Class Zero (A : Type) := zero : A. Notation "0" := zero. Class One (A : Type) := one : A. Notation "1" := one. Class Addition (A : Type) := addition : A -> A -> A. Notation "_+_" := addition. Notation "x + y" := (addition x y). Class Multiplication {A B : Type} := multiplication : A -> B -> B. Notation "_*_" := multiplication. Notation "x * y" := (multiplication x y). Class Subtraction (A : Type) := subtraction : A -> A -> A. Notation "_-_" := subtraction. Notation "x - y" := (subtraction x y). Class Opposite (A : Type) := opposite : A -> A. Notation "-_" := opposite. Notation "- x" := (opposite(x)). Class Equality {A : Type}:= equality : A -> A -> Prop. Notation "_==_" := equality. Notation "x == y" := (equality x y) (at level 70, no associativity). Class Bracket (A B: Type):= bracket : A -> B. Notation "[ x ]" := (bracket(x)). Class Power {A B: Type} := power : A -> B -> A. Notation "x ^ y" := (power x y). Notation "\/ x y z , P" := (forall x y z, P) (at level 200, x ident, y ident, z ident). Notation "\/ x y , P" := (forall x y, P) (at level 200, x ident, y ident). Notation "\/ x , P" := (forall x, P)(at level 200, x ident). Notation "\/ x y z : T , P" := (forall x y z : T, P) (at level 200, x ident, y ident, z ident). Notation "\/ x y : T , P" := (forall x y : T, P) (at level 200, x ident, y ident). Notation "\/ x : T , P" := (forall x : T, P)(at level 200, x ident). Notation "\ x y z , P" := (fun x y z => P) (at level 200, x ident, y ident, z ident). Notation "\ x y , P" := (fun x y => P) (at level 200, x ident, y ident). Notation "\ x , P" := (fun x => P)(at level 200, x ident). Notation "\ x y z : T , P" := (fun x y z : T => P) (at level 200, x ident, y ident, z ident). Notation "\ x y : T , P" := (fun x y : T => P) (at level 200, x ident, y ident). Notation "\ x : T , P" := (fun x : T => P)(at level 200, x ident).