open Names open Pp open Constr open Libnames open Tacmach let mk_prefix pre id = Id.of_string (pre ^ Id.to_string id) let mk_rel_id = mk_prefix "R_" let mk_correct_id id = Nameops.add_suffix (mk_rel_id id) "_correct" let mk_complete_id id = Nameops.add_suffix (mk_rel_id id) "_complete" let mk_equation_id id = Nameops.add_suffix id "_equation" let fresh_id avoid s = Namegen.next_ident_away_in_goal (Id.of_string s) (Id.Set.of_list avoid) let fresh_name avoid s = Name (fresh_id avoid s) let get_name avoid ?(default = "H") = function | Anonymous -> fresh_name avoid default | Name n -> Name n let array_get_start a = Array.init (Array.length a - 1) (fun i -> a.(i)) let locate qid = Nametab.locate qid let locate_ind ref = match locate ref with GlobRef.IndRef x -> x | _ -> raise Not_found let locate_constant ref = match locate ref with GlobRef.ConstRef x -> x | _ -> raise Not_found let locate_with_msg msg f x = try f x with Not_found -> CErrors.user_err msg let filter_map filter f = let rec it = function | [] -> [] | e :: l -> if filter e then f e :: it l else it l in it let chop_rlambda_n = let rec chop_lambda_n acc n rt = if n == 0 then (List.rev acc, rt) else match DAst.get rt with | Glob_term.GLambda (name, k, t, b) -> chop_lambda_n ((name, t, None) :: acc) (n - 1) b | Glob_term.GLetIn (name, v, t, b) -> chop_lambda_n ((name, v, t) :: acc) (n - 1) b | _ -> CErrors.user_err ~hdr:"chop_rlambda_n" (str "chop_rlambda_n: Not enough Lambdas") in chop_lambda_n [] let chop_rprod_n = let rec chop_prod_n acc n rt = if n == 0 then (List.rev acc, rt) else match DAst.get rt with | Glob_term.GProd (name, k, t, b) -> chop_prod_n ((name, t) :: acc) (n - 1) b | _ -> CErrors.user_err ~hdr:"chop_rprod_n" (str "chop_rprod_n: Not enough products") in chop_prod_n [] let list_union_eq eq_fun l1 l2 = let rec urec = function | [] -> l2 | a :: l -> if List.exists (eq_fun a) l2 then urec l else a :: urec l in urec l1 let list_add_set_eq eq_fun x l = if List.exists (eq_fun x) l then l else x :: l let coq_constant s = UnivGen.constr_of_monomorphic_global @@ Coqlib.lib_ref s let find_reference sl s = let dp = Names.DirPath.make (List.rev_map Id.of_string sl) in Nametab.locate (make_qualid dp (Id.of_string s)) let eq = lazy (EConstr.of_constr (coq_constant "core.eq.type")) let refl_equal = lazy (EConstr.of_constr (coq_constant "core.eq.refl")) let with_full_print f a = let old_implicit_args = Impargs.is_implicit_args () and old_strict_implicit_args = Impargs.is_strict_implicit_args () and old_contextual_implicit_args = Impargs.is_contextual_implicit_args () in let old_rawprint = !Flags.raw_print in let old_printuniverses = !Constrextern.print_universes in let old_printallowmatchdefaultclause = Detyping.print_allow_match_default_clause () in Constrextern.print_universes := true; Goptions.set_bool_option_value Detyping.print_allow_match_default_opt_name false; Flags.raw_print := true; Impargs.make_implicit_args false; Impargs.make_strict_implicit_args false; Impargs.make_contextual_implicit_args false; Dumpglob.pause (); try let res = f a in Impargs.make_implicit_args old_implicit_args; Impargs.make_strict_implicit_args old_strict_implicit_args; Impargs.make_contextual_implicit_args old_contextual_implicit_args; Flags.raw_print := old_rawprint; Constrextern.print_universes := old_printuniverses; Goptions.set_bool_option_value Detyping.print_allow_match_default_opt_name old_printallowmatchdefaultclause; Dumpglob.pop_output (); res with reraise -> Impargs.make_implicit_args old_implicit_args; Impargs.make_strict_implicit_args old_strict_implicit_args; Impargs.make_contextual_implicit_args old_contextual_implicit_args; Flags.raw_print := old_rawprint; Constrextern.print_universes := old_printuniverses; Goptions.set_bool_option_value Detyping.print_allow_match_default_opt_name old_printallowmatchdefaultclause; Dumpglob.pop_output (); raise reraise (**********************) type function_info = { function_constant : Constant.t ; graph_ind : inductive ; equation_lemma : Constant.t option ; correctness_lemma : Constant.t option ; completeness_lemma : Constant.t option ; rect_lemma : Constant.t option ; rec_lemma : Constant.t option ; prop_lemma : Constant.t option ; sprop_lemma : Constant.t option ; is_general : bool (* Has this function been defined using general recursive definition *) } (* type function_db = function_info list *) (* let function_table = ref ([] : function_db) *) let from_function = Summary.ref Cmap_env.empty ~name:"functions_db_fn" let from_graph = Summary.ref Indmap.empty ~name:"functions_db_gr" (* let rec do_cache_info finfo = function | [] -> raise Not_found | (finfo'::finfos as l) -> if finfo' == finfo then l else if finfo'.function_constant = finfo.function_constant then finfo::finfos else let res = do_cache_info finfo finfos in if res == finfos then l else finfo'::l let cache_Function (_,(finfos)) = let new_tbl = try do_cache_info finfos !function_table with Not_found -> finfos::!function_table in if new_tbl != !function_table then function_table := new_tbl *) let cache_Function (_, finfos) = from_function := Cmap_env.add finfos.function_constant finfos !from_function; from_graph := Indmap.add finfos.graph_ind finfos !from_graph let subst_Function (subst, finfos) = let do_subst_con c = Mod_subst.subst_constant subst c and do_subst_ind i = Mod_subst.subst_ind subst i in let function_constant' = do_subst_con finfos.function_constant in let graph_ind' = do_subst_ind finfos.graph_ind in let equation_lemma' = Option.Smart.map do_subst_con finfos.equation_lemma in let correctness_lemma' = Option.Smart.map do_subst_con finfos.correctness_lemma in let completeness_lemma' = Option.Smart.map do_subst_con finfos.completeness_lemma in let rect_lemma' = Option.Smart.map do_subst_con finfos.rect_lemma in let rec_lemma' = Option.Smart.map do_subst_con finfos.rec_lemma in let prop_lemma' = Option.Smart.map do_subst_con finfos.prop_lemma in let sprop_lemma' = Option.Smart.map do_subst_con finfos.sprop_lemma in if function_constant' == finfos.function_constant && graph_ind' == finfos.graph_ind && equation_lemma' == finfos.equation_lemma && correctness_lemma' == finfos.correctness_lemma && completeness_lemma' == finfos.completeness_lemma && rect_lemma' == finfos.rect_lemma && rec_lemma' == finfos.rec_lemma && prop_lemma' == finfos.prop_lemma && sprop_lemma' == finfos.sprop_lemma then finfos else { function_constant = function_constant' ; graph_ind = graph_ind' ; equation_lemma = equation_lemma' ; correctness_lemma = correctness_lemma' ; completeness_lemma = completeness_lemma' ; rect_lemma = rect_lemma' ; rec_lemma = rec_lemma' ; prop_lemma = prop_lemma' ; sprop_lemma = sprop_lemma' ; is_general = finfos.is_general } let discharge_Function (_, finfos) = Some finfos let pr_ocst env sigma c = Option.fold_right (fun v acc -> Printer.pr_lconstr_env env sigma (mkConst v)) c (mt ()) let pr_info env sigma f_info = str "function_constant := " ++ Printer.pr_lconstr_env env sigma (mkConst f_info.function_constant) ++ fnl () ++ str "function_constant_type := " ++ ( try Printer.pr_lconstr_env env sigma (fst (Typeops.type_of_global_in_context env (GlobRef.ConstRef f_info.function_constant))) with e when CErrors.noncritical e -> mt () ) ++ fnl () ++ str "equation_lemma := " ++ pr_ocst env sigma f_info.equation_lemma ++ fnl () ++ str "completeness_lemma :=" ++ pr_ocst env sigma f_info.completeness_lemma ++ fnl () ++ str "correctness_lemma := " ++ pr_ocst env sigma f_info.correctness_lemma ++ fnl () ++ str "rect_lemma := " ++ pr_ocst env sigma f_info.rect_lemma ++ fnl () ++ str "rec_lemma := " ++ pr_ocst env sigma f_info.rec_lemma ++ fnl () ++ str "prop_lemma := " ++ pr_ocst env sigma f_info.prop_lemma ++ fnl () ++ str "graph_ind := " ++ Printer.pr_lconstr_env env sigma (mkInd f_info.graph_ind) ++ fnl () let pr_table env sigma tb = let l = Cmap_env.fold (fun k v acc -> v :: acc) tb [] in Pp.prlist_with_sep fnl (pr_info env sigma) l let in_Function : function_info -> Libobject.obj = let open Libobject in declare_object @@ superglobal_object "FUNCTIONS_DB" ~cache:cache_Function ~subst:(Some subst_Function) ~discharge:discharge_Function let find_or_none id = try Some ( match Nametab.locate (qualid_of_ident id) with | GlobRef.ConstRef c -> c | _ -> CErrors.anomaly (Pp.str "Not a constant.") ) with Not_found -> None let find_Function_infos f = Cmap_env.find_opt f !from_function let find_Function_of_graph ind = Indmap.find_opt ind !from_graph let update_Function finfo = (* Pp.msgnl (pr_info finfo); *) Lib.add_anonymous_leaf (in_Function finfo) let add_Function is_general f = let f_id = Label.to_id (Constant.label f) in let equation_lemma = find_or_none (mk_equation_id f_id) and correctness_lemma = find_or_none (mk_correct_id f_id) and completeness_lemma = find_or_none (mk_complete_id f_id) and rect_lemma = find_or_none (Nameops.add_suffix f_id "_rect") and rec_lemma = find_or_none (Nameops.add_suffix f_id "_rec") and prop_lemma = find_or_none (Nameops.add_suffix f_id "_ind") and sprop_lemma = find_or_none (Nameops.add_suffix f_id "_sind") and graph_ind = match Nametab.locate (qualid_of_ident (mk_rel_id f_id)) with | GlobRef.IndRef ind -> ind | _ -> CErrors.anomaly (Pp.str "Not an inductive.") in let finfos = { function_constant = f ; equation_lemma ; completeness_lemma ; correctness_lemma ; rect_lemma ; rec_lemma ; prop_lemma ; sprop_lemma ; graph_ind ; is_general } in update_Function finfos let pr_table env sigma = pr_table env sigma !from_function (*********************************) (* Debugging *) let do_rewrite_dependent = Goptions.declare_bool_option_and_ref ~depr:false ~key:["Functional"; "Induction"; "Rewrite"; "Dependent"] ~value:true let do_observe = Goptions.declare_bool_option_and_ref ~depr:false ~key:["Function_debug"] ~value:false let observe strm = if do_observe () then Feedback.msg_debug strm else () let debug_queue = Stack.create () let print_debug_queue b e = if not (Stack.is_empty debug_queue) then let lmsg, goal = Stack.pop debug_queue in if b then Feedback.msg_debug (hov 1 ( lmsg ++ (str " raised exception " ++ CErrors.print e) ++ str " on goal" ++ fnl () ++ goal )) else Feedback.msg_debug (hov 1 (str " from " ++ lmsg ++ str " on goal" ++ fnl () ++ goal)) (* print_debug_queue false e; *) let do_observe_tac s tac g = let goal = Printer.pr_goal g in let s = s (pf_env g) (project g) in let lmsg = str "observation : " ++ s in Stack.push (lmsg, goal) debug_queue; try let v = tac g in ignore (Stack.pop debug_queue); v with reraise -> let reraise = Exninfo.capture reraise in if not (Stack.is_empty debug_queue) then print_debug_queue true (fst reraise); Exninfo.iraise reraise let observe_tac s tac g = if do_observe () then do_observe_tac s tac g else tac g module New = struct let do_observe_tac ~header s tac = let open Proofview.Notations in let open Proofview in Goal.enter (fun gl -> let goal = Printer.pr_goal (Goal.print gl) in let env, sigma = (Goal.env gl, Goal.sigma gl) in let s = s env sigma in let lmsg = seq [header; str " : " ++ s] in tclLIFT (NonLogical.make (fun () -> Feedback.msg_debug (s ++ fnl ()))) >>= fun () -> tclOR ( Stack.push (lmsg, goal) debug_queue; tac >>= fun v -> ignore (Stack.pop debug_queue); Proofview.tclUNIT v ) (fun (exn, info) -> if not (Stack.is_empty debug_queue) then print_debug_queue true exn; tclZERO ~info exn)) let observe_tac ~header s tac = if do_observe () then do_observe_tac ~header s tac else tac end let is_strict_tcc = Goptions.declare_bool_option_and_ref ~depr:false ~key:["Function_raw_tcc"] ~value:false exception Building_graph of exn exception Defining_principle of exn exception ToShow of exn let jmeq () = try Coqlib.check_required_library Coqlib.jmeq_module_name; EConstr.of_constr @@ UnivGen.constr_of_monomorphic_global @@ Coqlib.lib_ref "core.JMeq.type" with e when CErrors.noncritical e -> raise (ToShow e) let jmeq_refl () = try Coqlib.check_required_library Coqlib.jmeq_module_name; EConstr.of_constr @@ UnivGen.constr_of_monomorphic_global @@ Coqlib.lib_ref "core.JMeq.refl" with e when CErrors.noncritical e -> raise (ToShow e) let h_intros l = Tacticals.New.tclMAP (fun x -> Tactics.Simple.intro x) l let h_id = Id.of_string "h" let hrec_id = Id.of_string "hrec" let well_founded = function | () -> EConstr.of_constr (coq_constant "core.wf.well_founded") let acc_rel = function () -> EConstr.of_constr (coq_constant "core.wf.acc") let acc_inv_id = function | () -> EConstr.of_constr (coq_constant "core.wf.acc_inv") let well_founded_ltof () = EConstr.of_constr (coq_constant "num.nat.well_founded_ltof") let ltof_ref = function () -> find_reference ["Coq"; "Arith"; "Wf_nat"] "ltof" let make_eq () = try EConstr.of_constr (UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.eq.type")) with _ -> assert false let evaluable_of_global_reference r = let open Tacred in (* Tacred.evaluable_of_global_reference (Global.env ()) *) match r with | GlobRef.ConstRef sp -> EvalConstRef sp | GlobRef.VarRef id -> EvalVarRef id | _ -> assert false let list_rewrite (rev : bool) (eqs : (EConstr.constr * bool) list) = let open Tacticals.New in (tclREPEAT (List.fold_right (fun (eq, b) i -> tclORELSE ((if b then Equality.rewriteLR else Equality.rewriteRL) eq) i) (if rev then List.rev eqs else eqs) (tclFAIL 0 (mt ()))) [@ocaml.warning "-3"]) let decompose_lam_n sigma n = if n < 0 then CErrors.user_err Pp.(str "decompose_lam_n: integer parameter must be positive"); let rec lamdec_rec l n c = if Int.equal n 0 then (l, c) else match EConstr.kind sigma c with | Lambda (x, t, c) -> lamdec_rec ((x, t) :: l) (n - 1) c | Cast (c, _, _) -> lamdec_rec l n c | _ -> CErrors.user_err Pp.(str "decompose_lam_n: not enough abstractions") in lamdec_rec [] n let lamn n env b = let open EConstr in let rec lamrec = function | 0, env, b -> b | n, (v, t) :: l, b -> lamrec (n - 1, l, mkLambda (v, t, b)) | _ -> assert false in lamrec (n, env, b) (* compose_lam [xn:Tn;..;x1:T1] b = [x1:T1]..[xn:Tn]b *) let compose_lam l b = lamn (List.length l) l b (* prodn n [xn:Tn;..;x1:T1;Gamma] b = (x1:T1)..(xn:Tn)b *) let prodn n env b = let open EConstr in let rec prodrec = function | 0, env, b -> b | n, (v, t) :: l, b -> prodrec (n - 1, l, mkProd (v, t, b)) | _ -> assert false in prodrec (n, env, b) (* compose_prod [xn:Tn;..;x1:T1] b = (x1:T1)..(xn:Tn)b *) let compose_prod l b = prodn (List.length l) l b type tcc_lemma_value = Undefined | Value of constr | Not_needed (* We only "purify" on exceptions. XXX: What is this doing here? *) let funind_purify f x = let st = Vernacstate.freeze_interp_state ~marshallable:false in try f x with e -> let e = Exninfo.capture e in Vernacstate.unfreeze_interp_state st; Exninfo.iraise e let tac_type_of g c = let sigma, t = Tacmach.pf_type_of g c in ({g with Evd.sigma}, t)