(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* true | [], _ -> false | _ :: _, [] -> false | {var = i1; coe = n1} :: v1, {var = i2; coe = n2} :: v2 -> Int.equal i1 i2 && n1 =/ n2 && equal v1 v2 let hash v = let rec hash i = function | [] -> i | {var = vr; coe = vl} :: l -> hash (i + Hashtbl.hash (vr, Q.to_float vl)) l in Hashtbl.hash (hash 0 v) let null = [] let is_null v = match v with | [] -> true | [{var = 0; coe = x}] when Q.zero =/ x -> true | _ -> false let pp_var_num pp_var o {var = v; coe = n} = if Int.equal v 0 then if Q.zero =/ n then () else Printf.fprintf o "%s" (Q.to_string n) else if Q.one =/ n then pp_var o v else if Q.minus_one =/ n then Printf.fprintf o "-%a" pp_var v else if Q.zero =/ n then () else Printf.fprintf o "%s*%a" (Q.to_string n) pp_var v let pp_var_num_smt pp_var o {var = v; coe = n} = let pp_num o q = let nn = Q.num n in let dn = Q.den n in if Z.equal dn Z.one then output_string o (Z.to_string nn) else Printf.fprintf o "(/ %s %s)" (Z.to_string nn) (Z.to_string dn) in if Int.equal v 0 then if Q.zero =/ n then () else pp_num o n else if Q.one =/ n then pp_var o v else if Q.minus_one =/ n then Printf.fprintf o "(- %a)" pp_var v else if Q.zero =/ n then () else Printf.fprintf o "(* %a %a)" pp_num n pp_var v let rec pp_gen pp_var o v = match v with | [] -> output_string o "0" | [e] -> pp_var_num pp_var o e | e :: l -> Printf.fprintf o "%a + %a" (pp_var_num pp_var) e (pp_gen pp_var) l let pp_var o v = Printf.fprintf o "x%i" v let pp o v = pp_gen pp_var o v let pp_smt o v = let list o v = List.iter (fun e -> Printf.fprintf o "%a " (pp_var_num_smt pp_var) e) v in Printf.fprintf o "(+ %a)" list v let from_list (l : Q.t list) = let rec xfrom_list i l = match l with | [] -> [] | e :: l -> if e <>/ Q.zero then {var = i; coe = e} :: xfrom_list (i + 1) l else xfrom_list (i + 1) l in xfrom_list 0 l let to_list m = let rec xto_list i l = match l with | [] -> [] | {var = x; coe = v} :: l' -> if Int.equal i x then v :: xto_list (i + 1) l' else Q.zero :: xto_list (i + 1) l in xto_list 0 m let cons i v rst = if v =/ Q.zero then rst else {var = i; coe = v} :: rst let rec update i f t = match t with | [] -> cons i (f Q.zero) [] | x :: l -> ( match Int.compare i x.var with | 0 -> cons x.var (f x.coe) l | -1 -> cons i (f Q.zero) t | 1 -> x :: update i f l | _ -> failwith "compare_num" ) let rec set i n t = match t with | [] -> cons i n [] | x :: l -> ( match Int.compare i x.var with | 0 -> cons x.var n l | -1 -> cons i n t | 1 -> x :: set i n l | _ -> failwith "compare_num" ) let cst n = if n =/ Q.zero then [] else [{var = 0; coe = n}] let mul z t = if z =/ Q.zero then [] else if z =/ Q.one then t else List.map (fun {var = i; coe = n} -> {var = i; coe = z */ n}) t let div z t = if z <>/ Q.one then List.map (fun {var = x; coe = nx} -> {var = x; coe = nx // z}) t else t let uminus t = List.map (fun {var = i; coe = n} -> {var = i; coe = Q.neg n}) t let rec add (ve1 : t) (ve2 : t) = match (ve1, ve2) with | [], v | v, [] -> v | {var = v1; coe = c1} :: l1, {var = v2; coe = c2} :: l2 -> let cmp = Int.compare v1 v2 in if cmp == 0 then let s = c1 +/ c2 in if Q.zero =/ s then add l1 l2 else {var = v1; coe = s} :: add l1 l2 else if cmp < 0 then {var = v1; coe = c1} :: add l1 ve2 else {var = v2; coe = c2} :: add l2 ve1 let rec xmul_add (n1 : Q.t) (ve1 : t) (n2 : Q.t) (ve2 : t) = match (ve1, ve2) with | [], _ -> mul n2 ve2 | _, [] -> mul n1 ve1 | {var = v1; coe = c1} :: l1, {var = v2; coe = c2} :: l2 -> let cmp = Int.compare v1 v2 in if cmp == 0 then let s = (n1 */ c1) +/ (n2 */ c2) in if Q.zero =/ s then xmul_add n1 l1 n2 l2 else {var = v1; coe = s} :: xmul_add n1 l1 n2 l2 else if cmp < 0 then {var = v1; coe = n1 */ c1} :: xmul_add n1 l1 n2 ve2 else {var = v2; coe = n2 */ c2} :: xmul_add n1 ve1 n2 l2 let mul_add n1 ve1 n2 ve2 = if n1 =/ Q.one && n2 =/ Q.one then add ve1 ve2 else xmul_add n1 ve1 n2 ve2 let compare : t -> t -> int = Mutils.Cmp.compare_list (fun x y -> Mutils.Cmp.compare_lexical [(fun () -> Int.compare x.var y.var); (fun () -> Q.compare x.coe y.coe)]) (** [tail v vect] returns - [None] if [v] is not a variable of the vector [vect] - [Some(vl,rst)] where [vl] is the value of [v] in vector [vect] and [rst] is the remaining of the vector We exploit that vectors are ordered lists *) let rec tail (v : var) (vect : t) = match vect with | [] -> None | {var = v'; coe = vl} :: vect' -> ( match Int.compare v' v with | 0 -> Some (vl, vect) (* Ok, found *) | -1 -> tail v vect' (* Might be in the tail *) | _ -> None ) (* Hopeless *) let get v vect = match tail v vect with None -> Q.zero | Some (vl, _) -> vl let is_constant v = match v with [] | [{var = 0}] -> true | _ -> false let get_cst vect = match vect with {var = 0; coe = v} :: _ -> v | _ -> Q.zero let choose v = match v with [] -> None | {var = vr; coe = vl} :: rst -> Some (vr, vl, rst) let rec fresh v = match v with [] -> 1 | [{var = v}] -> v + 1 | _ :: v -> fresh v let variables v = List.fold_left (fun acc {var = x} -> ISet.add x acc) ISet.empty v let decomp_cst v = match v with {var = 0; coe = vl} :: v -> (vl, v) | _ -> (Q.zero, v) let rec decomp_at i v = match v with | [] -> (Q.zero, null) | {var = vr; coe = vl} :: r -> if Int.equal i vr then (vl, r) else if i < vr then (Q.zero, v) else decomp_at i r let decomp_fst v = match v with [] -> ((0, Q.zero), []) | x :: v -> ((x.var, x.coe), v) let rec subst (vr : int) (e : t) (v : t) = match v with | [] -> [] | {var = x; coe = n} :: v' -> ( match Int.compare vr x with | 0 -> mul_add n e Q.one v' | -1 -> v | 1 -> add [{var = x; coe = n}] (subst vr e v') | _ -> assert false ) let fold f acc v = List.fold_left (fun acc x -> f acc x.var x.coe) acc v let fold_error f acc v = let rec fold acc v = match v with | [] -> Some acc | {var = x; coe = i} :: v' -> ( match f acc x i with None -> None | Some acc' -> fold acc' v' ) in fold acc v let rec find p v = match v with | [] -> None | {var = v; coe = n} :: v' -> ( match p v n with None -> find p v' | Some r -> Some r ) let for_all p l = List.for_all (fun {var = v; coe = n} -> p v n) l let decr_var i v = List.map (fun x -> {x with var = x.var - i}) v let incr_var i v = List.map (fun x -> {x with var = x.var + i}) v let gcd v = let res = fold (fun c _ n -> assert (Int.equal (Z.compare (Q.den n) Z.one) 0); Z.gcd c (Q.num n)) Z.zero v in if Int.equal (Z.compare res Z.zero) 0 then Z.one else res let normalise v = let ppcm = fold (fun c _ n -> Z.ppcm c (Q.den n)) Z.one v in let gcd = let gcd = fold (fun c _ n -> Z.gcd c (Q.num n)) Z.zero v in if Int.equal (Z.compare gcd Z.zero) 0 then Z.one else gcd in List.map (fun {var = x; coe = v} -> {var = x; coe = v */ Q.of_bigint ppcm // Q.of_bigint gcd}) v let rec exists2 p vect1 vect2 = match (vect1, vect2) with | _, [] | [], _ -> None | {var = v1; coe = n1} :: vect1', {var = v2; coe = n2} :: vect2' -> if Int.equal v1 v2 then if p n1 n2 then Some (v1, n1, n2) else exists2 p vect1' vect2' else if v1 < v2 then exists2 p vect1' vect2 else exists2 p vect1 vect2' let dotproduct v1 v2 = let rec dot acc v1 v2 = match (v1, v2) with | [], _ | _, [] -> acc | {var = x1; coe = n1} :: v1', {var = x2; coe = n2} :: v2' -> if Int.equal x1 x2 then dot (acc +/ (n1 */ n2)) v1' v2' else if x1 < x2 then dot acc v1' v2 else dot acc v1 v2' in dot Q.zero v1 v2 let map f v = List.map (fun {var = x; coe = v} -> f x v) v let abs_min_elt v = match v with | [] -> None | {var = v; coe = vl} :: r -> Some (List.fold_left (fun (v1, vl1) {var = v2; coe = vl2} -> if Q.abs vl1 p vr vl) let mkvar x = set x Q.one null module Bound = struct type t = {cst : Q.t; var : var; coeff : Q.t} let of_vect (v : vector) = match v with | [{var = x; coe = v}] -> if Int.equal x 0 then None else Some {cst = Q.zero; var = x; coeff = v} | [{var = 0; coe = v}; {var = x; coe = v'}] -> Some {cst = v; var = x; coeff = v'} | _ -> None end