(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* \]-oo,+oo\[ - None , Some v -> \]-oo,v\] - Some v, None -> \[v,+oo\[ - Some v, Some v' -> \[v,v'\] Intervals needs to be explicitly normalised. *) let pp o (n1, n2) = ( match n1 with | None -> output_string o "]-oo" | Some n -> Printf.fprintf o "[%s" (Q.to_string n) ); output_string o ","; match n2 with | None -> output_string o "+oo[" | Some n -> Printf.fprintf o "%s]" (Q.to_string n) (** if then interval [itv] is empty, [norm_itv itv] returns [None] otherwise, it returns [Some itv] *) let norm_itv itv = match itv with | Some a, Some b -> if a <=/ b then Some itv else None | _ -> Some itv (** [inter i1 i2 = None] if the intersection of intervals is empty [inter i1 i2 = Some i] if [i] is the intersection of the intervals [i1] and [i2] *) let inter i1 i2 = let l1, r1 = i1 and l2, r2 = i2 in let inter f o1 o2 = match (o1, o2) with | None, None -> None | Some _, None -> o1 | None, Some _ -> o2 | Some n1, Some n2 -> Some (f n1 n2) in norm_itv (inter Q.max l1 l2, inter Q.min r1 r2) let range = function | None, _ | _, None -> None | Some i, Some j -> Some (Q.floor j -/ Q.ceiling i +/ Q.one) let smaller_itv i1 i2 = match (range i1, range i2) with | None, _ -> false | _, None -> true | Some i, Some j -> i <=/ j (** [in_bound bnd v] checks whether [v] is within the bounds [bnd] *) let in_bound bnd v = let l, r = bnd in match (l, r) with | None, None -> true | None, Some a -> v <=/ a | Some a, None -> a <=/ v | Some a, Some b -> a <=/ v && v <=/ b