingFailed evd -> evd, false let default_evar_selection flags evd (ev,args) = let evi = Evd.find_undefined evd ev in let rec aux args abs = match args, abs with | _ :: args, a :: abs -> let spec = if not flags.allow_K_at_toplevel then (* [evar_absorb_arguments] puts an Abstract flag for the toplevel binders that were absorbed. *) let occs = if a == Abstraction.Abstract then Locus.AtLeastOneOccurrence else Locus.AllOccurrences in AtOccurrences occs else Unspecified a in spec :: aux args abs | l, [] -> List.map (fun _ -> default_occurrence_selection) l | [], _ :: _ -> assert false in aux (Array.to_list args) evi.evar_abstract_arguments let second_order_matching_with_args flags env evd with_ho pbty ev l t = if with_ho then let evd,ev = evar_absorb_arguments env evd ev (Array.to_list l) in let argoccs = default_evar_selection flags evd ev in let test = default_occurrence_test ~frozen_evars:flags.frozen_evars flags.subterm_ts in let evd, b = try second_order_matching flags env evd ev (test,argoccs) t with PretypeError (_, _, NoOccurrenceFound _) -> evd, false in if b then Success evd else UnifFailure (evd, ConversionFailed (env,mkApp(mkEvar ev,l),t)) else let pb = (pbty,env,mkApp(mkEvar ev,l),t) in UnifFailure (evd, CannotSolveConstraint (pb,ProblemBeyondCapabilities)) let is_beyond_capabilities = function | CannotSolveConstraint (pb,ProblemBeyondCapabilities) -> true | _ -> false let apply_conversion_problem_heuristic flags env evd with_ho pbty t1 t2 = let t1 = apprec_nohdbeta flags env evd (whd_head_evar evd t1) in let t2 = apprec_nohdbeta flags env evd (whd_head_evar evd t2) in let (term1,l1 as appr1) = try destApp evd t1 with DestKO -> (t1, [||]) in let (term2,l2 as appr2) = try destApp evd t2 with DestKO -> (t2, [||]) in let () = if !debug_unification then let open Pp in Feedback.msg_notice (v 0 (str "Heuristic:" ++ spc () ++ Termops.Internal.print_constr_env env evd t1 ++ cut () ++ Termops.Internal.print_constr_env env evd t2 ++ cut ())) in let app_empty = Array.is_empty l1 && Array.is_empty l2 in match EConstr.kind evd term1, EConstr.kind evd term2 with | Evar (evk1,args1 as ev1), (Rel _|Var _) when app_empty && not (is_frozen flags ev1) && List.for_all (fun a -> EConstr.eq_constr evd a term2 || isEvar evd a) (remove_instance_local_defs evd evk1 args1) -> (* The typical kind of constraint coming from pattern-matching return type inference *) (match choose_less_dependent_instance evk1 evd term2 args1 with | Some evd -> Success evd | None -> let reason = ProblemBeyondCapabilities in UnifFailure (evd, CannotSolveConstraint ((pbty,env,t1,t2),reason))) | (Rel _|Var _), Evar (evk2,args2 as ev2) when app_empty && not (is_frozen flags ev2) && List.for_all (fun a -> EConstr.eq_constr evd a term1 || isEvar evd a) (remove_instance_local_defs evd evk2 args2) -> (* The typical kind of constraint coming from pattern-matching return type inference *) (match choose_less_dependent_instance evk2 evd term1 args2 with | Some evd -> Success evd | None -> let reason = ProblemBeyondCapabilities in UnifFailure (evd, CannotSolveConstraint ((pbty,env,t1,t2),reason))) | Evar (evk1,args1), Evar (evk2,args2) when Evar.equal evk1 evk2 -> let f flags ontype env evd pbty x y = let reds = match ontype with | TypeUnification -> TransparentState.full | TermUnification -> flags.open_ts in is_fconv ~reds pbty env evd x y in Success (solve_refl ~can_drop:true f flags env evd (position_problem true pbty) evk1 args1 args2) | Evar ev1, Evar ev2 when app_empty -> (* solve_evar_evar handles the cases ev1 and/or ev2 are frozen *) Success (solve_evar_evar ~force:true (evar_define evar_unify flags ~choose:true) evar_unify flags env evd (position_problem true pbty) ev1 ev2) | Evar ev1,_ when not (is_frozen flags ev1) && Array.length l1 <= Array.length l2 -> (* On "?n t1 .. tn = u u1 .. u(n+p)", try first-order unification *) (* and otherwise second-order matching *) ise_try evd [(fun evd -> first_order_unification flags env evd (ev1,l1) appr2); (fun evd -> second_order_matching_with_args flags env evd with_ho pbty ev1 l1 t2)] | _,Evar ev2 when not (is_frozen flags ev2) && Array.length l2 <= Array.length l1 -> (* On "u u1 .. u(n+p) = ?n t1 .. tn", try first-order unification *) (* and otherwise second-order matching *) ise_try evd [(fun evd -> first_order_unification flags env evd (ev2,l2) appr1); (fun evd -> second_order_matching_with_args flags env evd with_ho pbty ev2 l2 t1)] | Evar ev1,_ when not (is_frozen flags ev1) -> (* Try second-order pattern-matching *) second_order_matching_with_args flags env evd with_ho pbty ev1 l1 t2 | _,Evar ev2 when not (is_frozen flags ev2) -> (* Try second-order pattern-matching *) second_order_matching_with_args flags env evd with_ho pbty ev2 l2 t1 | _ -> (* Some head evar have been instantiated, or unknown kind of problem *) evar_conv_x flags env evd pbty t1 t2 let error_cannot_unify env evd pb ?reason t1 t2 = Pretype_errors.error_cannot_unify ?loc:(loc_of_conv_pb evd pb) env evd ?reason (t1, t2) let check_problems_are_solved env evd = match snd (extract_all_conv_pbs evd) with | (pbty,env,t1,t2) as pb::_ -> error_cannot_unify env evd pb t1 t2 | _ -> () exception MaxUndefined of (Evar.t * evar_info * EConstr.t list) let max_undefined_with_candidates evd = let fold evk evi () = match evi.evar_candidates with | None -> () | Some l -> raise (MaxUndefined (evk, evi, l)) in (* [fold_right] traverses the undefined map in decreasing order of indices. The evar with candidates of maximum index is thus the first evar with candidates found by a [fold_right] traversal. This has a significant impact on performance. *) try let () = Evar.Map.fold_right fold (Evd.undefined_map evd) () in None with MaxUndefined ans -> Some ans let rec solve_unconstrained_evars_with_candidates flags evd = (* max_undefined is supposed to return the most recent, hence possibly most dependent evar *) match max_undefined_with_candidates evd with | None -> evd | Some (evk,ev_info,l) -> let rec aux = function | [] -> user_err Pp.(str "Unsolvable existential variables.") | a::l -> (* In case of variables, most recent ones come first *) try let evd = instantiate_evar evar_unify flags evd evk a in match reconsider_unif_constraints evar_unify flags evd with | Success evd -> solve_unconstrained_evars_with_candidates flags evd | UnifFailure _ -> aux l with | IllTypedInstance _ -> aux l | e when Pretype_errors.precatchable_exception e -> aux l in (* Expected invariant: most dependent solutions come first *) (* so as to favor progress when used with the refine tactics *) let evd = aux l in solve_unconstrained_evars_with_candidates flags evd let solve_unconstrained_impossible_cases env evd = Evd.fold_undefined (fun evk ev_info evd' -> match ev_info.evar_source with | loc,Evar_kinds.ImpossibleCase -> let j, ctx = coq_unit_judge env in let evd' = Evd.merge_context_set Evd.univ_flexible_alg ?loc evd' ctx in let ty = j_type j in let flags = default_flags env in instantiate_evar evar_unify flags evd' evk ty | _ -> evd') evd evd let solve_unif_constraints_with_heuristics env ?(flags=default_flags env) ?(with_ho=false) evd = let evd = solve_unconstrained_evars_with_candidates flags evd in let rec aux evd pbs progress stuck = match pbs with | (pbty,env,t1,t2 as pb) :: pbs -> (match apply_conversion_problem_heuristic flags env evd with_ho pbty t1 t2 with | Success evd' -> let evd' = solve_unconstrained_evars_with_candidates flags evd' in let (evd', rest) = extract_all_conv_pbs evd' in begin match rest with | [] -> aux evd' pbs true stuck | l -> (* Unification got actually stuck, postpone *) let reason = CannotSolveConstraint (pb,ProblemBeyondCapabilities) in aux evd pbs progress ((pb, reason):: stuck) end | UnifFailure (evd,reason) -> if is_beyond_capabilities reason then aux evd pbs progress ((pb,reason) :: stuck) else aux evd [] false ((pb,reason) :: stuck)) | _ -> if progress then aux evd (List.map fst stuck) false [] else match stuck with | [] -> (* We're finished *) evd | ((pbty,env,t1,t2 as pb), reason) :: _ -> (* There remains stuck problems *) Pretype_errors.error_cannot_unify ?loc:(loc_of_conv_pb evd pb) env evd ~reason (t1, t2) in let (evd,pbs) = extract_all_conv_pbs evd in let heuristic_solved_evd = aux evd pbs false [] in check_problems_are_solved env heuristic_solved_evd; solve_unconstrained_impossible_cases env heuristic_solved_evd (* Main entry points *) exception UnableToUnify of evar_map * unification_error let unify_delay ?flags env evd t1 t2 = let flags = match flags with | None -> default_flags_of (default_transparent_state env) | Some flags -> flags in match evar_conv_x flags env evd CONV t1 t2 with | Success evd' -> evd' | UnifFailure (evd',e) -> raise (UnableToUnify (evd',e)) let unify_leq_delay ?flags env evd t1 t2 = let flags = match flags with | None -> default_flags_of (default_transparent_state env) | Some flags -> flags in match evar_conv_x flags env evd CUMUL t1 t2 with | Success evd' -> evd' | UnifFailure (evd',e) -> raise (UnableToUnify (evd',e)) let unify ?flags ?(with_ho=true) env evd cv_pb ty1 ty2 = let flags = match flags with | None -> default_flags_of (default_transparent_state env) | Some flags -> flags in let res = evar_conv_x flags env evd cv_pb ty1 ty2 in match res with | Success evd -> solve_unif_constraints_with_heuristics ~flags ~with_ho env evd | UnifFailure (evd, reason) -> raise (PretypeError (env, evd, CannotUnify (ty1, ty2, Some reason)))