(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* output_string o "0" | Const n -> output_string o (Q.to_string n) | Var n -> Printf.fprintf o "v%s" n | Opp t -> Printf.fprintf o "- (%a)" output_term t | Add (t1, t2) -> Printf.fprintf o "(%a)+(%a)" output_term t1 output_term t2 | Sub (t1, t2) -> Printf.fprintf o "(%a)-(%a)" output_term t1 output_term t2 | Mul (t1, t2) -> Printf.fprintf o "(%a)*(%a)" output_term t1 output_term t2 | Pow (t1, i) -> Printf.fprintf o "(%a)^(%i)" output_term t1 i (* ------------------------------------------------------------------------- *) (* Data structure for Positivstellensatz refutations. *) (* ------------------------------------------------------------------------- *) type positivstellensatz = | Axiom_eq of int | Axiom_le of int | Axiom_lt of int | Rational_eq of Q.t | Rational_le of Q.t | Rational_lt of Q.t | Square of term | Monoid of int list | Eqmul of term * positivstellensatz | Sum of positivstellensatz * positivstellensatz | Product of positivstellensatz * positivstellensatz let rec output_psatz o = function | Axiom_eq i -> Printf.fprintf o "Aeq(%i)" i | Axiom_le i -> Printf.fprintf o "Ale(%i)" i | Axiom_lt i -> Printf.fprintf o "Alt(%i)" i | Rational_eq n -> Printf.fprintf o "eq(%s)" (Q.to_string n) | Rational_le n -> Printf.fprintf o "le(%s)" (Q.to_string n) | Rational_lt n -> Printf.fprintf o "lt(%s)" (Q.to_string n) | Square t -> Printf.fprintf o "(%a)^2" output_term t | Monoid l -> Printf.fprintf o "monoid" | Eqmul (t, ps) -> Printf.fprintf o "%a * %a" output_term t output_psatz ps | Sum (t1, t2) -> Printf.fprintf o "%a + %a" output_psatz t1 output_psatz t2 | Product (t1, t2) -> Printf.fprintf o "%a * %a" output_psatz t1 output_psatz t2