(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* i >= min && i< max) free_rels_in_br ) in List.fold_left_i test_branche 1 false (List.rev scheme_info.Tactics.branches) let choose_dest_or_ind scheme_info args = Proofview.tclBIND Proofview.tclEVARMAP (fun sigma -> Tactics.induction_destruct (is_rec_info sigma scheme_info) false args) let functional_induction with_clean c princl pat = let open Proofview.Notations in Proofview.Goal.enter_one (fun gl -> let sigma = project gl in let f,args = decompose_app sigma c in match princl with | None -> (* No principle is given let's find the good one *) begin match EConstr.kind sigma f with | Const (c',u) -> let princ_option = let finfo = (* we first try to find out a graph on f *) match find_Function_infos c' with | Some finfo -> finfo | None -> user_err (str "Cannot find induction information on "++ Printer.pr_leconstr_env (pf_env gl) sigma (mkConst c') ) in match elimination_sort_of_goal gl with | InSProp -> finfo.sprop_lemma | InProp -> finfo.prop_lemma | InSet -> finfo.rec_lemma | InType -> finfo.rect_lemma in let princ = (* then we get the principle *) match princ_option with | Some princ -> let sigma, princ = Evd.fresh_global (pf_env gl) (project gl) (GlobRef.ConstRef princ) in Proofview.Unsafe.tclEVARS sigma >>= fun () -> Proofview.tclUNIT princ | None -> (*i If there is not default lemma defined then, we cross our finger and try to find a lemma named f_ind (or f_rec, f_rect) i*) let princ_name = Indrec.make_elimination_ident (Label.to_id (Constant.label c')) (elimination_sort_of_goal gl) in let princ_ref = try Constrintern.locate_reference (Libnames.qualid_of_ident princ_name) with | Not_found -> user_err (str "Cannot find induction principle for " ++ Printer.pr_leconstr_env (pf_env gl) sigma (mkConst c') ) in let sigma, princ = Evd.fresh_global (pf_env gl) (project gl) princ_ref in Proofview.Unsafe.tclEVARS sigma >>= fun () -> Proofview.tclUNIT princ in princ >>= fun princ -> (* We need to refresh gl due to the updated evar_map in princ *) Proofview.Goal.enter_one (fun gl -> Proofview.tclUNIT (princ, Tactypes.NoBindings, pf_unsafe_type_of gl princ, args)) | _ -> CErrors.user_err (str "functional induction must be used with a function" ) end | Some ((princ,binding)) -> Proofview.tclUNIT (princ, binding, pf_unsafe_type_of gl princ, args) ) >>= fun (princ, bindings, princ_type, args) -> Proofview.Goal.enter (fun gl -> let sigma = project gl in let princ_infos = compute_elim_sig (project gl) princ_type in let args_as_induction_constr = let c_list = if princ_infos.Tactics.farg_in_concl then [c] else [] in if List.length args + List.length c_list = 0 then user_err Pp.(str "Cannot recognize a valid functional scheme" ); let encoded_pat_as_patlist = List.make (List.length args + List.length c_list - 1) None @ [pat] in List.map2 (fun c pat -> ((None, ElimOnConstr (fun env sigma -> (sigma,(c,Tactypes.NoBindings)))), (None,pat), None)) (args@c_list) encoded_pat_as_patlist in let princ' = Some (princ,bindings) in let princ_vars = List.fold_right (fun a acc -> try Id.Set.add (destVar sigma a) acc with DestKO -> acc) args Id.Set.empty in let old_idl = List.fold_right Id.Set.add (pf_ids_of_hyps gl) Id.Set.empty in let old_idl = Id.Set.diff old_idl princ_vars in let subst_and_reduce gl = if with_clean then let idl = List.filter (fun id -> not (Id.Set.mem id old_idl))(pf_ids_of_hyps gl) in let flag = Genredexpr.Cbv { Redops.all_flags with Genredexpr.rDelta = false } in tclTHEN (tclMAP (fun id -> tclTRY (Equality.subst_gen (do_rewrite_dependent ()) [id])) idl) (reduce flag Locusops.allHypsAndConcl) else tclIDTAC in tclTHEN (choose_dest_or_ind princ_infos (args_as_induction_constr,princ')) (Proofview.Goal.enter subst_and_reduce))