(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* Id.compare v1 v2 | CL_CONST c1, CL_CONST c2 -> Constant.CanOrd.compare c1 c2 | CL_PROJ c1, CL_PROJ c2 -> Projection.Repr.CanOrd.compare c1 c2 | CL_IND i1, CL_IND i2 -> Ind.CanOrd.compare i1 i2 | _ -> pervasives_compare t1 t2 (** OK *) module ClTyp = struct type t = cl_typ let compare = cl_typ_ord end module ClTypMap = Map.Make(ClTyp) let cl_typ_eq t1 t2 = Int.equal (cl_typ_ord t1 t2) 0 type inheritance_path = coe_info_typ list (* table des classes, des coercions et graphe d'heritage *) module Bijint : sig module Index : sig type t val compare : t -> t -> int val equal : t -> t -> bool val print : t -> Pp.t end type 'a t val empty : 'a t val mem : cl_typ -> 'a t -> bool val map : Index.t -> 'a t -> cl_typ * 'a val revmap : cl_typ -> 'a t -> Index.t * 'a val add : cl_typ -> 'a -> 'a t -> 'a t val dom : 'a t -> cl_typ list end = struct module Index = struct include Int let print = Pp.int end type 'a t = { v : (cl_typ * 'a) Int.Map.t; s : int; inv : int ClTypMap.t } let empty = { v = Int.Map.empty; s = 0; inv = ClTypMap.empty } let mem y b = ClTypMap.mem y b.inv let map x b = Int.Map.find x b.v let revmap y b = let n = ClTypMap.find y b.inv in (n, snd (Int.Map.find n b.v)) let add x y b = { v = Int.Map.add b.s (x,y) b.v; s = b.s+1; inv = ClTypMap.add x b.s b.inv } let dom b = List.rev (ClTypMap.fold (fun x _ acc -> x::acc) b.inv []) end type cl_index = Bijint.Index.t let init_class_tab = let open Bijint in add CL_FUN { cl_param = 0 } (add CL_SORT { cl_param = 0 } empty) let class_tab = Summary.ref ~name:"class_tab" (init_class_tab : cl_info_typ Bijint.t) let coercion_tab = Summary.ref ~name:"coercion_tab" (CoeTypMap.empty : coe_info_typ CoeTypMap.t) module ClPairOrd = struct type t = cl_index * cl_index let compare (i1, j1) (i2, j2) = let c = Bijint.Index.compare i1 i2 in if Int.equal c 0 then Bijint.Index.compare j1 j2 else c end module ClPairMap = Map.Make(ClPairOrd) let inheritance_graph = Summary.ref ~name:"inheritance_graph" (ClPairMap.empty : inheritance_path ClPairMap.t) (* ajout de nouveaux "objets" *) let add_new_class cl s = if not (Bijint.mem cl !class_tab) then class_tab := Bijint.add cl s !class_tab let add_new_coercion coe s = coercion_tab := CoeTypMap.add coe s !coercion_tab let add_new_path x y = inheritance_graph := ClPairMap.add x y !inheritance_graph (* class_info : cl_typ -> int * cl_info_typ *) let class_info cl = Bijint.revmap cl !class_tab let class_exists cl = Bijint.mem cl !class_tab (* class_info_from_index : int -> cl_typ * cl_info_typ *) let class_info_from_index i = Bijint.map i !class_tab let cl_fun_index = fst(class_info CL_FUN) let cl_sort_index = fst(class_info CL_SORT) (* coercion_info : coe_typ -> coe_info_typ *) let coercion_info coe = CoeTypMap.find coe !coercion_tab let coercion_exists coe = CoeTypMap.mem coe !coercion_tab (* find_class_type : evar_map -> constr -> cl_typ * universe_list * constr list *) let find_class_type env sigma t = let open EConstr in let t', args = Reductionops.whd_betaiotazeta_stack env sigma t in match EConstr.kind sigma t' with | Var id -> CL_SECVAR id, EInstance.empty, args | Const (sp,u) -> CL_CONST sp, u, args | Proj (p, c) when not (Projection.unfolded p) -> CL_PROJ (Projection.repr p), EInstance.empty, (c :: args) | Ind (ind_sp,u) -> CL_IND ind_sp, u, args | Prod _ -> CL_FUN, EInstance.empty, [] | Sort _ -> CL_SORT, EInstance.empty, [] | _ -> raise Not_found let subst_cl_typ env subst ct = match ct with CL_SORT | CL_FUN | CL_SECVAR _ -> ct | CL_PROJ c -> let c' = subst_proj_repr subst c in if c' == c then ct else CL_PROJ c' | CL_CONST c -> let c',t = subst_con subst c in if c' == c then ct else (match t with | None -> CL_CONST c' | Some t -> pi1 (find_class_type env Evd.empty (EConstr.of_constr t.Univ.univ_abstracted_value))) | CL_IND i -> let i' = subst_ind subst i in if i' == i then ct else CL_IND i' (*CSC: here we should change the datatype for coercions: it should be possible to declare any term as a coercion *) let subst_coe_typ subst t = subst_global_reference subst t (* class_of : Term.constr -> int *) let class_of env sigma t = let (t, n1, i, u, args) = try let (cl, u, args) = find_class_type env sigma t in let (i, { cl_param = n1 } ) = class_info cl in (t, n1, i, u, args) with Not_found -> let t = Tacred.hnf_constr env sigma t in let (cl, u, args) = find_class_type env sigma t in let (i, { cl_param = n1 } ) = class_info cl in (t, n1, i, u, args) in if Int.equal (List.length args) n1 then t, i else raise Not_found let inductive_class_of ind = fst (class_info (CL_IND ind)) let class_args_of env sigma c = pi3 (find_class_type env sigma c) let string_of_class = function | CL_FUN -> "Funclass" | CL_SORT -> "Sortclass" | CL_CONST sp -> string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty (GlobRef.ConstRef sp)) | CL_PROJ sp -> let sp = Projection.Repr.constant sp in string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty (GlobRef.ConstRef sp)) | CL_IND sp -> string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty (GlobRef.IndRef sp)) | CL_SECVAR sp -> string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty (GlobRef.VarRef sp)) let pr_class x = str (string_of_class x) (* lookup paths *) let lookup_path_between_class (s,t) = ClPairMap.find (s,t) !inheritance_graph let lookup_path_to_fun_from_class s = lookup_path_between_class (s,cl_fun_index) let lookup_path_to_sort_from_class s = lookup_path_between_class (s,cl_sort_index) (* advanced path lookup *) let apply_on_class_of env sigma t cont = try let (cl,u,args) = find_class_type env sigma t in let (i, { cl_param = n1 } ) = class_info cl in if not (Int.equal (List.length args) n1) then raise Not_found; t, cont i with Not_found -> (* Is it worth to be more incremental on the delta steps? *) let t = Tacred.hnf_constr env sigma t in let (cl, u, args) = find_class_type env sigma t in let (i, { cl_param = n1 } ) = class_info cl in if not (Int.equal (List.length args) n1) then raise Not_found; t, cont i let lookup_path_between env sigma (s,t) = let (s,(t,p)) = apply_on_class_of env sigma s (fun i -> apply_on_class_of env sigma t (fun j -> lookup_path_between_class (i,j))) in (s,t,p) let lookup_path_to_fun_from env sigma s = apply_on_class_of env sigma s lookup_path_to_fun_from_class let lookup_path_to_sort_from env sigma s = apply_on_class_of env sigma s lookup_path_to_sort_from_class let mkNamed = let open GlobRef in function | ConstRef c -> EConstr.mkConst c | VarRef v -> EConstr.mkVar v | ConstructRef c -> EConstr.mkConstruct c | IndRef i -> EConstr.mkInd i let get_coercion_constructor env coe = let evd = Evd.from_env env in let red x = fst (Reductionops.whd_all_stack env evd x) in match EConstr.kind evd (red (mkNamed coe.coe_value)) with | Constr.Construct (c, _) -> c, Inductiveops.constructor_nrealargs env c -1 | _ -> raise Not_found let lookup_pattern_path_between env (s,t) = let i = inductive_class_of s in let j = inductive_class_of t in List.map (get_coercion_constructor env) (ClPairMap.find (i,j) !inheritance_graph) (* rajouter une coercion dans le graphe *) let path_printer : ((cl_index * cl_index) * inheritance_path -> Pp.t) ref = ref (fun _ -> str "") let install_path_printer f = path_printer := f let print_path x = !path_printer x let path_comparator : (Environ.env -> Evd.evar_map -> cl_index -> inheritance_path -> inheritance_path -> bool) ref = ref (fun _ _ _ _ _ -> false) let install_path_comparator f = path_comparator := f let compare_path p q = !path_comparator p q let warn_ambiguous_path = CWarnings.create ~name:"ambiguous-paths" ~category:"typechecker" (fun l -> prlist_with_sep fnl (fun (c,p,q) -> str"New coercion path " ++ print_path (c,p) ++ if List.is_empty q then str" is not definitionally an identity function." else str" is ambiguous with existing " ++ print_path (c, q) ++ str".") l) (* add_coercion_in_graph : coe_index * cl_index * cl_index -> unit coercion,source,target *) let different_class_params env i = let ci = class_info_from_index i in if (snd ci).cl_param > 0 then true else match fst ci with | CL_IND i -> Environ.is_polymorphic env (GlobRef.IndRef i) | CL_CONST c -> Environ.is_polymorphic env (GlobRef.ConstRef c) | _ -> false let add_coercion_in_graph env sigma (ic,source,target) = let old_inheritance_graph = !inheritance_graph in let ambig_paths = (ref [] : ((cl_index * cl_index) * inheritance_path * inheritance_path) list ref) in let try_add_new_path (i,j as ij) p = (* If p is a cycle, we check whether p is definitionally an identity function or not. If it is not, we report p as an ambiguous inheritance path. *) if Bijint.Index.equal i j && not (compare_path env sigma i p []) then ambig_paths := (ij,p,[])::!ambig_paths; if not (Bijint.Index.equal i j) || different_class_params env i then match lookup_path_between_class ij with | q -> (* p has the same source and target classes as an existing path q. We report them as ambiguous inheritance paths if 1. p and q have no common element, and 2. p and q are not convertible. If 1 does not hold, say p = p1 @ [c] @ p2 and q = q1 @ [c] @ q2, convertibility of p1 and q1, also, p2 and q2 should be checked; thus, checking the ambiguity of p and q is redundant with them. *) if not (List.exists (fun c -> List.exists (coe_info_typ_equal c) q) p || compare_path env sigma i p q) then ambig_paths := (ij,p,q)::!ambig_paths; false | exception Not_found -> (add_new_path ij p; true) else false in let try_add_new_path1 ij p = let _ = try_add_new_path ij p in () in if try_add_new_path (source,target) [ic] then begin ClPairMap.iter (fun (s,t) p -> if not (Bijint.Index.equal s t) then begin if Bijint.Index.equal t source then begin try_add_new_path1 (s,target) (p@[ic]); ClPairMap.iter (fun (u,v) q -> if not (Bijint.Index.equal u v) && Bijint.Index.equal u target then try_add_new_path1 (s,v) (p@[ic]@q)) old_inheritance_graph end; if Bijint.Index.equal s target then try_add_new_path1 (source,t) (ic::p) end) old_inheritance_graph end; match !ambig_paths with [] -> () | _ -> warn_ambiguous_path !ambig_paths type coercion = { coercion_type : coe_typ; coercion_local : bool; coercion_is_id : bool; coercion_is_proj : Projection.Repr.t option; coercion_source : cl_typ; coercion_target : cl_typ; coercion_params : int; } let subst_coercion subst c = let env = Global.env () in let coe = subst_coe_typ subst c.coercion_type in let cls = subst_cl_typ env subst c.coercion_source in let clt = subst_cl_typ env subst c.coercion_target in let clp = Option.Smart.map (subst_proj_repr subst) c.coercion_is_proj in if c.coercion_type == coe && c.coercion_source == cls && c.coercion_target == clt && c.coercion_is_proj == clp then c else { c with coercion_type = coe; coercion_source = cls; coercion_target = clt; coercion_is_proj = clp; } (* Computation of the class arity *) let reference_arity_length env sigma ref = let t, _ = Typeops.type_of_global_in_context env ref in List.length (fst (Reductionops.splay_arity env sigma (EConstr.of_constr t))) let projection_arity_length env sigma p = let len = reference_arity_length env sigma (GlobRef.ConstRef (Projection.Repr.constant p)) in len - Projection.Repr.npars p let class_params env sigma = function | CL_FUN | CL_SORT -> 0 | CL_CONST sp -> reference_arity_length env sigma (GlobRef.ConstRef sp) | CL_PROJ sp -> projection_arity_length env sigma sp | CL_SECVAR sp -> reference_arity_length env sigma (GlobRef.VarRef sp) | CL_IND sp -> reference_arity_length env sigma (GlobRef.IndRef sp) (* add_class : cl_typ -> locality_flag option -> bool -> unit *) let add_class env sigma cl = add_new_class cl { cl_param = class_params env sigma cl } let declare_coercion env sigma c = let () = add_class env sigma c.coercion_source in let () = add_class env sigma c.coercion_target in let is, _ = class_info c.coercion_source in let it, _ = class_info c.coercion_target in let xf = { coe_value = c.coercion_type; coe_local = c.coercion_local; coe_is_identity = c.coercion_is_id; coe_is_projection = c.coercion_is_proj; coe_param = c.coercion_params; } in let () = add_new_coercion c.coercion_type xf in add_coercion_in_graph env sigma (xf,is,it) (* For printing purpose *) let pr_cl_index = Bijint.Index.print let classes () = Bijint.dom !class_tab let coercions () = List.rev (CoeTypMap.fold (fun _ y acc -> y::acc) !coercion_tab []) let inheritance_graph () = ClPairMap.bindings !inheritance_graph let coercion_of_reference r = let ref = Nametab.global r in if not (coercion_exists ref) then user_err ~hdr:"try_add_coercion" (Nametab.pr_global_env Id.Set.empty ref ++ str" is not a coercion."); ref module CoercionPrinting = struct type t = coe_typ module Set = GlobRef.Set let encode _env = coercion_of_reference let subst = subst_coe_typ let printer x = Nametab.pr_global_env Id.Set.empty x let key = ["Printing";"Coercion"] let title = "Explicitly printed coercions: " let member_message x b = str "Explicit printing of coercion " ++ printer x ++ str (if b then " is set" else " is unset") end module PrintingCoercion = Goptions.MakeRefTable(CoercionPrinting) let hide_coercion coe = if not (PrintingCoercion.active coe) then let coe_info = coercion_info coe in Some coe_info.coe_param else None